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Abstract c-Oryzanol, a natural mixture of ferulic acid

esters of triterpene alcohols and sterols, are an important

bioactive components present in rice bran oil. In light of

the recent increase in the popularity of wild rice among

consumers, and the possibility of a direct relationship

between c-oryzanol composition and its bioactivity, the

oryzanol profile of major wild rice (Zizania palustris)

grown in North America was studied and compared to

regular brown rice (Oryza sativa L.). A total of twenty-

three c-oryzanol components were separated, identified and

quantified by HPLC coupled to an Orbitrap MS. The dis-

tribution of individual c-oryzanols was similar for all the

wild rice but significantly different from those of the reg-

ular brown rice. Unlike in the regular brown rice, a sig-

nificant amount of steryl caffeate and cinnamate were

found in the wild rice samples. Generally, the amounts of

c-oryzanol in the wild rice were higher compared to the

regular brown rice, 1,352 vs. 688 lg/g. The results from

this study showed that wild rice had a more diverse

c-oryzanol composition and the higher amounts compared

to the regular brown rice.

Keywords Wild rice � Regular brown rice � c-Oryzanol �
Hydroxylated steryl ferulate � Steryl caffeate �
Steryl cinnamate

Introduction

Rice (Oryza sativa) is the staple food for two-thirds of the

world’s population [1]. In response to the expected world

population growth, the International Rice Research Insti-

tute predicted that 800 million tons of rice will be required

in 2025 [2]. With worldwide rice production currently less

than the population growth rate, a significant increase in

the consumption of wild rice (Zizania spp.) is expected.

Indeed, the utilization of wild rice is gaining popularity

among consumers, and it is grown and commonly available

in the North American supermarkets and restaurants.

Rice contains many bioactive nutrients including: c-

oryzanol, phytic acid, tocopherols, tocotrienols, thiamine,

riboflavin, niacin and folic acid. c-Oryzanol, a mixture of

ferulic acid esters of triterpene alcohols and phytosterols is

chiefly responsible for many of the observed health benefits

of rice and rice products [3]. c-Oryzanol has been shown to

possess antioxidant, anti-inflammatory, anti-tumor, and

hypocholesterolemic activities [4–8], and has been

approved for the treatment of nerve imbalances and men-

opausal disorders [9].

The origin, environmental factors, and genotype affects

the composition, as well as the amount of individual

components of c-oryzanol in standard rice [10, 11]. Also,

inconsistent data on the numbers and composition of

individual components of c-oryzanol are often reported in
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the literature depending on the analytical procedures

employed [12]. Whereas the majority of the studies have

focussed on the total amount of c-oryzanol in rice products

[13–17], a detailed profiling of the individual components

is of paramount importance especially in the light of

emerging evidence suggesting significant differences in the

physiological activity of individual phytosterol ferulates.

For instance, 24-methylenecycloartanyl ferulate has been

shown to be a more efficient inhibitor of 2,20-azobis(2-

methylpropionamidine) dihydrochloride accelerated cho-

lesterol oxidation in vitro than either cycloartenyl or

campesteryl ferulates [18]. Also, dimethyl sterols, cyclo-

artenyl and 24-methylenecycloartanyl were more effective

than various 4,40-desmethyl phytosterols against 12-O-tet-

radecanoylphorbol-13-acetate induced inflammatory

activity [4].

Although several studies have been undertaken on the

separation and quantification of c-oryzanol in regular rice

(Oryza sativa), to the best of our knowledge, no data are

available on the oryzanol profile of North American wild

rice (Zizania palustris). In a recently published study,

Przybylski et al. [17] reported composition of lipid com-

ponents of North America wild rice revealing that the lipids

are an excellent source of essential fatty acids and signif-

icant amounts of nutraceuticals including c-oryzanol,

however, the c-oryzanol content was quantified as a group

of steryl ferulates. Thus, the main objective of the present

study was to assess the composition and contribution of

individual components of c-oryzanol in North American

commercial wild rice in comparison with regular brown

rice.

Materials and Methods

Materials

Samples of commercial wild rice were obtained from the

following suppliers, the abbreviation in the parentheses

following the name of the rice is used henceforth in this

paper: Minnesota Natural Lake (MNL; C & G Enterprises,

MN, USA), Minnesota Naturally Grown Lake & River

(MNGLR; Moose Lake Wild Rice Company, MN, USA),

Minnesota Cultivated Wild Rice (MC; Moose Lake Wild

Rice Company, MN, USA), Athabasca Alberta (AA; Alice

Ptolemy Lakeland Wild Rice, Athabasca, AB, Canada),

North Western Ontario (NOW; Shoal Lake Wild Rice,

Winnipeg, MB, Canada), Manitoba Far North (FNM; Far

North Wild Rice, MB, Canada), and Saskatchewan (S;

Points North Wild Rice Company, Yorkton, SK, Canada).

Regular medium (MGR) and long grain (LGR) brown rice

were obtained from Riceland Foods (AR, USA) and used

as references.

Chemicals

Acetonitrile and isopropanol used in the study were of LC–

MS grade and were obtained from Fisher Scientific Co.

(Toronto, ON, Canada). Ultrapure deionized water was

purified by a Nanopure Diamond laboratory water system

(Barnstead, Dubuque, IA, USA). All other solvents and

chemicals were of analytical grade and were purchased

from Sigma-Aldrich (St. Louis, MO, USA). c-Oryzanol

was a kind gift from the Oryza Oil and Fat Chemical Co.

Ltd. (Ichinomiya-City, Japan).

Extraction of c-Oryzanol

c-Oryzanols were isolated from the rice samples utilizing

sonic assisted methanol extraction (SAME) [19]. Briefly,

ground wild rice kernels (1 g) were weighed into a threa-

ded tube then 10 mL of methanol added and vortexed for

1 min, followed by sonication at 50 �C for 1 h. Extraction

was repeated three times with fresh methanol and the

combined extract was centrifuged at 5,000 rpm for 30 min.

The supernatant was evaporated to 5 mL and subsequently

analyzed by HPLC–MS.

HPLC–MS

High performance liquid chromatography was carried out

using an Accela HPLC system equipped with an Accela

1,250 pump and autosampler (Thermo Fischer Scientific,

West Palm Beach, FL). The sample was separated at 25 �C

on a Kinetex C18 column (2.6 lm; 150 9 3 mm; Phe-

nomenex, MA) using a mobile phase consisting of aceto-

nitrile, water and isopropanol with the following gradient:

Time (min) Acetonitrile Water Isopropanol Flow rate

(mL/min)

0 20 80 0 0.30

15 80 5 15 0.30

30 82 0 18 0.30

50 100 0 0 0.60

56 100 0 0 0.60

57 20 80 0 0.30

60 20 80 0 0.30

Injection volume was 10 lL and the UV detector was at

325 nm (Accela PDA). c-Oryzanol components were

identified with Exactive Orbitrap MS (Thermo Fischer

Scientific, West Palm Beach, FL, USA).

The mass spectrometer was equipped with an ESI ion

source, operated in both positive and negative mode.

Xcalibur software was used for data acquisition and
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analysis. The mass spectrometer conditions were optimized

for c-oryzanol by infusion of an oryzanol standard at 5 lL/

min into a 300 lL/min flow of mobile phase containing

85 % acetonitrile, 10 % isopropanol and 5 % water. The

ESI ion source capillary temperature was set at 275 �C; the

sheath gas flow rate at 25, and the auxiliary gas flow at 5.

The capillary and tube lens voltages were at 55 and 110 V,

respectively for positive mode, and -45 and -95 V,

respectively, for negative mode. The spray voltage was

?4.00 kV for positive mode and -3.97 kV for negative

mode. Fragmentation of components was achieved by

Higher Energy Collision Induced Dissociation (HCD)

fragmentation at 100 eV. The spectra were collected in a

range of 100–800 m/z at a scan rate of 1 scan/s. To prevent

rapid contamination of the ion source by the crude extract,

the first and the last 10 min of effluent from the HPLC

were diverted to waste using a Rheodyne automated

switching valve. Quantification of c-oryzanol components

was achieved by external calibration using the average

areas of the six major steryl ferulates in the standard

mixture (*98 % of total oryzanol), and assuming that the

extinction coefficients for ferulic acid for all peaks were the

same, following Britz et al. method [20].

Statistical Analysis

Extraction of c-oryzanols and HPLC–MS analyses were

performed in triplicate and data are presented as

means ± SD. Data were analyzed by single factor analysis

of variance (ANOVA) and regression analysis using

Minitab 2,000 statistical software (Minitab Inc. PA, ver.

15). Statistically significant differences between means

were determined by Duncan’s multiple range tests for

P B 0.05.

Results and Discussion

The chromatogram in Fig. 1 shows the twenty-three c-

oryzanol components separated in the present study, their

identities are reported in Table 1. The identification of the

components was based on the molecular mass determined

by mass spectrometer, which agreed with the calculated

values, and were also compared to the retention data of

standards (chromatogram A; Fig. 1). In agreement with

previously published data [18, 20, 21], cycloartenol trans-

ferulate (m/z 601), 24-methylenecycloartanol trans-ferulate

(m/z 615), campesterol trans-ferulate (m/z 575), and

RT: 0.58 - 59.98
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Fig. 1 HPLC chromatograms of c-oryzanol standards (a), regular Medium Grain and Long Grain brown rice (b), and Minnesota Natural Lake,

MNL (c); similar patterns were observed for other samples of the wild rice. See Table 1 for identity of compounds
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oryzanol_std_calib_1000ppm_ESI_negative_HCD_Oct29 #1858 RT: 22.51 AV: 1 SB: 400 20.07-22.23 , 22.59-25.26 NL: 1.93E4
T: FTMS {1,1}  - p ESI sid=60.00  Full ms2 1000.00@hcd60.00 [100.00-800.00]
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T: FTMS {1,1}  - p ESI sid=60.00  Full ms2 1000.00@hcd60.00 [100.00-800.00]
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T: FTMS {1,1}  - p ESI sid=60.00  Full ms2 1000.00@hcd60.00 [100.00-800.00]
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Fig. 2 MS spectra of hydroxylated steryl ferulates identified in this study: Hydroxydehydrocycloartenol ferulate (a); Hydroxycycloartenol

ferulate (b); Hydroxy-24-methylenecycloartenol ferulate (c)
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sitosterol trans-ferulate (m/z 589) were the major compo-

nents, representing up to 90 % in the control brown rice

and averaged of 75 % in the wild rice samples. Indeed,

the amounts of 24-methylenecycloartanol trans-ferulate

(249 lg/g), cycloartenol trans-ferulate (171 lg/g), and

total c-oryzanol (688 lg/g) obtained in the present study

for long grain regular brown rice are in agreement with

those reported by Cho et al. [21]. Significant differences,

however, were observed in the contents of campesterol

trans-ferulate and sitosterol trans-ferulate between the two

studies, which could be due to differences in analytical

procedures as earlier mentioned [12]. Fang et al. [12]

oryzanol_wildrice_sample1_mnl_esi_negative_hcd_oct19 #2471 RT: 29.29 AV: 1 SB: 796 22.64-28.99 , 29.51-32.78 NL: 1.97E4
T: FTMS {1,1}  - p ESI sid=60.00  Full ms2 1000.00@hcd60.00 [100.00-800.00]
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Fig. 3 MS spectra of components tentatively identified as cycloartenol caffeate (a) and campesterol caffeate (b)
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identified three isomers of cycloartenol trans-ferulate in

rice bran oil, in the present study; two isomers were

identified in the control brown rice while four were iden-

tified in the wild rice samples (Fig. 1b, c).

The amount of total c-oryzanol found in the wild rice

samples ranged from 850 to 1,352 lg/g with MNL

containing the highest and NOW the lowest amounts, these

data are in agreement with a previous study by Przybylski

et al. [17]. The higher amounts of c-oryzanol reported in

the present study compared to the previous study [17] may

be due to the differences in extraction methods and the

inclusion of better separation of new components: 8, 9, 21,

oryzanol_wildrice_sample9_S_Oct24 #4321 RT: 38.42 AV: 1 NL: 3.01E4
T: FTMS {1,1}  - p ESI Full ms [100.00-800.00]
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Fig. 4 MS spectra of components tentatively identified as cycloartenol cinnamate (a) and campesterol cinnamate (b)
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22 (Table 1) in the total amount of c-oryzanol. Although

some significant differences (P \ 0.05) were observed

among the wild rice samples regarding c-oryzanol con-

tents, there were no significant differences observed in the

profile (Fig. 1c; Table 1). The total amount of c-oryzanol

in MNL was 33 and 50 % higher than the amounts found in

the brown rice, MGR and LGR, respectively. The amount

of c-oryzanol in MC, MNGLR, AA, S, and NOW was at

least 20 % higher than the control (Table 1). On the other

hand, no significant differences were observed in the total

amounts of c-oryzanol between MC, MNGLR, AA, S,

NOW and the control MGR.

The results from the present study showed a significant

difference in the c-oryzanol profile between North Amer-

ican wild rice (Zizania palustris) and the regular brown rice

samples (Oryza sativa L.). Compared to the regular brown

rice, two additional isomers of cycloartenol ferulate were

found in the oryzanol profile of the wild rice, representing

one extra isomer over the highest number reported in the

literature [12]. Whereas the amount of stigmasterol trans-

ferulate was up to 8 times higher in wild rice compared to

regular brown rice, the corresponding saturated steryl ester,

stigmastanol trans-ferulate, amount was 10 times higher in

the brown rice (Table 1). Furthermore, cycloartanol feru-

late was not detected in any of the wild rice samples,

whereas 14 and 54 lg/g of this compound was found in the

control LGR and MGR samples, respectively. In agreement

with previous studies [12, 20–22], 24-methylenecycloart-

anol ferulate was the most abundant steryl ferulate in the

regular brown rice, LGR and MGR with the amounts up to

five times higher than in the wild rice samples (Table 1).

On the contrary, cycloartenol ferulate was the most abun-

dant component in the wild rice samples, representing up to

48 % of the total amounts of c-oryzanols (Table 1).

All the seven hydroxylated steryl ferulates previously

reported by Fang et al. [12] were identified in both the wild

and control samples (Fig. 2). Furthermore, campesterol and

cycloartenol caffeates were reported by Fang et al. [12],

and in the present study, components tentatively identified

as campesterol and cycloartenol caffeates (8 and 9,

Table 1) were found in all the wild rice samples where they

accounted for up to 13 % of the total c-oryzanols amounts.

Two additional peaks tentatively identified as campesterol

and cycloartenol cinnamates (21 and 22, Table 1) were also

observed in all the wild rice samples. None of these

compounds were observed in the control brown rice sam-

ples, indicating a broader diversity of c-oryzanols in the

North American wild rice.

The tentative identification of peaks 8 and 9 was based

on the following premises: Two of the most abundant ions

in the ESI–MS spectra of compounds 8 and 9 were at m/

z 409 and 383, respectively, which is essentially identical

to those of the major components of cycloartenol and

campesterol ferulates, respectively (Fig. 3). This data

indicating that compounds 8 and 9 are respective phenolic

esters of cycloartenol and campesterol. The retention time

of compound 8 and 9 on the reversed phase column sug-

gested that they are more polar than cholesterol ferulate

and other major sterol ferulates in rice but less polar than

the hydroxylated ferulates previously reported [12]. When

connected with the fragment ion at m/z 179 suggested that

compounds 8 and 9 are most likely caffeic acid esters of

sterols. The sterol caffeates reported by Fang et al. also

eluted between cholesterol ferulate and the more polar

hydroxylated ferulates on the C18 column [12].

Compounds 21 and 22 with characteristic ions at m/

z 555 and 529, respectively (Fig. 4a, b), are also unique to

the wild rice. The presence of ions at m/z 410 and 383 in

the ESI–MS positive mode spectrum suggested that they

are likely cycloartenol and campesterol steryl esters,

respectively. The mass difference of 46 amu between these

compounds and the corresponding ferulates suggested the

absence of methoxy and hydroxyl groups in the phenolic

acid moiety and led to the tentative identification of these

compounds as the cinnamate derivatives of the respective

sterols.

Although there is a possibility of co-eluting glycerol

esters such as mono and diacylglycerides with c-oryzanol

compounds [23], however, the fragmentation patterns of

compounds 8, 9, 21 and 22, and their absence in control

brown rice, which are known to contain more than twice

the amount of lipid than wild rice [17], suggested that these

compounds are more likely c-oryzanol compounds. Further

spectrometric assessment is required to complete structural

verification of these components.

Conclusion

This study contains the first report on the c-oryzanol pro-

files in the North American wild rice (Zizania palustris).

The results from the present study showed significant dif-

ferences in both composition and content between wild rice

and the regular brown rice (Oryza sativa) L.. With four

different isomers identified, cycloartenol ferulate was the

most abundant sterol ferulate in the wild rice samples,

whereas 24-methylenecycloartenol ferulate was the most

abundant in brown rice. It appears that there are more

saturated ferulates in regular brown rice compared to wild

rice. Four additional c-oryzanol compounds were tenta-

tively identified as caffeates and cinnamates of cycloarte-

nol and campesterol in all the wild rice, however, further

study is required to confirm their chemical structure.
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