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Abstract: Chlorpyrifos (CPF) is an organophosphorus (OP) pesticide, resulting in various health
complications as the result of ingestion, inhalation, or skin absorption, and leads to DNA damage
and increased oxidative stress. Metformin, derived from Galega officinalis, is reported to have anti-
inflammatory and anti-apoptotic properties; thus, this study aimed to investigate the beneficial role
of metformin in neurotoxicity induced by sub-acute exposure to CPF in Wistar rats. In this study,
animals were divided into nine groups and were treated with different combinations of metformin
and CPF. Following the 28 days of CPF and metformin administration, brain tissues were separated.
The levels of inflammatory biomarkers such as tumor necrosis factor alpha (TNFα) and interleukin
1β (IL-1β), as well as the expression of 5HT1 and 5HT2 genes, were analyzed. Moreover, the levels of
malondialdehyde (MDA), reactive oxygen species (ROS), and the ADP/ATP ratio, in addition to the
activity of acetylcholinesterase (AChE) and superoxide dismutase (SOD), were tested through in vitro
experiments. This study demonstrated the potential role of metformin in alleviating the mentioned
biomarkers, which can be altered negatively as a result of CPF toxicity. Moreover, metformin showed
protective potential in modulating inflammation, as well as oxidative stress, the expression of genes,
and histological analysis, in a concentration-dependent manner.

Keywords: brain; chlorpyrifos; Galega officinalis; metformin; neurotoxicity

1. Introduction

Chlorpyrifos (CPF) is an organophosphorus (OP) pesticide that has been heavily used
and demonstrated various health complications in humans. CPF was introduced in 1965
as the most widely used pesticide in agriculture and non-agriculture environments [1].
According to the United States Environmental Protection Agency (EPA), elderly Americans
consume CPF at 0.009 µg/kg daily through food and water consumption. However,
ingestion, inhalation, and skin absorption are among the possible exposure routes of this
pesticide [1,2]. The toxicity of CPF depends widely on the dose and duration of exposure;
however, due to the half-life of CPF in water and food residue (as the main route of exposure
for humans), many studies have focused on its subchronic exposures [1,2]. Different studies
demonstrated the molecular mechanism of toxicity of CPF as DNA damage. Moreover,
some studies reported CPF as a pesticide affecting the functionality and activity of cellular
enzymes [3–5]. This pesticide is also reported to affect the regulation of serotonin receptors
(5HT1 and 5HT2), which mediate hyperpolarization and the reduction of the firing rate of
postsynaptic neurons [6,7].
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Metformin is a biguanide drug originally developed from Galega officinalis, commonly
known as goat’s rue or French lilac [8]. Since G. officinalis was found to contain guanidine
and was associated with glucose-lowering potential, Jean Sterne initiated his studies of met-
formin as a glucose-lowering medication in the 1950s, and metformin was introduced as an
antidiabetic medication in France and the United States in 1957 and 1995, respectively [9,10].
Nowadays, metformin is used as the first-line therapy in diabetes type 2 (T2D). Although
the exact mechanism of metformin is not fully understood, suggested underlying mecha-
nisms can be divided into two groups of adenosine 3′,5′-monophosphate (AMP)-dependent,
and AMP-independent pathways [11]. Metformin is reported to have anti-inflammatory,
anti-apoptotic, and anti-oxidative roles in different tissues [12–16]. Various studies also
reported the beneficial impacts of metformin on diseases associated with the central ner-
vous system (CNS), including reducing the risk of ischemic stroke and improvements in
short-term neurological functions in traumatic brain injury [17,18]. Several in vivo studies
noticed that chronic treatment with metformin (500 mg/kg for 30 days) reduced acetyl-
cholinesterase (AChE) activity and levels of oxidative stress biomarkers [19,20]. Moreover,
the amount of butyrylcholinesterase, which is involved in the prevalence of Alzheimer’s
disease, was alleviated through the administration of metformin [21]. Thus, the focus
of some recent studies was to investigate the role of metformin in Alzheimer’s disease,
amnestic mild cognitive implications, Huntington’s, and Parkinson’s diseases [22–25].

Due to the lack of investigation on the role of metformin in CPF’s induced neurotoxicity,
in the present study, the authors aimed to determine the beneficial role of metformin in
attenuating the neurotoxicity symptoms of CPF. Biological, molecular, and analytical assays
were performed after the administration of metformin in Wistar rats that were exposed to
CPF for 28 days (sub-acute exposure).

2. Materials and Methods
2.1. Chemicals

The chemicals used in this study, including metformin and CPF, were purchased from
Sigma-Aldrich® (Munich, Germany). In addition, experimental kits for RNA extraction,
cDNA synthesis, rat IL-1β and TNFα enzyme-linked immunosorbent assay (ELISA), and
SOD activity were obtained from Sacace® (Como, Italy), Thermo Scientific® (Waltham, MA,
USA), Diaclone® (Besançon, France), and Teb Pazhouhan Razi® (Tehran, Iran), respectively.

2.2. Animals

Healthy, adult, male Wistar rats weighing approximately 160 g were selected and
kept in the animal house of the School of Pharmacy, Tehran University of Medical Sciences
(TUMS). Wistar rats were adapted to the laboratory conditions two weeks before initiating
the in vivo step. Animals were kept in an environment with a temperature of 25 ± 1 ◦C,
humidity of 50–55%, and a 12 h light and dark cycle.

Moreover, all steps of this study were performed according to the regulations regard-
ing animal experiments and it received ethical approval from the National Institute for
Medical Research Development (NIMAD), on 18 November 2020, with the approval code
of IR.NIMAD.REC.1399.257.

2.3. Study Design

In this study, animals were divided into nine groups of 6 Wistar rats. Proper concentra-
tions of dissolved metformin in normal saline (NS) and CPF in corn oil were administered
to the animals through intraperitoneal (IP) injection and oral gavage, respectively [1–4]. Ad-
ministration of toxin and drug was performed in a sub-acute period (for 28 days), according
to the following plan:

• Group 1 (Control corn oil): receiving oral gavage of corn oil;
• Group 2 (Control NS): receiving IP injection of NS;
• Group 3 (CPF): receiving oral gavage of 7.5 mg/kg (1/20 LD50) CPF;
• Group 4 (Met-30): receiving IP injection of 30 mg/kg/day metformin;
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• Group 5 (Met-60): receiving IP injection of 60 mg/kg/day metformin;
• Group 6 (Met-120): receiving IP injection of 120 mg/kg/day metformin;
• Group 7 (CPF + Met-30): receiving oral gavage of 7.5 mg/kg CPF and IP injection of

30 mg/kg/day metformin;
• Group 8 (CPF + Met-60): receiving oral gavage of 7.5 mg/kg CPF and IP injection of

60 mg/kg/day metformin;
• Group 9 (CPF + Met-120): receiving oral gavage of 7.5 mg/kg CPF and IP injection of

120 mg/kg/day metformin.

After 28 days of CPF and metformin administration to the rats, ketamine and xylazine
were injected into the rats at 100 mg/kg and 10 mg/kg, respectively. Four of the separated
brain tissues of each group were frozen at −80 ◦C for further biochemical experiments,
and 2 of the brain tissues were kept in 10 mL of 10% formalin, following washing with
phosphate buffer two times (pH = 7.4).

2.4. Oxidative Stress Markers

First, 0.1 g samples of the cortex of the brain tissue were homogenized with 1 mL
of phosphate buffer (PBS) and centrifuged for 5 min at 3000× g. The supernatant of the
samples was collected for measuring oxidative stress biomarkers.

2.4.1. Determination of ROS Level

ROS is produced through electron transport in mitochondria and is indicative of
the free radicals associated with oxygen, leading to damages in cellular function [26].
First, 25 µL of the supernatant of the homogenized brain tissues was added to 81 µL of
assay buffer and 5 µL of dichlorodifluorcein diacetate (DCFH-DA). Following 15 min of
incubation at 37 ◦C, the fluorometric absorbance was measured for 60 min at the wavelength
of 485 nm.

Moreover, to normalize the ROS level, protein level measurement was performed
according to the Bradford Protein Assay (BPA). Here, 100 µL Bradford reagent was added
to 10 µL of sample and was kept for 30 min in a dark place. The amount of protein was
investigated by a spectrophotometer at the wavelength of 595 nm [27].

2.4.2. Determination of MDA Level

The MDA level in brain tissue indicates the peroxidation of lipids and oxidative stress.
First, 150 mL thiobarbituric acid of 1% w/v for was added to 600 mL supernatant. After
placing the samples in boiling water for 15 min, 400 mL of n-butanol was added, and the
level of MDA was investigated at the wavelength of 532 nm [28].

2.5. Determination of SOD Activity

First, 0.1 g samples of the cortex of the brain tissue were homogenized with 1 mL
of KCl (150 mM) and centrifuged for 5 min at 3000× g. The supernatant of the samples
was collected for the SOD activity assay. According to the kit manufacturer’s protocol, the
activity of SOD was measured using a rat-specific enzyme-linked immunoassay (ELISA) kit.

2.6. Determination of Inflammatory Cytokine Levels (TNFα and IL-1β)

First, 0.1 g samples of the cortex of the brain tissue were homogenized with 1 mL
of phosphate buffer and centrifuged for 15 min at 3000× g. The supernatant of the sam-
ples was collected for measuring inflammatory cytokines. Measurement of inflammatory
biomarkers, including TNFα and IL-1β, was performed using rat-specific ELISA kits,
according to the kit manufacturer’s protocol [29].

2.7. Determination of AChE Inhibition

First, 0.1 g samples of the cortex of the brain tissue were homogenized with 1 mL of
phosphate buffer and centrifuged for 15 min at 3000× g. To determine the level of AChE
inhibition, 10 µL of the homogenized samples were added to 3 mL of 5, 5′-dithiobis-(2-
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nitrobenzoic acid) (DTNB) solution (25 mM DTNB in 75 mM phosphate buffer). Following
the addition of 10 µL of 3 mM acetylcholine iodide, a two-fold spectrophotometer was used
to measure the absorbance change at the wavelength of 412 nm [30].

2.8. Gene Expression

The expression of specific genes, including 5HT1 and 5HT2, which are associated
with the expression of serotonin receptors, was investigated by the real-time polymerase
chain reaction (PCR) technique. In the first step, total RNA was extracted according to the
Sacace® RNA extraction kit protocol and then its concentration was measured by nanodrop.
Complementary DNA (cDNA) was formed using a reverse transcription Thermo Scientific®

cDNA synthesis kit. In this study, the β-actin gene has been used as the housekeeping gene
to study the expression of 5HT1 and 5HT2 genes. Finally, the double delta analysis was
used to assess the expression of the mentioned genes. The sequences of the primers used in
the real-time PCR step are listed in Table 1.

Table 1. Sequences of the genes used in real-time PCR analysis.

Name Symbol Primer Sequence

Rattus norvegicus actin, beta (Actb) β-actin F: AGGGAAATCGTGCGTGACAT
R: CCGATAGTGATGACCTGACC

Rattus norvegicus
5-hydroxytryptamine receptor 1A

(Htr1a)
5HT1 F: GTCCACTTGTTGAGCACCTG

R: ACGTGACCTTCAGCTACCAA

Rattus norvegicus
5-hydroxytryptamine receptor 2A

(Htr2a)
5HT2 F: TAGTTTGGCTCGAGTGCTGA

R: TCCATGCCAATCCCAGTCTT

2.9. Determination of ADP/ATP Ratio

First, 0.1 g samples of the cortex of the brain tissue were homogenized in 1 mL of
6% cold trichloroacetic acid (TCA) solution. Following the centrifuging of the samples at
16,000× g for 10 min, the pH of the supernatants was neutralized using 0.5 M KOH solution.
The neutral solutions were injected into a high-performance liquid chromatography (HPLC)
instrument, and the ADP/ATP ratio was calculated and normalized according to the
standard curves of ADP and ATP [31,32].

2.10. Histopathological Studies

The samples kept in formalin were embedded in paraffin, and 5 µm sections were
prepared for staining with hematoxylin and eosin (H&E). Using an Olympus BX51 light
microscope, histological slides from the cortexes of the brains were evaluated, and the
changes in tissue sections, such as inflammatory responses, necrosis, hemorrhage, etc.,
were reported [33].

2.11. Statistical Analysis

Results of this study were presented as mean ± standard error of means (SEM). One-
way analysis of variance (ANOVA) and Tukey’s multi-comparison tests were performed
in GraphPad Prism, version 9.3.0. The significance of the changes was reported and set at
p < 0.05.

3. Results
3.1. Oxidative Stress Biomarkers
3.1.1. ROS

Results of the ROS test, summarized in Figure 1A, demonstrated that the administra-
tion of CPF to the animals led to a significant increase in the ROS level (p-value < 0.001).
However, metformin in all three concentrations did not change the brain tissue’s ROS level,
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which indicates the safety of this medication. Despite the safety of metformin, the Met-30,
Met-60, and Met-120 groups showed lower ROS markers in brain tissue in a concentration-
dependent manner, and the Met-120 group resulted in the formation of the lowest level
of ROS. Moreover, the groups receiving CPF and metformin simultaneously showed a
concentration-dependent decrease in the ROS level of the brain tissue. However, the level
of ROS in the CPF + Met-30 and CPF + Met-60 groups was significantly higher than in the
control groups (p-value < 0.001 for both), the CPF + Met-120 group resulted in the most
significant decline in ROS level in comparison with the CPF group (p-value < 0.001), and the
lack of significant difference in ROS levels in comparison with the control groups demon-
strated the beneficial role of metformin in the modulation of ROS markers in CPF-induced
neurotoxicity.
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Figure 1. Results of oxidative stress biomarker tests on the brain tissue of 6 Wistar rats in each
group. Data were obtained from 4 repeated measurements and are reported as the mean ± SEM.
(A) Reactive oxygen species (ROS) assay. (B) Malondialdehyde (MDA) assay.** p-value < 0.005,
*** p-value < 0.001; compared with the control groups. # p-value < 0.05 and ### p-value < 0.001;
compared with chlorpyrifos (CPF) group.

3.1.2. MDA

In the MDA test, which is provided in Figure 1B, the CPF group showed a significant
increase in this marker in the brain tissue (p-value < 0.001). However, the lack of significant
changes in the MDA marker in the groups receiving different concentrations of metformin
indicated the safety of metformin in the formation of the MDA marker in brain tissue.
Simultaneous administration of CPF and metformin to the animals resulted in fewer MDA
biomarkers. In other words, the CPF + Met-30, CPF + Met-60, and CPF + Met-120 groups
showed significantly decreased levels of MDA when compared to the CPF group, in a
concentration-dependent manner (p-value < 0.05, p-value < 0.001, and p-value < 0.001,
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respectively). Results of the MDA test also demonstrated that the simultaneous administra-
tion of higher concentrations of metformin (60 mg/kg and 120 mg/kg) with CPF did not
yield significant differences from the control groups, indicating its beneficial potential in
the modulation of the MDA marker in CPF-induced neurotoxicity.

3.2. Inflammatory Cytokines
3.2.1. TNFα

According to the results of the TNFα test, the CPF group showed significantly increased
levels of the TNFα inflammatory cytokine compared to the control groups (p-value < 0.001).
In contrast, the administration of metformin in 30 mg/kg, 60 mg/kg, and 120 mg/kg
concentrations did not cause any changes in the level of the TNFα inflammatory cytokine.
Results also demonstrated that the concentration-dependent administration of metformin
with CPF could decrease the level of the TNFα cytokine compared to the CPF group.
Although the level of the TNFα marker in the CPF + Met-30 and CPF + Met-60 groups did
not show a significant difference in comparison with the CPF group but showed a significant
difference from the control groups (p-value < 0.001 and p-value < 0.005, respectively), the
CPF + Met-120 group showed a significant decrease in TNFα inflammatory cytokine levels
in comparison with the CPF group (p-value < 0.05). Figure 2A summarizes the results of the
TNFα cytokine test.
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Figure 2. Results of inflammatory cytokine tests on the brain tissue of 6 Wistar rats in each group.
Data were obtained from 4 repeated measurements and are reported as mean ± SEM. (A) Tu-
mor necrosis factor alpha (TNFα) assay. (B) Interleukin 1 beta (IL-1β) assay. ** p-value < 0.005,
*** p-value < 0.001; compared with the control groups. # p-value < 0.05 and ### p-value < 0.001;
compared with chlorpyrifos (CPF) group.
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3.2.2. IL-1β

Results of the IL-1β test confirmed the beneficial role of metformin in the modulation of
inflammatory cytokines in CPF-induced neurotoxicity, which is demonstrated in Figure 2B.
According to the results, the administration of CPF to the animals resulted in a significant
increase in IL-1β inflammation cytokine levels. Moreover, metformin did not change the
level of the IL-1β biomarker in the brain tissue at any of the three concentrations. However,
the administration of metformin in the groups receiving CPF could alleviate the toxicity
and IL-1β formation associated with CPF’s administration in a concentration-dependent
manner. The co-administration of CPF and metformin in the CPF + Met-30, CPF + Met-60,
and CPF + Met-120 groups demonstrated a decrease in the IL-1 marker level compared
to the CPF group; however, the reductions in the IL-1β cytokine in the CPF + Met-60 and
CPF + Met-120 groups were significant, with a p-value of <0.001 for both groups. Despite
the modulatory impact of metformin in CPF-induced neurotoxicity, the CPF + Met-30,
CPF + Met-60, and CPF + Met-120 groups showed significant differences when compared
to the control groups (p-value < 0.001, p-value < 0.001, and p-value < 0.005, respectively).

3.3. AChE Inhibition

The results of AChE inhibition are explored in Figure 3. Results demonstrated that
the administration of CPF in the animals significantly increased AChE inhibition in the
brain tissue compared to the control groups (p-value < 0.001), which demonstrates the
accumulation of ACh in the synaptic cleft, which can over-stimulate the relevant recep-
tors, resulting in neurotoxicity. However, in the groups receiving 30 mg/kg, 60 mg/kg,
and 120 mg/kg of metformin, the inhibition of AChE did not show any changes com-
pared to the control groups, which confirms metformin’s safety profile in AChE inhi-
bition. Results also demonstrated that metformin has modulatory potential to prevent
the inhibition of AChE. These results also showed significant reductions in AChE inhi-
bition in the CPF + Met-30, CPF + Met-60, and CPF + Met-120 groups (p-value < 0.005,
p-value < 0.001, and p-value < 0.001, respectively). Moreover, the CPF + Met-60 and
CPF + Met-120 groups did not show significant differences compared to the control groups,
indicating the concentration-dependent modulatory impacts of metformin.
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3.4. SOD Activity

According to the results obtained from the SOD activity test, the treatment of Wis-
tar rats with CPF significantly reduced SOD activity compared to the control groups
(p-value < 0.001). Although metformin showed neutral impacts on SOD activity and the
groups receiving metformin at 30 mg/kg, 60 mg/kg, and 120 mg/kg concentrations did
not show changes in the level of SOD activity, metformin could improve SOD activity when
administrated with CPF. The concentration-dependent modulatory effect of metformin has
been demonstrated in Figure 4. Elevated activity of SOD in the CPF + Met-30, CPF + Met-60,
and CPF + Met-120 groups showed that although the SOD activity of CPF + Met-30 had a
significant difference from that of the control groups (0.005), the lack of significant differ-
ences in the SOD activity of the CPF + Met-60 and CPF + Met-120 groups confirmed the
beneficial role of metformin in the neurotoxicity induced by CPF.
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Figure 4. Superoxide dismutase (SOD) activity assay on the brain tissue of 6 Wistar rats in each
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** p-value < 0.005, *** p-value < 0.001; compared with the control groups.

3.5. Serotonin Receptor Gene Expression
3.5.1. 5HT1

According to the real-time PCR results, the expression of 5HT1 in the brain tissue of
Wistar rats treated with CPF was significantly elevated compared to the control groups
(p-value < 0.001). Moreover, the expression of the 5HT1 gene was not altered in the
groups receiving metformin at 30 mg/kg, 60 mg/kg, and 120 mg/kg concentrations.
Additionally, metformin showed a concentration-dependent, beneficial impact in alleviating
the expression of this gene when administered simultaneously with CPF. Nonetheless, the
CPF + Met-30, CPF + Met-60, and CPF + Met-120 groups showed significant reductions in
5HT1 expression when compared to the CPF group (p-value < 0.001), as well as significant
increases in 5HT1 expression when compared to the control groups (p-value < 0.001).
Figure 5A indicates the results of 5HT1 expression in the brain tissue through a real-time
PCR test.
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Figure 5. Expression of the genes associated with serotonin receptors (5HT1 and 5HT2, in (A,B),
respectively) in the brain tissue of 6 Wistar rats in each group. Data were obtained from 4 repeated
measurements and are reported as mean ± SEM. *** p-value < 0.001; compared with the control
groups. ## p-value < 0.005 and ### p-value < 0.001; compared with chlorpyrifos (CPF) group.

3.5.2. 5HT2

According to the real-time PCR results, the expression of 5HT2 in the brain tissue of
Wistar rats treated with CPF was significantly elevated in comparison with the control
groups (p-value < 0.001). Moreover, the expression of the 5HT2 gene was not altered in
the groups receiving metformin at 30 mg/kg, 60 mg/kg, and 120 mg/kg concentrations.
Additionally, metformin showed a concentration-dependent, beneficial impact in alleviating
the expression of this gene when administered simultaneously with CPF. Nonetheless, the
CPF + Met-30, CPF + Met-60, and CPF + Met-120 groups showed significant reductions in
5HT2 expression when compared to the CPF group (p-value < 0.005), as well as significant
increases in 5HT2 expression when compared to the control groups (p-value < 0.001).
Figure 5B indicates the results of 5HT2 expression in the brain tissue through a real-time
PCR test.

3.6. ADP/ATP Ratio

The ADP/ATP ratio test results showed a significant increase in the ADP/ATP ratio
in the group treated with CPF compared to the control group (p-value < 0.001). Moreover,
the administration of lower metformin concentrations increased the ADP/ATP ratio in
the brain tissue. In other words, although a significant difference was not observed in
the Met-120 and control groups, the Met-30 and Met-60 groups showed an increased
ADP/ATP ratio, with p-values of <0.005 and <0.05, respectively, which is associated with
the AMP-dependent mechanism of metformin. Moreover, this concentration-dependent
impact of metformin was observed in the groups exposed to CPF and metformin. These
groups, including CPF + Met-30, CPF + Met-60, and CPF + Met-120, showed a significant
increase in the ADP/ATP ratio compared to the control groups (p-value < 0.001 for all of the
groups). However, in the CPF + Met-60 and CPF + Met-120 groups, the ADP/ATP ratio was
significantly lower than in the CPF group (p-value < 0.001 for both groups). Nonetheless,
the ADP/ATP ratio test results in the CPF + Met-120 group showed the lowest ratio among
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other groups receiving metformin and CPF simultaneously. Figure 6 demonstrates the
results obtained from the ADP/ATP ratio test.
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Figure 6. Results of ADP/ATP ratio assay on brain tissue of 6 Wistar rats in each group. Data
were obtained from 4 repeated measurement and are reported as mean ± SEM. * p-value < 0.05,
** p-value < 0.005, *** p-value < 0.001; compared with the control groups. ### p-value < 0.001;
compared with chlorpyrifos (CPF) group.

3.7. Histological Evaluation

Results of the histological analysis of the brain tissue are presented in Figure 7. In the
control (corn oil) group (A), healthy tissue with glial cells (green arrows), perikaryon (red
arrows), and axonal projections (brown arrows) was seen; likewise, no histological change
was seen in the control (NS) group (B). Moreover, no histological alterations were seen in the
Met-treated groups at the concentrations of 30 mg/kg, 60mg/kg, or 120 mg/kg (G, H, and
I, respectively). The histological evaluations also showed that in the CPF group (C), tissue
damage was observed, with vacuolated space and slight pyknosis (marked with yellow
and gray arrows, respectively). However, some degree of vacuolization was observed in
the CPF + Met-30 mg/kg group (D), as indicated with yellow arrows. Nevertheless, the
CPF + Met-60 and CPF + Met-120 groups (E and F, respectively) were not reported to be
histologically damaged, confirming the modulatory and beneficial role of metformin.
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Figure 7. Histological sections of the cortex of the brain tissue of 6 Wistar rats in each group. Yellow,
gray, green, red, and brown arrows indicate vacuolization, pyknosis, glial cells, perikaryon, and
projections. (A) Control (corn oil), (B) Control (NS), (C) CPF, (D) Met-30, (E) Met-60, (F) Met-120,
(G) CPF + Met-30, (H) CPF + Met-60, (I) CPF + Met-120.

4. Discussion

Among OPs, CPF is linked to various neurological problems, and it is frequently used
as an insecticide worldwide [34]. Several studies established different cellular pathways to
explain the neurotoxicity of CPF [35–38]. CPF is associated with irreversible consequences
in the brain tissue due to chronic exposure [5]. Despite the significant impairments of oxida-
tive stress biomarkers, inflammatory cytokines, the activity of enzymes, and the expression
of genes as the result of CPF exposure, metformin modulates the altered characteristics of
the brain tissue [39]. Metformin, as a compound with natural botanic sources, is beneficial
and preventive in various brain disorders [40]. Mechanisms impacting the formation of ox-
idative stress markers and the inflammatory cytokines are considered essential underlying
mechanisms for the beneficial role of metformin [41].

In this study, metformin has been used to investigate its possible beneficial role in
CPF-induced neurotoxicity. Oxidative stress biomarkers such as ROS and MDA, and
inflammatory cytokines such as TNFα and IL-1β, were measured in this study. Results
demonstrated that exposure to metformin alleviates and reduces the increased levels of
the mentioned biomarkers associated with CPF. Moreover, the inhibition of AChE and the
activity of SOD, which were increased and decreased, respectively, as a consequence of CPF
treatment, were positively and significantly changed through metformin administration.
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Metformin can also impact the expression of the 5HT1 and 5HT2 genes and lower the
expression levels to normal ones. Moreover, despite the histological injuries, including
vacuolization and pyknosis, induced by CPF exposure, co-administration with the highest
(120 mg/kg) concentrations of metformin did not demonstrate such damages in the brain’s
histological sections. All of the tests performed in this study confirmed the role of metformin
in modulating the neurotoxicity associated with CPF exposure and demonstrated the
concentration-dependent impact of metformin.

Various studies investigated the influence of exposure to CPF, particularly neuro-
toxicity induced by CPF, which confirm the results obtained from our research. A study
on Atlantic salmon demonstrated that CPF could affect protein degradation and lipid
metabolism in the brain and liver, and also showed CPF’s impact on the disruption of
encoding proteins involved in neuron function. This study found that CPF significantly
altered the transcription of the genes involved in the neurological function of Atlantic
salmon fish [35]. Moreover, another study on the neurotoxicity of CPF in mice reached
the same results for AChE and SOD biomarkers. This study investigated the toxicity in
the brain tissue and studied the abnormalities in AChE, SOD, catalase activity (CAT),
glutathione peroxidase (GPX), and an increase in oxidative stress biomarkers. According to
this study, CPF activates the formation of oxidative stress biomarkers and consequently
alters significantly the activity of the mentioned enzymes [36].

AChE has been the focus of attention in various studies due to CPF-induced neuro-
toxicity. Although the exact mechanism of AChE alteration is not fully known, following
the intracerebroventricular (ICV) injection of cytochrome P450 2B enzyme (CYP2B) in-
hibitors, the effect of the subcutaneous (SC) administration of CPF was assessed. Results of
AChE neurochemical analysis showed that the CYP2B inhibitor attenuates the reduction
in brain AChE. Thus, CYP2B is suggested as a factor involved in the neurotoxicity of
CPF [37]. The expression of the genes involved in encoding AChE and monoamine oxidase
A (MAO-A) has been examined. Results showed that the expression of the mentioned
genes was reduced significantly when the animals were treated with CPF. This pesticide
also significantly reduces the levels of neurotransmitters such as dopamine and serotonin
and the activity of MAO-A, AChE, and sodium-potassium adenosine triphosphatase. The
oxidative stress increase associated with exposure to CPF has been suggested to be relevant
to a significant increase in MDA and nitric oxide (NO) markers [38]. Serotonin receptor
assays have studied the impact of CPF on serotonin neurotransmitters. A study on an avian
model showed that CPF directly increases the receptor binding of cerebrocortical 5HT2,
demonstrating its upregulatory impacts on the expression of this serotonin receptor, and it
also reduces the activity of presynaptic AChE in a concentration-dependent manner [42].

Furthermore, the role of CPF in 5HT signaling in noncholinergic neurotoxicity has been
established. CPF is reported to alter the expected levels of the 5HT1A and 5HT2 receptors,
in addition to 5HT transporters [7]. CPF is also suggested to modify the concentrations of
pro-inflammatory and inflammatory biomarkers in the brain, plasma, and other tissues.
Chronic exposure to CPF led to higher concentrations of TNFα, interleukin 6 (IL-6), and
IL-1β in Wistar rats [43]. According to the literature, CPF impacts various cellular pathways
in the brain tissue, and some of the most important mechanisms were discussed earlier.
Due to the same cellular pathway of CPF and metformin, we benefited from metformin as
the protective agent in our study.

The positive potential of metformin in neurotoxicity has been confirmed in several
studies. Impaired mitochondrial oxidative metabolism as a result of insulin resistance
is associated with cognitive decline. It is suggested to elevate ROS formation and con-
sequently reduce mitochondrial ATP production. However, a recent study investigated
metformin’s effect on mitochondrial proteins and mitochondrial fission, preventing ROS
formation and inflammation [44]. Moreover, metformin showed beneficial roles in the
cerebral ischemia of the brain by impacting mitochondrial dysregulation, oxidative stress,
blood–brain barrier (BBB) breakdown, and inflammation. Various underlying mechanisms
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are suggested for the mentioned influences, including decreasing IL-6, TNFα, IL-1β, and
intercellular adhesion molecule-1 (ICAM1) and consequent apoptosis prevention [45].

The neuroprotective role of metformin has also been studied in patients with acute
stroke. The disrupted function of the brain as the result of impaired glucose control can
be managed with the administration of metformin. This study suggested metformin’s
role in controlling the blood glucose level, as well as altering the activated protein kinase
(AMPK)/mammalian target of rapamycin (mTOR) signaling pathway and decreasing and
increasing MDA and SOD biomarkers, respectively [46]. An animal study on streptozotocin
(STZ)-induced diabetic rats showed that although brain injuries associated with diabetes
are reported to reduce the activity of SOD to 65% and increase the MDA level to 59%,
metformin has significant protective impacts against these injuries (p-value < 0.01) [47].
Another study on sepsis-induced brain injury showed that metformin ameliorates neuronal
apoptosis by increasing the phosphorylation of protein kinase B (PKB) and activating
phosphoinositide 3-kinase (PI3K)/Akt signaling [48].

5. Conclusions

The main conclusion to be drawn is that CPF-induced neurotoxicity is associated
with increased levels of oxidative stress biomarkers as well as inflammatory cytokines.
Moreover, CPF can impair the activity of SOD while increasing the expression of the genes
relevant to serotonin receptors. CPF alters the ratio of ADP to ATP, and this pesticide
can result in histological injuries in the brain tissue. Administration of metformin is
reported to modulate the changes associated with the neurotoxicity of CPF, and metformin
demonstrated its beneficial impacts in a concentration-dependent manner. Thus, this study
suggests metformin as a protective agent against the neurotoxicity of CPF. Moreover, in
future studies, other biomarkers and pathways can be studied with sub-acute and chronic
exposure to CPF.
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