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Abstract6

Case-control genome-wide association studies (GWAS) are often used to find associations between7

genetic variants and diseases. When case-control GWAS are conducted, researchers must make8

decisions regarding how many cases and how many controls to include in the study. Depending on9

differing availability and cost of controls and cases, varying case fractions are used in case-control10

GWAS. Connections between variants and diseases are made using association statistics, including11

χ2. Previous work in population genetics has shown that LD statistics, including r2, are bounded12

by the allele frequencies in the population being studied. Since varying the case fraction changes13

sample allele frequencies, we extend use the known bounds on r2 to explore how variation in the14

fraction of cases included in a study can impact statistical power to detect associations. We analyze a15

simple mathematical model and use simulations to study a quantity proportional to the χ2 noncentrality16

parameter, which is closely related to r2, under various conditions. Varying the case fraction changes17

the χ2 noncentrality parameter, and by extension the statistical power, with effects depending on the18

dominance, penetrance, and frequency of the risk allele. Our framework explains previously observed19

results, such as asymmetries in power to detect risk vs. protective alleles, and the fact that a balanced20

sample of cases and controls does not always give the best power to detect associations, particularly21

for highly penetrant minor risk alleles that are either dominant or recessive. We show by simulation that22

our results can be used as a rough guide to statistical power for association tests other than χ2 tests of23

independence.24

Introduction25

When conducting a genome-wide association study (GWAS), researchers search for trait-associated26

variants across an organism’s genome (Ikegawa 2012; Visscher, Wray, et al. 2017; Uffelmann et al.27

2021). GWAS are often conducted for binary traits, in which the dependent variable expresses whether28

an individual has a trait of interest, such as a disease (Ozaki et al. 2002; Tanaka et al. 2003; Zondervan29

and Cardon 2004; Mototani et al. 2005). If the phenotype is a disease, study participants with the disease30

are called "cases," and participants without the disease are "controls." Case-control studies are common31

across epidemiology and related fields, where they are used to study potential risk factors for diseases by32

comparing their frequency in cases with their frequency in controls (Breslow 1996; DiPietro 2010). In a33

case-control GWAS, the putative risk factors are genotypes or alleles, and the signal of association is a34

difference in genotype or allele frequency between cases and controls.35

To carry out a case-control study, one must decide the composition of the study sample. One key36

decision is setting the relative size of the samples of cases and controls, or the case fraction (Dupepe37

et al. 2019). The case fraction may affect statistical power to detect a risk factor in a case-control study.38

From first principles, with no information about the frequency of a putative risk factor in either cases or39

controls (and no difference in the cost of gathering data from cases vs. controls), a 1:1 ratio of cases and40

controls might be preferred: conditional on a given total sample size, a 1:1 ratio minimizes the standard41
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error of the estimated difference in the frequency of the putative risk factor between cases and controls42

under the null hypothesis that the risk factor is at equal frequency in the two groups.143

Several researchers have considered the situation in more detail, motivated by differences in the44

difficulty or cost of collecting data from cases vs. controls (Ury 1975; Hennessy et al. 1999; Hong and45

Park 2012; Li et al. 2019). For many diseases, it is easier to recruit controls than cases, meaning that46

designs with more controls than cases are of interest (Dai et al. 2021). A common framework for planning47

matched case-control studies is to treat the number of cases as fixed and to examine how the study’s48

power changes as the number of matched controls per case increases (Gail et al. 1976; Ury 1975).49

In case-control GWAS, the rise of large biobank resources means that for any given disease, genetic50

data may be available from many people who might be considered for inclusion as controls. However,51

diseases that are rare in the general population will also likely be rare in a biobank, driving case fractions52

down well below 50%. This situation has motivated the development of new methods for GWAS that can53

accommodate extremely uneven samples of cases and controls (Zhou et al. 2018; Dai et al. 2021).54

Another reason to consider the effect of varying the case fraction is that we may have some prior55

knowledge of the frequencies of risk or protective factors in the population. In particular, allele and geno-56

type frequencies are subject to the evolutionary forces of drift, mutation, and selection. The balance of57

drift and mutation ensures that loci with low minor allele frequencies will outnumber those with higher58

minor allele frequencies, and for phenotype-associated variants, natural selection may also affect allele59

frequencies (Simons et al. 2022). Allele frequency affects statistical power in GWAS generally, and in60

case-control GWAS, it influences power in a way that depends on the case:control ratio. It has been61

observed that in case-control GWAS, there is often more power to detect loci with risk-increasing minor62

alleles than loci with protective minor alleles, particularly when considering loci with relatively large effects63

(Chan et al. 2014; Visscher, Hemani, et al. 2014).64

Although in practice, many methods are used to analyze data in case-control GWAS, one way to ap-65

proximate the power obtained in a case-control GWAS is by studying the non-centrality parameter govern-66

ing the non-central χ2 distribution describing the distribution of the χ2 statistic from a test of independence67

between case status and genotype. The non-centrality parameter is closely related to the r2 measure of68

linkage disequilibrium (LD) used in population genetics. Specifically, for a haploid case-control GWAS,69

with a 2× 2 table indicating the presence or absence of a putative risk allele on one dimension and case70

vs. control status on the other dimension, the noncentrality parameter is nr2, where n is the sample size71

and the r2 statistic is computed as if case vs. control status were a second "locus." For χ2 tables with72

minimum dimension 2, as in case-control situations, the noncentrality parameter divided by n is equal to73

the square of Cramér’s V , a measure of effect size for associations between nominal variables.74

Previous work in population genetics has explored bounds on statistics that are imposed by allele75

frequency in a population. The r2 statistic, in particular, is known to be bounded by the allele frequencies76

of the population being studied (VanLiere and Rosenberg 2008). This is one of many results in population77

genetics relating allele frequencies to mathematical bounds on statistics describing genetic diversity, LD,78

or population differentiation (Rosenberg and Jakobsson 2008; Jakobsson, Edge, and Rosenberg 2013;79

Edge and Rosenberg 2014; Alcala and Rosenberg 2016; Aw and Rosenberg 2018; Mehta et al. 2019;80

Kang and Rosenberg 2019; Alcala and Rosenberg 2022).81

The relationship between the χ2 non-centrality parameter and LD statistics suggests that the non-82

centrality parameter is also bounded by allele frequencies in a case-control study. These bounds could83

explain observations about the power of case-control GWAS to detect the effects of different kinds of84

alleles, such as minor alleles that are risk-associated vs. protective (Chan et al. 2014; Visscher, Hemani,85

et al. 2014).86

1To see this, let p0 and p1 be the true frequencies of the risk factor in controls and cases, respectively, and let n0 and n1 be
the sample sizes of controls and cases, with n = n0 + n1 fixed. Assuming the control and case samples are independent, the
variance of the difference in sample frequencies is V ar(p̂0 − p̂1) = V ar(p̂0) + V ar(p̂1) = p0(1−p0)

n0
+ p1(1−p1)

n−n0
. To minimize in

terms of n0, we take the derivative to get − p0(1−p0)

n2
0

+ p1(1−p1)

(n−n0)2
. Recalling n − n0 = n1 and setting to zero gives an optimum

where n2
0

n2
1

= p0(1−p0)
p1(1−p1)

, which is satisfied by setting n0 = n1 if the null hypothesis is true and p0 = p1.
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We analyze how varying the ratio of cases to controls in a case-control study affects the χ2 non-87

centrality parameter (Edwards et al. 2005; Visscher, Hemani, et al. 2014), adding to previous results by88

relating them to bounds on r2. We find that for variants with small effect sizes, the intuition underlying89

the 1:1 case-control ratio is justified. However, for large effect sizes, the bounds on the non-centrality90

parameter become important, and 1:1 case:control ratios become suboptimal. We use simulations to91

confirm that the intuition that comes from examining the bounds on r2 is a reasonable guide to the behavior92

of tests other than the Pearson χ2 test.93

Model94

We consider a disease-associated biallelic locus in Hardy–Weinberg equilibrium. There are two pos-95

sible alleles at the locus, denoted by A and a, with a being the disease-associated ("risk") allele. We96

consider both a haploid case with two genotypes A and a, and a diploid case with three genotypes, AA,97

Aa, and aa. In both cases, we assume a binary disease phenotype.98

Our notation is summarized in Table 1. The frequency of the disease allele in the population is repre-99

sented by p. The frequency of disease cases in the population is denoted by d. The probability of having100

the disease given a genotype with no risk alleles is represented by γ.101

Parameter Definition
d Frequency of disease cases in the population
p Frequency of risk allele
b Probability of an individual having the disease given they carry only risk alleles at the locus
h Dominance of risk allele
γ Probability of the disease given a genotype with no risk alleles
c Factor by which the case fraction is inflated

Table 1: Summary of notation

102

The effect size of the risk allele is governed by b, the penetrance, or the probability of developing103

the disease conditional on carrying only risk alleles at the locus. The penetrance b can, in principle, be104

less than γ, the disease risk for the protective genotype, but such values change the interpretation of the105

results (the "risk" allele becomes protective), so we focus on cases in which b > γ. In the diploid case,106

the dominance coefficient h controls whether the disease allele is dominant, recessive, or incompletely107

dominant. Specifically, the disease frequency among heterozygotes is hb+ (1−h)γ. When h = 1, the risk108

allele is fully dominant, and when h = 0, the risk allele is fully recessive. Although researchers sometimes109

assume an underlying normally distributed risk scale and define dominance with respect to this scale, we110

define dominance with respect to the probability of developing the disease. For any configuration of γ, b,111

and h, the same result could be obtained under a normal liability-threshold model with a different value112

of h chosen to give the same disease probabilities for heterozygotes as in our case.2 We also do not113

interpret values of h outside [0, 1], though much of our mathematical analysis applies to such cases.114

In the haploid case, setting two values of b, d, and γ implies the value of the third, since d = bp+γ(1−p).115

In the diploid case, setting three of b, d, γ, and h implies the value of the fourth, since d = bp2 + [hb+ (1−116

h)γ]2p(1− p) + γ(1− p)2.117

2Specifically, for a standard-normal liability-threshold model, our choice of γ implies a standard-normal liability of γ′ = Φ−1(γ)
for individuals with no risk alleles, where Φ is the cumulative distribution function of the standard normal. The penetrance b,
similarly implies a normal liability b′ = Φ−1(b) for individuals carrying only risk alleles. The dominance on the normal liability
scale, h′, that corresponds to our choice of dominance coefficient h, is the solution of h′b′ + (1 − h′)γ′ = Φ−1(hb + (1 − h)γ),

which is h′ = Φ−1(hb+(1−h)γ)−γ′
b′−γ′ .
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To allow for variation in the case fraction, we modified the frequency of the disease case cells by a118

factor c. That is, if the proportion of cases in the population is d, then the proportion of cases in the study119

sample is cd. Thus, c is the factor by which the number of cases is inflated in the study sample compared120

with the population at large. Because the proportion of cases in the sample must be less than 1, c is121

bounded from above; specifically, c < 1/d.122

χ2 effect size123

Our main interest is in the effect size measuring departure from independence in the population con-124

tingency table relating genotype and disease status. The quantity we focus on, which we call λ and is125

sometimes called φ2 or X2 (Mirkin 2001), is equal to 1/n times the noncentrality parameter of the non-126

central χ2 distribution arising asymptotically from tests of independence of genotype and disease status,127

where n is the sample size. It is also equal to 1/n times the value of the χ2 statistic obtained from a128

sample with joint genotype and disease frequencies exactly matching those in the population. Specif-129

ically, consider a pair of nominal variables X ∈ {1, ..., k1} and Y ∈ {1, ..., k2}. Define the probability130

P (X = i ∩ Y = j) = pij , and further define P (X = i) = pi. and P (Y = j) = p.j . Then the effect size is131

λ =

k1∑
i=1

k2∑
j=1

(pij − pi.p.j)2

pi.p.j
. (1)

In our setting, one of the dimensions is a binary variable, case vs. control status, and the other is132

genotype. If we let i index genotypes, define qi as the fraction of cases among individuals with genotype133

i, define fi as the proportion of the sample with genotype i, and define q =
∑

i fiqi the fraction of cases134

in the overall sample, then we can use the Brandt–Snedecor formula (Agresti 2013, p. 178) to write λ as135

λ =

∑k1
i=1 fi(qi − q)2

q(1− q)
. (2)

In this form, λ can be seen as a variance decomposition, which holds in more general k1×k2 contingency136

tables (Mirkin 2001). If the fraction of cases in the sample is q, then the variance in case status for a137

random individual drawn from the sample is q(1 − q), and the between-genotype variance in the fraction138

of cases is the sum in the numerator. More specifically, if D is a random variable encoding case (D = 1)139

vs. control (D = 0) status, and G is a random variable encoding genotype, then equation 2 can be written140

as141

λ =
VarG(E(D|G))

Var(D)
. (3)

Equation 2 also allows us to express λ for a 2 × 3 contingency table as a weighted average of the λs142

that emerge from the three possible 2 × 2 tables that result from omitting one of the columns. To start,143

note that the numerator can be re-expressed in terms of pairwise differences as follows, by remembering144

that q =
∑

i fiqi:145

k1∑
i=1

fi(qi − q)2 =
1

2

∑
i

∑
j 6=i

fifj(qi − qj)2 =

k1−1∑
i=1

k1∑
j=i+1

fifj(qi − qj)2. (4)

Next, define λij as the value of λ that results from a 2 × 2 contingency table assembled from columns i146

and j,147

λij =
(fi/(fi + fj))(qi − q′)2 + (fj/(fi + fj))(qi − q′)2

q′(1− q′)
, (5)

where q′ = (qifi + qjfj)/(fi + fj). Using equation 4, we can write equation 5 as148

λij =
(fifj/(fi + fj)

2)(qi − qj)2

q′(1− q′)
=

fifj(qi − qj)2

(fiqi + fjqj)(fi(1− qi) + fj(1− qj))
. (6)
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Combining equations 2, 4, and 6, we can re-express λ as a weighted sum of the λij values,149

λ =

∑k1
i=1 fi(qi − q)2

q(1− q)
=

∑k1−1
i=1

∑k1
j=i+1 fifj(qi − qj)2

q(1− q)
=

1

q(1− q)

k1−1∑
i=1

k1∑
j=i+1

(fiqi+fjqj)(fi(1−qi)+fj(1−qj))λij .

(7)

Results150

Mathematical characterization of λ151

Haploid case152

The joint frequencies of disease and genotype (i.e. the pij terms in equation 1) in the haploid case are153

given in Table 2, along with the marginal frequencies (the pi. and p.j terms in equation 1). To obtain these154

frequencies, start with the population frequencies (e.g. P (case ∩ allele a) = P (case|allele a)P (allele a) =155

bp). Then multiply values in the case row by c, the factor by which case fraction in the sample differs from156

the population, and multiply values in the control row by (1 − cd)/(1 − d), the implied factor by which the157

control fraction in the sample differs from the population.158

a A
Controls p(1− b)1−cd1−d (1− d+ bp)1−cd1−d 1− cd

Cases cbp c(d− bp) cd
p(1−cd−b+bc)

1−d
1−d−p−pb(c−1)+cdp

1−d

Table 2: Joint frequencies of a risk allele, a, a protective allele, A, and case vs. control status in a sample
of haploids.

Plugging these values into equation 1 gives λ in terms of the allele frequency p, the penetrance159

b, the overall disease frequency d, and the factor by which cases are oversampled compared with the160

population, c in the haploid case,161

λ =
cp(b− d)2(1− cd)

d(1− b+ c(b− d))(1− d− p− pb(c− 1) + cpd)
. (8)

The expression for λ in equation 8 is closely related to the r2 measure of LD. In particular, it is equal162

to r2 if we think of case status and the risk allele as two "alleles" in LD in the sample. We can relate eq.163

8 to the upper bounds on r2 in terms of allele frequency by considering a completely penetrant allele (i.e.164

b = 1). The upper bound on r2 takes different forms in each of eight triangles in the unit square describing165

the allele frequencies at the two loci under consideration (VanLiere and Rosenberg 2008). Since, for a166

completely penetrant risk allele, the disease frequency must be greater than or equal to the risk allele167

frequency, the corresponding bound on r2 in this case, if p and d are viewed as two allele frequencies, is168

r2max =
p(1− d)

d(1− p)
. (9)

In our setting, disease frequency and allele frequency are modified from their population values by the169

parameter c. In particular, in the haploid case, the disease and allele frequencies in the sample can be170

expressed as cd and cp. With these sample frequencies, the function for the bound on r2 becomes171

r2max =
cp(1− cd)

cd(1− cp)
=
p(1− cd)

d(1− cp)
, (10)
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which is equivalent to the expression for λ in equation 8 when b is set to one. Therefore, in the haploid172

case, for a completely penetrant allele, the change in λ resulting from modifying the case fraction can be173

viewed as a traversal of the bounds on r2. In particular, changing the fraction of cases in the sample by174

modifying c is equivalent to traversing the surface that bounds r2 over a line that passes through the origin175

and the point (d, p).176

Perhaps counterintuitively, for completely penetrant risk alleles, these paths along the surface imply177

that increasing the case fraction cannot increase the value of λ. The derivative of equation 10 with respect178

to the case sampling factor c is −p(d − p)/[d(1 − cp)2]. For the relevant setting (p ∈ (0, 1), p ∈ (0, d),179

cp ∈ (0, 1)), the derivative is negative unless the disease and risk allele frequency are equal (d = p), in180

which case it is zero (and λ = 1 for cp 6= 1). (In our setting, d = p corresponds to a case in which the risk181

allele is both sufficient and necessary to develop the disease.)182

An important caveat for interpreting this result in terms of statistical power is that the distribution of183

the χ2 statistic associated with the test of independence arising from this scenario has a noncentral χ2
184

distribution with noncentrality parameter equal to nλ only asymptotically. When some of the cells are185

empty, as is the case for a completely penetrant allele, the asymptotic distribution may not hold, and λ186

may not be a reliable guide to power. We explore this point by simulation later.187

To consider a completely protective allele (b = 0), we can examine a region of the r2 bounds in which188

the disease frequency cannot be larger than one minus the protective allele frequency (d ≤ 1− p), giving189

r2max =
pd

(1− p)(1− d)
. (11)

Setting the penetrance to b = 0 (i.e. the allele is completely protective) gives190

λ =
cpd

1− p+ d(pc− 1)
, (12)

which is equal to equation 11 if d is set to cd and the frequency of the protective allele is set to p(1 −
cd)/(1 − d), as would occur if cases are overrepresented in the sample compared with the population by
a factor c. The derivative with respect to c of equation 12 is

dp(1− d− p)
(1− p+ d(pc− 1))2

,

which, by the assumption that d ≤ 1 − p, is positive unless d = 1 − p, in which case it is zero (and191

λ = 1). Thus, for completely protective alleles, not surprisingly, the case is exactly reversed from that of192

a completely penetrant allele. The implication is that increasing the case fraction tends to increase λ for193

completely protective alleles, suggesting that power to detect protective vs. risk minor alleles will differ,194

and will respond to changes in the case fraction differently.195

Therefore, in the haploid case, for both risk and protective alleles, when the allele’s effect is at maxi-196

mum, the function for λ can be related to bounds on r2 (VanLiere & Rosenberg 2008). Varying the case197

fraction can be seen as moving along the surface of these bounds and changing the maximum value of198

λ, and thus the non-centrality parameter describing a χ2 test of independence applied to a case-control199

study (Figure 1).200
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Figure 1: In the haploid case, when the penetrance b = 1, the change in the χ2 effect size λ that results
from increasing the number of cases in the sample can be understood in terms of the bounds on the r2

LD statistic. A) The surface shows the value of λ as a function of the disease frequency d and the risk
allele frequency p. The line connects the points on the surface immediately above (.1, .01) and (.01, .05),
where x is the disease frequency and y is the frequency of the completely penetrant risk allele. The line
represents the effect of increasing the percentage of cases in the sample from 10% to 50% and thereby
increasing the frequency of the risk allele in the sample from 1% to 5%. B) Similar to (A), except that the
y axis (into the page) now represents the frequency of a completely protective allele (b = 0). The line
now represents changing the disease frequency in the sample from 10% to 50% and the protective allele
frequency from 1% to 5%. C) A two-dimensional view of the traversal in (A) in terms of the fraction of
cases in the sample. If an allele is completely penetrant but some individuals with the protective allele
develop the disease, increasing the case fraction decreases λ. D) A two-dimensional view of the traversal
in (B).

If we instead imagine an allele with a very small effect size, λ approaches a quadratic in c, the degree201

of case oversampling, maximized when the sample is evenly split between cases and controls. To see202

this, reparameterize equation 8 so that it is written in terms of ∆ = b − d, the difference between the203

disease prevalence among carriers of the risk allele and the general population, rather than b. Doing so204

gives205

λ =
∆2cp(1− cd)

((1− d) + ∆(c− 1))((1− p)(1− d)−∆p(c− 1))

=
∆2cp(1− cd)

(1− d)2(1− p) + ∆(1− d)(c− 1)(1− 2p)−∆2p(c− 1)2
. (13)
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As ∆ approaches 0 from above, the denominator of equation 13 is dominated by its first term, (1−d)2(1−206

p), which does not depend on c. Ignoring the other terms in the denominator makes equation 13 a concave207

quadratic in c with roots at 0 and 1/d (implying disease frequencies in the sample of 0 and 1) and a global208

maximum at c = 1/(2d) (implying a disease frequency in the sample of 1/2). Thus, we might expect that209

as the effect size of the risk variant decreases, λ’s dependence on the fraction of cases changes, such210

that for large effect sizes (i.e. near-complete penetrance), λ is maximized when the fraction of disease211

cases in the sample is close to the allele frequency in the sample, but for very small effect sizes (b−d ≈ 0),212

λ is maximized when the fraction of disease cases in the sample is approximately one half. This intuition213

matches our numerical results (Figure 2).214
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Figure 2: λ as a function of the case fraction in the haploid case at varying effect sizes. In all cases, the
risk allele frequency p = 0.2 and the frequency of the disease among carriers of the protective allele is
γ = 0.05. A) Penetrance b = 0.1, B) b = 0.8, C) b = 1. Vertical dashed lines indicate a sample with an
equal number of cases and controls.

Diploid case215

For diploids, we consider disease frequencies for three possible genotypes rather than two. The diploid216

case of the model extends the haploid case with the introduction of the dominance parameter, h, to217

specify the disease frequency for the heterozygous genotype. The joint frequencies for the three possible218

genotypes are shown in Table 3. In our parameterization, if the risk allele is dominant, then h = 1, and if219

the risk allele is recessive, then h = 0. If the risk allele is incompletely dominant, then h ∈ (0, 1).220

aa Aa AA
Controls p2(1− b)1−cd1−d 2p(1− p)(1− hb− γ(1− h))1−cd1−d (1− p)2(1− γ)1−cd1−d 1− cd

Cases p2bc 2p(1− p)(hb+ γ(1− h))c (1− p)2γc cd
p2(1−cd−b+bc)

1−d
2p(1−p)(1−cd−γ+cγ−(1−c)(b−γ)h)

1−d
(1−p)2(1−c(d−γ)−γ)

1−d

Table 3: Joint frequencies of genotypes, aa, Aa, and AA case vs. control status in a sample of diploids.
We assume that the locus is at Hardy–Weinberg equilibrium in the population.

The effect size λ can be written in terms of the parameters using equation 1 and the cells of table221

2—internal cells correspond to the values of pij , and the margins give the pi. and p.j values. The resulting222

expression is unwieldy, but we can gain some insight into the effect of the bounds on r2 by recalling that λ223

in the diploid case can be expressed as a weighted sum of λ values from three different 2× 2 contingency224

tables (equation 7). As such, λ is bounded by a function of the bounds on r2, namely a weighted average225
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of the bounds computed for each of the three possible 2× 2 tables formed from the columns of the 2× 3226

contingency table.227

If one of the alleles is completely dominant (h = 0 or h = 1), then equations 2 and 4 reveal that λ228

is equal to the value it would take in a similar haploid situation. For concreteness, imagine that h = 0229

and that the risk allele is therefore completely recessive. Let q1, q2, and q3 represent the fraction of cases230

among carriers in the sample of 0, 1, or 2 risk alleles, respectively. Then h = 0 implies that q1 = q2, and231

by equations 2 and 4,232

λh=0 =
f1f3(q1 − q3)2 + f2f3(q2 − q3)2

q(1− q)
=

(f1f3 + f2f3)(q2 − q3)2

q(1− q)
=

(f1 + f2)f3(q2 − q3)2

q(1− q)
,

where the first simplification follows from applying the fact that q1 = q2. Thus, if the risk allele is fully233

recessive, then the effect size λ takes the value it would in a haploid scenario with the same b and γ, but234

protective allele frequency equal to the sum of the protective homozygote and heterozygote frequencies.235

By a similar argument, if the risk allele is fully dominant, then λ takes the value it would in an analogous236

haploid scenario, but with risk allele frequency equal to the sum of the risk homozygote and heterozygote237

frequencies. Thus, for fully recessive or dominant risk alleles, the arguments in the previous subsection238

apply directly.239

Equation 7 reveals a second case in which the haploid results are straightforwardly applicable. If one240

of the alleles is rare, then one of the homozygotes will be very rare compared with the other genotypes.241

Thus, if the penetrance and case fraction are not too extreme, the weight (fi in equation 7) on one of the242

homozygotes will be very small, causing it to contribute little to the value of λ. For example, for a risk allele243

at frequency 1% that is completely penetrant when homozygous and 50% penetrant in heterozygotes,244

there will be (1 − p)/p = 99 heterozygous cases for every homozygous case, causing risk homozygotes245

to contribute relatively little to λ, and implying that λ will be similar to the value of λ that would be obtained246

just by comparing heterozygotes with protective homozygotes.247

For incomplete dominance and relatively common alleles, we find numerically that λ behaves broadly248

similarly to the haploid case, but with more of a tendency for case fractions near 1/2 to have relatively249

high λ values (Figure 3). Specifically, for low-penetrance alleles, λ looks like a concave quadratic in c,250

maximized when the fraction of cases in the sample is approximately 1/2. For higher-penetrance alleles251

and d < 1/2 (i.e. diseases at less than 50% frequency in the population), λ is maximized when disease252

frequencies in the sample are lower, closer to the population frequency. However, compared with the253

haploid case, the dependence of the sample case fraction that optimizes λ on penetrance is less for the254

diploid case, at least for intermediate values of the dominance parameter h.255

These observations can be understood in terms of the haploid results. When penetrance is low, the256

diploid λ can be seen as a weighted average of three haploid λs, each of which has approximately the257

same shape—that of a concave quadratic function maximized when the disease fraction in the sample is258

1/2.259
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Figure 3: λ as a function of the case fraction in the diploid case. Each column displays a different
dominance coefficient (h = 0, h = 1/2, and h = 1), and each row a different penetrance (b = 1/10,
b = 4/5, and b = 1). In all panels, the risk allele frequency p = 1/10 and the probability of developing the
disease among individuals with two copies of the protective allele is γ = 1/20. The vertical dashed grey
lines indicate a case fraction of 1/2.

Considering the high-penetrance case, with b = 1 and h = 1/2, λ becomes260

λ =

(
p(1− cd)

d(1− cp)

)(
p+ c(1− 2p)

1 + c(1− 2p)

)
. (14)

The first parenthetical term in the product in equation 14 is identical to equation 10, the haploid value of261

λ with complete penetrance, interpretable in terms of the bounds on the r2 LD statistic. As shown in the262

previous subsection, it is decreasing in c if d > p and p > 0. (It is guaranteed that d ≥ p if h = 1/2 and263

b = 1.) For allele frequencies p < 1/2, the second parenthetical term increases monotonically in c, equal264

to p when c = 0, to 1/2 when c = 1, and growing to 1 as c approaches infinity. (In our setting, c is bounded265

from above by 1/d.) Numerically, we observe that the second term acts to dampen the dependence of the266
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the relationship between λ and c on the effect size, such that even for large effect sizes, if h = 1/2, then λ267

is maximized if the proportion of cases in the sample exceeds the proportion in the population (i.e. c > 1).268

Figure 4 shows additional diploid λ values, focusing on whether the minor allele is protective of risk-269

conveying.270
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Figure 4: As in the haploid case, the highest value of λ as a function of the case fraction occurs when the
case fraction is > 1/2 if the minor allele is protective, and when the case fraction is < 1/2 if the risk allele
is the minor allele. In all panels, the minor allele frequency is p = 1/10 and the major allele homozygote
has disease risk 1/10. In panels A-C, the minor allele homozygote has disease risk 1/80. In panels D-F,
the minor allele homozygote has disease risk 4/5. In the left column, the minor allele is recessive; in
the middle, the alleles are incompletely dominant (h = 1/2), and in the right column, the minor allele is
dominant. The vertical dashed grey lines indicate a case fraction of 1/2.

Diploid power simulations271

Our mathematical results in the previous subsection describe the effect-size λ, which is proportional to272

the noncentrality parameter of the asymptotic distribution of the Pearson χ2 statistic computed from a273

contingency table of genotype vs. disease status. The noncentrality parameter determines the power of274

the test if the χ2 statisic indeed follows its asymptotic distribution. We investigated the degree to which275

our mathematical results are a valid guide to empirical power obtained in simulations.276

We simulated genotype-by-case-status contingency tables obeying the probabilities in Table 3, fixing277

the row totals (i.e. forcing exactly the desired fraction of cases). We then computed Pearson χ2 tests on278

the resulting contingency tables and compared the fraction significant at level 5 × 10−8 with predictions279

obtained from the theoretical distribution.280

Simulation results for a range of effect sizes and dominance coefficients are shown in Figure 5. For281

low-penetrance alleles, observed power is close to the predicted values. For higher-penetrance risk al-282

leles, there are noticeable departures from theory, perhaps in part because simulated sample sizes are283

lower. (Sample sizes were chosen so that the maximum theoretical power value predicted from λ was284
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approximately 0.9 in all cases.) However, the simulations support the qualitative predictions from the cal-285

culations, including that, for highly penetrant, recessive, minor risk alleles, power is optimized when the286

fraction of cases in the sample is substantially less than 1/2.287
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Figure 5: Predicted power (solid line) and empirical power from simulations (points) for Pearson’s χ2 tests
of independence of diploid genotype and disease status. In all panels, the risk allele frequency p = 1/10,
and the frequency of the disease among protective-allele homozygotes is γ = 1/50. Sample sizes were
chosen to achieve a maximum predicted power of 90% and are printed in each panel. In panels A-C, the
penetrance b = .05. In panels D-F, b = .2, and in G-I, b = .4. In panels A, D, and G, the risk allele is
recessive (h = 0); in B, E, H, the risk allele is additive (h = 1/2), and in C, F, I, the risk allele is dominant
(h = 1). Error bars on empirical power estimates represent ±2 standard errors.

From the results of Figure 5, it appears an especially interesting case is that of a fully recessive,288

highly penetrant risk allele. We consider more examples of such alleles in Figure 6. In this case, the289

optimal case fraction is less than 1/2, and a sample with 1/2 cases has substantially lower power than290

samples with balanced cases and controls. Because fully recessive and fully dominant alleles can both291

be related exactly to the haploid case, equivalent results could be obtained with dominant risk alleles at292

lower frequencies.293
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Figure 6: Predicted and empirical power for highly penetrant, fully recessive (h = 0) risk alleles. Conven-
tions are as in Figure 5. In all panels, the disease risk among protective-allele homozygotes is γ = 1/10.
In panels A-C, the risk allele frequency is p = 1/10, and in panels B-D, p = 1/100. From left to right,
penetrance increases: b = 4/5 in the left column, b = 9/10 in the middle column, and b = 1 on the right.

Other statistical tests294

We have focused on the Pearson χ2 test for independence because it is a natural way to test for associ-295

ations between genotype and a categorical outcome, and because it can be related to the r2 measure of296

LD and its known bounds, as we have shown. However, in practice, other methods are often used to test297

for associations between genotype and case status. In particular, researchers often use the Cochran–298

Armitage trend test (Cochran 1954; Armitage 1955) or a generalized linear model. The trend test often299

has an advantage of higher power when risk alleles act additively, and generalized linear models offer300

natural ways to adjust for covariates.301

Figure 7 shows simulation results analogous similar to those in Figures 5 and 6, but including additional302

tests—a trend test and two generalized linear models, logisitic regression and probit regression. As in303

Figures 5 and 6, the Pearson χ2 test performs roughly as expected, with some noticeable deviations in304

the more extreme scenarios. As expected, the trend test usually outperforms the Pearson χ2 test when305

the risk allele is additive and underperforms when it is fully recessive. The generalized linear models306

struggle in some of the scenarios simulated here but perform similarly to the χ2 test in the case closest307

to their intended use (moderate effect size, additive risk allele). Notably, the other tests tend to follow the308

broad patterns predicted on the basis of λ, in particular higher power when the fraction of cases is below309

1/2 for highly penetrant minor risk alleles.310
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Figure 7: Predicted power for the Pearson χ2 test, and empirical power estimates from simulations for
the χ2 test, Cochran–Armitage trend test, logistic regression, and probit regression. In all panels, the
frequency of the disease among protective-allele homozygotes is γ = 1/50. Sample sizes were chosen
to achieve a maximum predicted power for the χ2 test of 70% and are printed in each panel. In panels
A-C, the risk allele is moderately penetrant (b = 1/10) and somewhat common (p = 1/10). In panels D-F,
the risk allele is highly penetrant (b = 4/5) and rarer (p = 1/100). In the leftmost column, the risk allele is
completely recessive (h = 0). In the middle column, it is not completely recessive (h = 1/20), and in the
right column, it is additive (h = 1/2).

Discussion311

Motivated by the relationship between r2 measure of linkage disequilibrium and the non-centrality param-312

eter arising from a χ2 test of independence in case-control GWAS, we have examined how variation in313

the fraction of cases used in a case-control study affects power to detect associations between genetic314

variants and diseases. The bounds on r2 in terms of the allele frequencies of the loci whose LD is being315

characterized (VanLiere and Rosenberg 2008) also characterize the value of the χ2 effect size λ for a316

completely penetrant risk allele in a haploid case-control GWAS. Varying the case fraction can be seen317

as moving λ along these bounds. For diploids, the haploid results can be applied directly if the risk allele318

is completely dominant or recessive, and they can be used to understand some cases with incomplete319

dominance as well, though such cases sometimes become unwieldy. Simulations support our approach320

as a means to understanding power in case-control GWAS, even with tests other than the Pearson χ2.321

Depending on the dominance, penetrance, and frequency of the allele being studied, as well as the risk322

for the disease among individuals without the risk allele, the optimal case fraction for a fixed total sample323

size varies. Case fractions close to 50% are best for weakly penetrant risk alleles. As the penetrance of324

the risk allele increases, then for minor risk alleles, lower case fractions are expected to increase power,325

as the case fraction that maximizes λ decreases. Simulations support this assertion in the diploid case,326

though the effect is often small unless the allele is close to fully recessive (or dominant), in which case it327
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can be quite pronounced.328

In humans, massive datasets and other resources already exist for GWAS (Visscher, Wray, et al.329

2017), and it is likely that the great majority of common, highly penetrant risk alleles have been found330

for well-studied diseases. Thus, in humans, it is likely that the results here are most practically useful for331

thinking about either low-penetrance alleles—in which case the intuition of attempting to balance cases332

and controls (given a fixed total sample size) is supported—or for considering the design of emerging333

sequencing studies of rare disease (Investigators 2021).334

Several considerations left out of our model will also be important when considering such design335

choices (or indeed, in other organisms in which GWAS resources are not as developed). First, we do336

not consider the difference in cost of recruiting cases and controls. We instead consider the effect of337

varying the fraction of cases given a fixed total sample size. For rare diseases, it may be much easier to338

locate controls than cases. And in fact, large datasets of potential controls are generally widely available,339

depending on the epidemiological principles on which controls are selected. This will tend to push the340

optimal fraction of cases down, since many controls might be gathered for the cost of a single case. Our341

results suggest that this situation will make minor risk alleles easier to detect than minor protective alleles,342

an asymmetry that has been noticed before (Chan et al. 2014).343

Second, we do not explicitly consider the possibility that we may test a marker allele rather than the344

causal allele itself. For a test at a non-causal marker, the r2-sense LD between the marker and the345

underlying causal allele(s) influences the power of the test (Pritchard and Przeworski 2001; Zondervan346

and Cardon 2004; Edge, Gorroochurn, and Rosenberg 2013). Thus, the bounds on r2 may need to be347

considered both with respect to the similarity in frequency of the causal and marker alleles (VanLiere and348

Rosenberg 2008) and with respect to the frequency of cases in the sample, as explored here. Allelic349

heterogeneity may also be prevalent in genes carrying highly penetrant risk alleles (Terwilliger and Weiss350

1998), and such allelic heterogeneity may be better handled by approaches other than GWAS (Browning351

and Thompson 2012; Link et al. 2023).352

Third, our model considers power to detect risk loci given a fixed allele frequency, dominance, effect353

size, and disease frequency. In practice, the allele frequencies and effect sizes of causal variants are not354

known, but it may be possible to develop predictions for effect size and allele frequency given parameters355

governing evolution of trait-associated loci, or to estimate aspects of the genetic architecture via other356

means. Integrating our functions over such joint distributions could provide guidance about case-control357

study design. Rough knowledge of genetic architecture also influences other aspects of study design,358

such as whether to focus on recruitment of cases with family histories of disease (Antoniou and Easton359

2003; Zondervan and Cardon 2007).360

Many important statistics in genetics are functions of allele frequencies, meaning that their arguments361

are non-negative and sum to one. The effects of such constraints have been explored in some detail in362

population genetics—they often lead to mathematical bounds that can explain counterintuitive aspects363

of the behavior of population-genetic statistics (Rosenberg and Jakobsson 2008; Jakobsson, Edge, and364

Rosenberg 2013; Edge and Rosenberg 2014; Alcala and Rosenberg 2016; Aw and Rosenberg 2018;365

Mehta et al. 2019; Kang and Rosenberg 2019; Alcala and Rosenberg 2022). These arguments have366

implications in other fields that use analogous statistics (Rosenberg and Zulman 2020), including in sta-367

tistical genetics and genetic epidemiology.368
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