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Nowadays, Machine Learning methods have proven to be highly effective on the identification of various types of diseases, in the
form of predictive models. Guillain–Barré syndrome (GBS) is a potentially fatal autoimmune neurological disorder that has barely
been studied with computational techniques and few predictive models have been proposed. In a previous study, single classifiers
were successfully used to build a predictive model. We believe that a predictive model is imperative to carry out adequate
treatment in patients promptly. We designed three classification experiments: (1) using all four GBS subtypes, (2) One versus All
(OVA), and (3) One versus One (OVO). 2ese experiments use a real-world dataset with 129 instances and 16 relevant features.
Besides, we compare five state-of-the-art ensemble methods against 15 single classifiers with 30 independent runs. Standard
performance measures were used to obtain the best classifier in each experiment. Derived from the experiments, we conclude that
Random Forest showed the best results in four GBS subtypes classification, no ensemble method stood out over the rest in OVA
classification, and single classifiers outperformed ensemble methods in most cases in OVO classification. 2is study presents
a novel predictive model for classification of four subtypes of Guillain–Barré syndrome. Our model identifies the best method for
each classification case. We expect that our model could assist specialized physicians as a support tool and also could serve as
a basis to improved models in the future.

1. Introduction

Guillain–Barré syndrome (GBS) is an autoimmune neuro-
logical disorder characterized by a fast evolution; usually, it
goes from a few days up to four weeks, becoming the most
common cause of acute paralysis of the peripheral nervous
system in developed countries [1].

Complications of GBS vary among subtypes, which can be
mainly acute inflammatory demyelinating polyneuropathy
(AIDP), Acute motor axonal neuropathy (AMAN), Acute
motor sensory axonal neuropathy (AMSAN), and Miller-
Fisher syndrome (MF) [2, 3].

2ere are some works oriented to build a predictive model
for this disorder using Machine Learning techniques with
mechanical ventilation or respiratory failure as the dependent
variable. 2ese works consider clinical/physiological pre-
dictors mostly [4–8].

In this study, we investigate the predictive power of
a reduced set of only 16 features selected out from an original
dataset of 365 features. 2is dataset holds data from 129
Mexican patients and contains the four GBS subtypes
mentioned above. We selected five ensemble methods:
Boosting, Bagging, C5.0, Random Forest, and Random
Subspace. In principle, ensemble learning combines multiple
classifiers to obtain better predictive performance than that
individually obtained from any of the constituent classifiers.
2ese five methods were applied in three test scenarios, four
GBS subtypes classification, One versus One (OVO) classi-
fication, and One versus All (OVA) classification, and
compared their performance. In a previous study [9], we
investigated the performance of 15 different-in-nature clas-
sifiers such as decision trees (C4.5), instance-based learners
(kNN: k Nearest neighbor), kernel-based (SVM: Support
vector machines), neural networks (SLP, MLP, RBF-DDA),
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and rule induction learners (OneR, JRip), among others. In
this work, wemade a performance comparison between single
against ensemble classifiers.

2ere is evidence of previous work [10], where Uncini
and collaborators conducted a study to increase the accuracy
of electrodiagnostic criteria (using variables from nerve
conduction studies) of the demyelinating and axonal sub-
types of GBS. For this, they used sparse Linear Discriminant
Analysis (LDA), two sets of existing electrodiagnostic cri-
teria [11, 12], and one proposed by the authors to further
evaluate the duration of motor responses and the sural
preservation pattern and to define the reversible conduction
failure (RCF) in the motor and sensory nerves in a second
study.

2e misclassification error rates at their first study,
compared to reference diagnoses, were 15.3% for sparse
LDA, 30% for our criteria, 45% for Rajabally’s, and 48% for
Hadden’s. Sparse LDA identified seven most relevant
electrophysiological variables in differentiating de-
myelinating and axonal subtypes. With this, they assigned to
each patient the diagnostic probability of belonging to either
subtype.

2e authors found that the signs of the coefficients of
variables indicated that AIDP, as compared to axonal GBS, is
characterized by higher values of peroneal DML (Distal
motor latency), ulnar dCMAP duration (distal Compound
motor action potential), ulnar and median proximal/distal
(p/d) CMAP amplitude ratio, and lower median Sensory
Nerve Action Potential (SNAP) amplitude, as well as lower
peroneal Motor conduction velocity (MCV) and lower ulnar
SNAP/sural SNAP amplitude ratio.

Uncini et al. focus only on classifying AIDP against
axonal (AMAN and AMSAN) subtypes. However, in this
study, we go further by conducting experiments for the
classification of all four common GBS subtypes: AIDP,
AMAN, AMSAN, and MF. Moreover, we performed ex-
periments in three scenarios: using four GBS subtypes at the
same time, OVA, and OVO. For this study, we used 16
relevant features. Also, an experiment was performed using
the 156 features with the aim to analyze the effect of using
only the 16 relevant features in the classification tasks.

2is study contributes to the effort in creating a pre-
dictive model for GBS subtype classification. Also, the
analysis performed in this work provides insight into the
best single classifiers for each classification case. Further
experiments with additional algorithms are in the schedule.

2is paper is organized as follows: Section 2 outlines the
materials used and the methods applied. Section 3 describes
the experimental results. In Section 4, we discuss the results.
Finally, in Section 5, general conclusions of this study are
presented, and we also suggest future works.

2. Materials and Methods

In this section, details of the dataset used in the experiments,
the description of the metrics used for performance eval-
uation, and the report of the tested classifiers are given, as
well as the experimental design conducted.

2.1. Data. Dataset comes from the Instituto Nacional de
Neuroloǵıa y Neurociruǵıa, located inMexico City, with records
of 129 patients already classified as one of the GBS subtypes:

(i) 20 AIDP
(ii) 37 AMAN
(iii) 59 AMSAN
(iv) 13 Miller-Fisher

2e original dataset contains 365 features. From these,
we detected a subset of 16 relevant ones in a previous
study [4]:

(i) v22: symmetry (in weakness)
(ii) v29: extraocular muscles involvement
(iii) v30: ptosis
(iv) v31: cerebellar involvement
(v) v63: amplitude of left median motor nerve
(vi) v106: area under the curve of left ulnar motor

nerve
(vii) v120: area under the curve of right ulnar motor

nerve
(viii) v130: amplitude of left tibial motor nerve
(ix) v141: amplitude of right tibial motor nerve
(x) v161: area under the curve of right peroneal motor

nerve
(xi) v172: amplitude of left median sensory nerve
(xii) v177: amplitude of right median sensory nerve
(xiii) v178: area under the curve of right median sensory

nerve
(xiv) v186: latency of right ulnar sensory nerve
(xv) v187: amplitude of right ulnar sensory nerve
(xvi) v198: area under the curve of right sural sensory

nerve

In summary, four features are clinical while the 12
remaining features were obtained from a nerve conduction test.

We use the following method to identify these 16 rel-
evant features:

(1) Preselect certain variables using the diagnostic cri-
teria for GBS according to the literature. 2e
resulting dataset contains 156 variables: 121 variables
from the nerve conduction test, four variables from
the CSF analysis, and 31 clinical variables.

(2) We proposed a novel method combining quenching
simulated annealing [9] (QSA) and Partitions
around medoids (PAM) (the QSA-PAM method).
QSA is a metaheuristic that generates approximate-
to-the-optimal solutions in reasonable times for
complex combinatorial problems. We applied QSA
to select different random feature subsets from the
dataset. 2ese new datasets created using feature
subsets served as input to PAM to build four clusters.

(3) A clustering technique was needed because this
method is useful to unveil the existence of groups of
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homogeneous data. As we knew in advance the
presence of four GBS classes in the dataset, we could
straightforwardly identify the relevant features to
build four clusters, each corresponding to a GBS
subtype.

(4) Purity, a quality metric, was used to check each
cluster’s quality. Groups with the highest purity
contain the most significant number of elements of
the same type and the fewest number of items of
a different type.

(5) We measure the purity of clusters concluding that 16
features from the original dataset were relevant for
identifying GBS subtypes (highest purity � 0.8992).

2.2. Ensemble Methods. In this study, we include results
from five ensemble methods. Following this, we show the
ensemble methods with their parameters:

(1) Boosting: boosting iterations
(2) Bagging: number of trees
(3) C5.0: number of trials
(4) Random Forest: number of variables in the random

subset at each node and number of trees in the forest
(5) Random Subspace: subspace sample size and num-

ber of iterations

We compare results from these ensembles against those
obtained by single classifiers from a previous study [9].
Previously, we showed promising ensemble results by
combining trees using C5 and Random Forest only [13]. We
further investigated the performance of an ensemble ap-
proach with additional combination methods such as
Random Subspace, Bagging, and Boosting. 2orough en-
semble results are given in this work. 2e complete list of
single classifiers is given in Table 1.

2.2.1. Boosting. It is a type of ensemble method that com-
bines multiple homogeneous classifiers by voting [14].
Boosting aims at turning a set of weak learners into a strong
learner. A weak learner is a classifier that slightly correlates
with the true classification (it just can label examples better
than random guessing). In contrast, a strong learner is
a classifier that is arbitrarily well-correlated with the true
classification.

Boosting is iteratively applied to the data so that a se-
quence of weak classifiers is produced. Boosting assigns
weights to every instance. Initially, all instances have the
same weight. At each iteration, the weights are modified by
increasing the weights of the misclassified instances to have
the weak learners focus more on these. As iterations go by,
less misclassified instances are obtained. Finally, all the weak
classifiers are combined by weighted voting where the weight
assigned to each classifier depends on its error rate. In this
work, we implemented the AdaBoost (Adaptive Boosting
algorithm) [15], which uses decision trees as weak learners.

2.2.2. Bagging. Introduced by Leo Breiman, its meaning is
bootstrap aggregating. Bagging is a method for generating
multiple versions of a predictor and using these to get an
aggregated predictor [16]. Bagging generatesm new training
sets by making bootstrap replicates from the original
training set. 2e mmodels are trained using a base classifier
with thesem bootstrap (random sampling with replacement)
samples. 2en, each resultant model predicts a test set. All
predictions are combined by averaging the output (for re-
gression) or voting (for classification). In this work, Bagging
was implemented using decision trees as single classifiers.

2.2.3. C5.0. Introduced by Ross Quinlan [17], it is an im-
proved version of C4.5. Its significant improvement is the
implementation of Boosting which enhances trees and gives
them higher precision. 2e differences between the algo-
rithm used in C5.0 and AdaBoost are the following [18]: (1)
C5.0 tries to maintain a tree size similar to the initial one
(which is generated without Boosting being involved). 2is
is correlated with the number of terminal nodes, which
increase in number as the tree grows. (2) C5.0 calculates class
probabilities for all boosted models, and within these
models, weighted averages are calculated. 2en, from these
models, C5.0 chooses the class having the maximum
probability within the group.

2.2.4. Random Forest. It was introduced by Breiman and
Adele Cutler [19] and is a predictive algorithm built by
a bootstrap ensemble of CART trees. Given N number of
training data points and M number of predictor variables,

Table 1: List of single classifiers used in our previous study [13].
Binary Logistic Regression (BLR) used in OVA and OVO classi-
fications. Multinomial Logistic Regression (MLR) used in four GBS
subtype classification.

Single classifier Approach Tuning
parameter

kNN Instance-based k, d
SVM linear kernel (SVMLin) Kernel-based C
SVM polynomial kernel
(SVMPoly) Kernel-based C, degree,

σ (c), coef
SVM Gaussian kernel
(SVMGaus) Kernel-based C, σ (c)

SVM laplacian kernel (SVMLap) Kernel-based C, σ (c)
C4.5 Decision tree NA

Single layer perceptron (SLP) Neural network Size,
decay

Multilayer perceptron (MLP) Neural network Size
Radial basis function ANN
(RBF-ANN) Neural network Negative

threshold
JRip Rule induction NumOpt
OneR Rule induction NA
Naive bayes Bayesian NA
Binary logistic regression (BLR) Regression NA
Multinomial logistic regression
(MLR) Regression NA

Linear discriminant analysis
(LDA)

Discriminant
analysis NA
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this algorithm generates many bootstrap samples by
selecting N data points with replacement from the training
dataset. 2en, a CART tree is trained on each bootstrap
sample using m randomly chosen predictors out of the
original M predictors (m << M if M is large). 2e trees are
fully grown without pruning. Random Forest is robust
against overfitting.

2.2.5. Random Subspace. It was introduced by Tim Ho [20]
and consists of several base classifiers each operating in
randomly chosen subspaces of the original feature space.
2ese classifiers are usually combined by simple majority
voting to generate the final class.

2.3. PerformanceMeasures. We apply standard performance
measures as accuracy, balanced accuracy, sensitivity, and
specificity, along with the Kappa Statistic.

2.3.1. Accuracy. It is the most typical performance metric
used in classification. It is the ratio of correctly classified
instances to the total number of instances in the dataset.

2.3.2. Balanced Accuracy. It is a classification performance
metric conveniently applied when imbalanced datasets are
used in experiments. It is defined as

balanced accuracy �
(TP/(TP + FN)) +(TN/(FP + TN))

2
,

(1)

where TP � true positive, FN � false negative, TN � true
negative, and FP � false positive.

2.3.3. Sensitivity. It indicates the goodness of a classifier to
classify true positives.2at is, in a diagnostic test, it would be
the ability to classify ill people accurately. It is defined as

sensitivity �
TP

TP + FN
. (2)

2.3.4. Specificity. It indicates the goodness of a classifier to
identify true negatives. 2at is, in a diagnostic test, it would
be the ability to classify healthy people accurately. It is
defined as

specificity �
TN

TN + FP
. (3)

2.3.5. Kappa Statistic. Introduced by [21], it measures the
agreement between predicted versus ground truth classifi-
cations of a dataset. At the same time, it corrects randomly
occurred agreement [14].

According to [22], the Kappa statistic lies in the range
from 0 to 1 as follows:

0 � agreement equivalent to chance
0.1 0.20 � slight agreement

0.21 0.40 � fair agreement
0.41 0.60 � moderate agreement
0.61 0.80 � substantial agreement
0.81 0.99 � near perfect agreement
1 � perfect agreement

We applied standard performance measures in Machine
Learning such as sensitivity, specificity, error rate, ROC
curves, and Kappa statistic. Also, we included average ac-
curacy and balanced accuracy. 2e former is used in four
GBS subtype classification, since it is a more suitable
measure for multiclass classification problems. 2e latter is
used in OVA and OVO classification, because it is a better
performance estimate of imbalanced datasets.

Accuracy is the typical performance measure used in
classification representing the number of correct classifi-
cations. For example, an accuracy of 0.9 means a 90% of
correct classifications.

2.4. Experimental Design. We used the 16-feature subset,
described in Section 2.1, for experiments. We added the class
variable to this subset, that is, the GBS subtype. Finally, we
created a dataset containing the 129 instances and 17 fea-
tures. As mentioned in Section 2.1, our dataset has four
classes, identified with numbers 1 to 4, where 1 � AIDP, 2 �

AMAN, 3 � AMSAN, and 4 � MF.
We employed a stratified train-test evaluation scheme

in all cases, two-thirds of data for training, and one-third
for testing. We performed 30 runs where we applied each of
the methods described in Section 2.2. In each run, we set
a different seed. Same seeds were used for each classifier.
2ese seeds were generated using Mersenne-Twister
pseudo-random number generator [23]. 2e use of a dif-
ferent seed for each run ensures different splits of train and
test sets.

2e base classifier in Random Subspacemethod used was
the best single classifier for each case using train-test, and the
complete list is in Table 2. Experiments of Random Subspace
were performed in Weka 3.6.12. SVMLap is not imple-
mented in Weka 3.6.12 [14]. 2erefore, we used SVMPoly
(second best) [9] instead of AIDP versus AMSAN
classification.

2.4.1. Four GBS Subtypes Classification. In this classification
scenario, the four GBS subtypes were included in the dataset,
that is, AIDP, AMAN, AMSAN, and MF. In this scenario,
the base metric was the average accuracy.

2.4.2. OVA Classification. For OVA classification scenario,
we created four new datasets, as many as the number of GBS
subtypes in the dataset. In each one, instances of one class
were marked as the positive cases, and instances of the
remaining classes (labeled as ALL) were marked as the
negative cases. In this scenario, the base metric was the
balanced accuracy.
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2.4.3. OVO Classification. For OVO classification scenario,
we created six new datasets, as many as the number of
combinations of pairs of GBS subtypes. Each dataset con-
tained instances of only two GBS subtypes, one class marked
as the positive case and the other class as the negative case. In
this scenario, the base metric was the balanced accuracy.

2.4.4. Train-Test. For each run, we computed accuracy,
sensitivity, specificity, Kappa statistic, and multiclass AUC.
Finally, we averaged each of these quantities across the 30
runs.

2.4.5. Parameter Optimization/Setting. Parameter optimi-
zation for all classifiers was performed using the dataset with
four GBS subtypes. Figures and tables are shown in Sup-
plementary Material.

(i) Boosting. 2e number of boosting iterations was
optimized by performing 30 train-test runs for each
value from 10 to 100. 2e highest average accuracy
across 30 runs was found with a number of itera-
tions equal to 50, as shown in Table 4.2is value was
used for all experiments with Boosting including
four SGB subtypes, OVA and OVO classifications.

(ii) Bagging. 2e optimal number of trees used for all
cases was 100. 2is number was found by per-
forming 30 train-test runs where the average ac-
curacy was calculated for each value from 10 to 100.
Table 5 shows the values found for each number of
trees. 2is value was used for all experiments with
Bagging including four SGB subtypes, OVA, and
OVO classifications.

(iii) C5.0. It requires the optimization of the number of
trials. 2e tuning of this parameter was performed
by the training-test runs using different numbers of
trials ranging from 5 to 100.
Figure 2 shows the results of C5.0 optimization. 2e
lowest average error rate across the train-test runs
was obtained with a number of trials � 55. Ex-
periments for all cases in C5.0, including OVO and

OVA classification, were performed using this
number of trials.

(iv) Random Forest. 2is method has only two tuning
parameters: the number of variables in the random
subset at each node and the number of trees in the
forest. In this work, we use a Random Forest
implementation in R language [24] which auto-
matically tune the first parameter. In order to tune
the second parameter, we performed 30 training-
test runs using different numbers of trees from 100
to 1000.
Figure 3 shows the results of Random Forest op-
timization. 2e lowest average error rate across the
train-test runs was obtained with the number of
trees � 700. Experiments for all cases in Random
Forest, including OVO and OVA classification,
were performed using this number of trees.

(v) Random Subspace. In this work, the subspace
sample size was set to 0.25, meaning that for each
model, only 25% of the features are randomly se-
lected. 2e number of iterations for Random Sub-
space was set to 50. 2ese measures were obtained
from a tuning phase where different values for
subspace sample size and number of iterations were
tried in 30 train-test runs. Table 6 shows the
complete tuning results. As for the base classifiers,
the same optimal parameter setting obtained in
previous single classification experiments [9] was
used in this study. Table 2 shows the complete list of
base classifiers configuration.

3. Results

2is section presents the results of each of the ensemble
classifiers in all three experiments: (i) all subtypes (AIDP.
AMAN, AMSAN, MF), (ii) OVO (AIDP vs. AMAN, AIDP
vs. AMSAN, AIDP vs. MF, AMAN vs. AMSAN, AMAN vs.
MF, AMSAN vs. MF), and (iii)OVA (AIDP vs. ALL, AMAN
vs. ALL, AMSAN vs. ALL, MF vs. ALL). 2e performance of
combined classifiers is compared with that of simple
classifiers.

3.1. Four GBS Subtypes Classification. In this section, we
show the results of ensemble methods in four GBS subtypes
classification. Table 3 shows the average results across all
runs along with the standard deviation (sd). Four of the five
ensemble methods obtained an average accuracy above 0.90.
Random Forest outperformed the rest of the methods in
most of the metrics. 2e worst performance was shown by
Bagging, with an average accuracy of 0.89 along with poor
results in sensitivity and Kappa statistic.

Multiclass AUC ranged in 0.78–0.83. Specificity values
were higher than those of sensitivity. Specificity ranged in
0.92–0.95, while sensitivity ranged in 0.66–0.81. Kappa
ranged in 0.69–0.80. Overall, four GBS subtypes classifica-
tion using ensemble methods obtained high values in av-
erage accuracy. 2e remaining metrics showed a large
variation.

Table 2: Base classifiers used in Random Subspace for each
classification case.

Base classifier Parameter setting Classes

kNN k � 18, d � Manhattan AIDP, AMAN,
AMSAN, MF

kNN k � 18, d � Manhattan AIDP vs. ALL
kNN k � 18, d � Manhattan AMAN vs. ALL
kNN k � 18, d � Manhattan AMSAN vs. ALL
Naive bayes — MF vs. ALL
yjJRip NumOpt � 3 AIDP vs. AMAN
SVMGaus s � 0.01, C � 10 AIDP vs. AMSAN
OneR — AIDP vs. MF
kNN k � 18, d � Manhattan AMAN vs. AMSAN
SVMGaus s � 0.01, C � 10 AMAN vs. MF
Naive bayes — AMSAN vs. MF
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Figure 1 shows the average accuracy across the runs for
each ensemble method in four GBS subtypes classification.
Also, the average error rate for each method is shown. Most
of the methods obtained an average accuracy above 0.90.
Random Forest obtained the lowest average error rate across
all train-test runs.

Table 7 in Supplementary Material shows the average
accuracy of single classifiers and ensemble methods across
the runs of four GBS subtypes classification. Only two en-
semble methods, Random Forest and C5.0, outperformed all
single classifiers in average accuracy. Boosting resulted
better than 13 of 14 single classifiers. Random Subspace had
performance comparable to that of SVMLin and Naive
Bayes. However, Random Subspace failed at improving kNN
as a single classifier. As shown in Table 7, kNN, when used as
single classifier, obtained a higher average accuracy (0.9268)
than that when used in Random Subspace as a base classifier
(0.9016). 2e worst performance of ensemble methods was
shown by Bagging; however, it was better than half of the
single classifiers.

3.2. Impact Analysis of the 16 Relevant Features in the Di-
agnostic Model. We conducted the same experimental de-
sign described above in Section 2.4 using the original 156
variables with both single classifiers and ensemble methods.
2is experiment was carried out with the objective of an-
alyzing the impact of the feature selection process where
a subset of 16 relevant features was determined as described
in Section 2.1.2e experiment was carried out using the four
GBS subtypes present in the dataset.

Using the single classifiers, we found an absolute dif-
ference in the average accuracy in the range of 0.0049 to
0.2151. 2is difference is using the 156 variables and the 16
relevant variables identified in the process described pre-
viously. 2e single classifier with the biggest difference was
RBF-DDA, with a difference of 0.2151. 2e least affected
single classifier was linear SVMwith 0.0049. See Tables 8 and
9 for details (in Supplementary Material).

Using the ensemble methods, we found an absolute
difference in the average accuracy in the range of 0.0001 to
0.1853.2e ensemble method with the biggest difference was
Random Subspace, with a difference of 0.1853. 2e least
affected single classifier was Bagging with 0.0001.

In all cases, results are better using the 16 relevant
features. 2ese hold true for both the single classifiers and
the ensemble methods.

3.3. OVAClassification. In this section, we show the results
of ensemble methods across the runs in OVA classifica-
tion, that is, AIDP versus ALL, AMAN versus ALL, and
so on (tables are shown in Supplementary Material).
Table 10 shows the average results of ensemble methods
across all runs along with the standard deviation (sd) in
AIDP versus ALL classification. Only two of the five en-
semble methods obtained a balanced accuracy above 0.80,
and these were C5.0 and Boosting. 2e worst performance
was obtained by Random Subspace, with a balanced ac-
curacy of 0.68 and poor results in most metrics. However,
Random Subspace obtained an unusual high specificity
value.2is means that classifiers were more able to identify
instances from all other GBS subtypes (ALL) than those
belonging to AIDP.

AUC ranged in 0.68–0.81. Specificity was higher than
sensitivity. Specificity ranged in 0.92–0.99, while sensitivity
ranged in 0.36–0.69. Kappa ranged in 0.46–0.64. In sum-
mary, ensemble methods obtained a low performance in
most metrics in AIDP versus ALL classification.

Table 3: Average results of ensemble methods across 30 runs in four GBS subtype classification.

Ensemble method Average accuracy Multiclass AUC Sensitivity Specificity Kappa
Random Forest 0.9366 0.8390 0.8120 0.9544 0.8090

0.0245 0.0803 0.0812 0.0178 0.0748
C5.0 0.9272 0.8398 0.8126 0.9476 0.7825

0.0251 0.0789 0.0749 0.0191 0.0746
Boosting 0.9195 0.8099 0.7906 0.9422 0.7596

0.0202 0.0578 0.0648 0.0158 0.0610
Random Subspace 0.9016 0.7871 0.6607 0.9251 0.6960

0.0216 0.0592 0.0691 0.0169 0.0682
Bagging 0.8980 0.7895 0.6936 0.9251 0.6923

0.0284 0.0484 0.0622 0.0206 0.0831

Random
forest

C5.0 Boosting Random
subspace

Bagging

Ensemble method
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Figure 1: Average accuracy and average error rate of ensemble
methods across 30 runs in four GBS subtype classification.
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Table 11 shows the balanced accuracy of single classifiers
and ensemble methods across the runs in AIDP versus ALL
classification. No ensemble method was able to improve
kNN, a single classifier, in balanced accuracy. Only two
ensemble methods, C5.0 and Boosting, outperformed the
rest of single classifiers in balanced accuracy. Random
Subspace had a poor performance, only being better than the
worst single classifier, OneR. Again, Random Subspace was
not able to outperform kNN as a single classifier.

Table 12 shows the average results of ensemble methods
across the runs in AMAN versus ALL classification. 2e
standard deviation is also shown. Four of the five ensemble
methods obtained a balanced accuracy above 0.90, only
Bagging was under this value. AUC ranged in 0.85–0.92.
Values obtained in specificity were higher than those ob-
tained in sensitivity. Specificity ranged in 0.92–0.94, while
sensitivity ranged in 0.78–0.91. Kappa ranged in 0.73–0.83.
In short, ensemble methods obtained values on or above 0.85
in most metrics in AMAN versus ALL classification.

Table 13 shows the balanced accuracy of single classifiers
and ensemble methods across the runs in AMAN versus
ALL classification. Two single classifiers outperformed all the
ensemble methods, kNN and SVMGaus. Boosting resulted
better than 12 single classifiers and four ensemble methods.
Like in the former cases, Random Subspace was not able to
outperform kNN as a single classifier. Bagging was the worst
ensemble method in AMAN versus ALL classification.

Table 14 shows the average results of ensemble methods
across the runs in AMSAN versus ALL classification. 2e
standard deviation is also shown. All five ensemble methods
obtained a balanced accuracy above 0.85. AUC ranged in
0.85–0.89. Like all other cases, specificity was higher than
sensitivity. Specificity ranged in 0.87–0.93, while sensitivity
ranged in 0.83–0.86. Kappa ranged in 0.71–0.78. Overall,
ensemble methods had a high performance in AMSAN
versus ALL classification in most metrics.

Table 15 shows the balanced accuracy of single classifiers
and ensemble methods across the runs in AMSAN versus
ALL classification. Random Forest was the best ensemble
method with a balanced accuracy of 0.8924. However, it was
not able to outperform kNN, the best single classifier with
0.8953 of balanced accuracy. C4.5, a single classifier, was the
third best method, and it had a higher balanced accuracy
than four ensemble methods and 12 single classifiers. Nei-
ther in this case was Random Subspace able to improve kNN
as a single classifier.

Table 16 shows the average results of ensemble methods
across the runs in MF versus ALL classification. 2e stan-
dard deviation is also shown. 2ree ensemble methods
obtained a balanced accuracy above 0.80. AUC ranged in
0.74–0.85. Sensitivity was much lower than specificity than
that in previous cases. Sensitivity ranged in 0.52–0.76.
Specificity ranged in 0.90–0.96. Kappa ranged in 0.49–0.64.
In summary, ensemble methods had a poor performance in
MF versus ALL classification in most metrics.

Table 17 shows the balanced accuracy of single classifiers
and ensemble methods across the runs in MF versus ALL
classification. Naive Bayes, a single classifier, obtained the
highest balanced accuracy outperforming all ensemble

methods. Random Subspace was the best ensemble method.
However, it was not able to improve Naive Bayes as a single
classifier. 2ree ensemble methods were better than most of
single classifiers, and these were Random Subspace, Bagging,
and C5.0.

3.4. OVO Classification. Regarding the results of ensemble
methods in OVO classification, tables are shown in Sup-
plementary material.

Table 18 shows the average results of ensemble methods
across the runs in AIDP versus AMAN classification. 2e
standard deviation is also shown. All ensemble methods ob-
tained a balanced accuracy above 0.90. Also, AUC surpassed
this value. Values obtained in sensitivity were lower than those
obtained in specificity. Sensitivity ranged in 0.84–0.95. Spec-
ificity ranged in 0.96–0.97. Kappa ranged in 0.83–0.91. Overall,
ensemble methods obtained values on or above 0.90 in most
metrics in AIDP versus AMAN classification.

Table 19 shows the balanced accuracy of single classifiers
and ensemble methods across the runs in AIDP versus
AMAN classification. JRip slightly outperformed Bagging
and C5.0, as the best classifier in this case. Two rule in-
duction learners, JRip and OneR, were at the top four
classifiers in AIDP versus AMAN classification. JRip as
a single classifier was not outperformed by Random Sub-
space when used as the base classifier.

Table 20 shows the average results of ensemble methods
across the runs in AIDP versus AMSAN classification. 2e
standard deviation is also shown. Random Forest obtained
a balanced accuracy above 0.90, and the rest of the ensemble
methods went above 0.85. Values obtained in sensitivity
were lower than those obtained in specificity. Sensitivity
ranged in 0.78–0.85. Specificity ranged in 0.90–0.96. Kappa
ranged in 0.70–0.83. In short, ensemble methods had a high
performance in AIDP versus AMSAN classification in most
metrics.

Table 21 shows the balanced accuracy of single classifiers
and ensemble methods across the runs in AIDP versus
AMSAN classification.

Random Forest obtained the highest balanced accuracy.
2e second best ensemble method was Boosting, only under
single classifiers SVMLap and SVMPoly. In this case,
SVMGaus was implemented as the base classifier in Random
Subspace instead of SVMLap, as mentioned in Section 2.4.
As in previous cases, Random Subspace did not outperform
SVMGaus, its base classifier.

Table 22 shows the average results of ensemble methods
across the runs in AIDP versus MF classification. 2e stan-
dard deviation is also shown. Random Subspace and Bagging
obtained a balanced accuracy above 0.85, the rest of ensemble
methods ranged in 0.76–0.83. Sensitivity was lower than
specificity. Sensitivity ranged in 0.71–0.83. Specificity ranged
in 0.82–0.99. Kappa ranged in 0.53–0.75. In summary, only
Random Subspace and Bagging showed the best performance
in AIDP versus MF classification in most metrics. 2e rest of
ensemble methods had low performance.

Table 23 shows the balanced accuracy of single classifiers
and ensemble methods across the runs in AIDP versus MF
classification. Two ensemble methods, Random Subspace
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and Bagging, outperformed all the other methods, including
single classifiers. In this case, Random Subspace was able to
improve the performance of its base classifier, OneR.

Table 24 shows the average results of ensemble methods
across the runs in AMAN versus AMSAN classification. 2e
standard deviation is also shown. All ensemble methods
obtained a balanced accuracy of around 0.90 and above. As
in previous cases, sensitivity was lower than specificity.
Sensitivity ranged in 0.88–0.93. Specificity ranged in 0.90–
0.97. Kappa ranged in 0.78–0.89. Overall, ensemble methods
obtained values on or above 0.85 in most metrics in AMAN
versus AMSAN classification.

Table 25 shows the balanced accuracy of single classifiers
and ensemble methods across the runs in AMAN versus
AMSAN classification. kNN was the best classifier followed
by Random Forest. In this case, Random Subspace was not
able to improve the performance of its base classifier, kNN.

Table 26 shows the average results of ensemble methods
across the runs in AMAN versus MF classification. 2e
standard deviation is also shown. Four of five ensemble
methods obtained a balanced accuracy above 0.90, and only
Random Subspace had a poor result. In this case, being
AMAN the majority class, sensitivity was higher than
specificity. Sensitivity ranged in 0.95–0.99. Specificity ranged
in 0.50–0.87. Kappa showed a large variation, ranging from
0.57–0.89. Shortly, almost all ensemble methods obtained
a remarkable performance in AMAN versus MF classifi-
cation in most metrics.

Table 27 shows the balanced accuracy of single classifiers
and ensemble methods across the runs in AMAN versus MF
classification. Half of single classifiers outperformed en-
semble methods, even though these last obtained a high
performance. Random Subspace was the worst method,
including single classifiers and ensemble methods.

Table 28 shows the average results of ensemble methods
across the runs in AMSAN versus MF classification. 2e
standard deviation is also shown. Four of five ensemble
methods obtained a balanced accuracy above 0.85. Like the
previous case, sensitivity was higher than specificity, because
of the majority class effect. Sensitivity ranged in 0.89–0.95.
Specificity ranged in 0.71–0.87. Low values were obtained in
Kappa, which ranged from 0.65–0.71. Overall, almost all
ensemble methods obtained values on or above 0.85 in most
metrics in AMSAN versus MF classification.

Table 29 shows the balanced accuracy of single classifiers
and ensemble methods across the runs in AMSAN versus
MF classification. Naive Bayes resulted better than all en-
semble methods and the rest of single classifiers. Random
Subspace was the second best, and it almost reaches Naive
Bayes performance, its base classifier.

4. Discussion

Our objective in this work was to investigate if ensemble
methods were able to improve single classifiers in building
a predictive model for GBS. We used the 16 relevant features
identified with the QSA-PAM method as predictors. Also,
we applied five ensemble methods: Boosting, Bagging, C5.0,
Random Forest, and Random Subspace.We conducted three

types of experiments: four GBS subtypes classification, OVA
classification, and OVO classification. We compared the
performance of both single classifiers and ensemble
methods.

Many studies report significant differences in the severity
and outcome of patients among the different subtypes of
GBS [2, 25–30]. On the other hand, OVA and OVO are two
approaches in Machine Learning to address the problem of
multiclassification [31, 32]. 2ese approaches are widely
used in the diagnosis of multiple subtypes in other condi-
tions [33–35]. 2ese experiments provide insight into how
well one subtype distinguishes from another and also how
well one subtype distinguishes against the others. Also, from
Machine Learning perspective, it is interesting to analyze
which of the two approaches is better in a particular disease
and which classifier performs the best differentiation.

4.1. Four GBS Subtypes Classification. All ensemble methods
accomplished well on the performance measures, where
Random Forest and C5.0 had the best results in average
accuracy, multiclass auc, sensitivity, specificity, and Kappa
statistics with better quality according the standard
deviation.

Two ensemble methods succeeded at improving the
average accuracy of all single classifiers: Random Forest and
C5.0. Random Forest surpassed kNN by almost a percentage
unit. C5.0 barely made it.

4.2. Impact Analysis of the 16 Relevant Features in the Di-
agnostic Model. Regardless of results found in these ex-
periments, the fact of having a simple diagnostic model for
the subtypes of GBS that uses only 16 relevant features
represents a contribution because it allows directly per-
forming GBS subtypes differentiation. It describes an ad-
vantage from the medical point of view, and thus for
physicians, the diagnostic process is eased by using a smaller
number of variables. Moreover, from the Machine Learning
perspective, the efficiency of the feature selection methods
was as expected.

4.3. OVA Classification. 2e best results were obtained in
AMAN versus ALL, followed by AMSAN versus ALL, in
both cases with a balanced accuracy of over 0.85. 2e worst
classification was obtained in AIDP versus ALL with
a Balanced accuracy lower than 0.82.

In all four cases, different classifiers obtained the best
performance: in AIDP versus ALL was C5.0, in AMAN
versus ALL was Boosting, in AMSAN versus ALL was
Random Forest, and in MF versus ALL was Random Sub-
space. No ensemble method stood out over the rest.

In regards to single classifiers, kNN outperformed all
methods in three cases, followed by Naive Bayes in one case.

4.4. OVO Classification. 2e best results were obtained in
classifications with the AMAN class: AIDP versus AMAN,
AMAN versus AMSAN, and AMAN versus MF. Random
Forest was the best classifier in three cases: AIDP versus
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AMSAN, AMAN versus AMSAN, and AMAN versus MF.
Random Subspace was the best classifier in two cases: AIDP
versus MF and AMSAN versus MF.

In AIDP versus MF and AIDP versus AMSAN classi-
fications, ensemble methods outperformed single classifiers:
Random Subspace in the first case and Random Forest in the
second.

kNNwas the best classifier in four cases, including single
classifiers and ensemble methods.

Single classifiers outperform ensemble methods in most
cases. 2ree cases were the exception: four GBS subtypes
classification, AIDP versus AMSAN, and AIDP versus MF.
2is result requires further investigation.

5. Conclusions

In this work, we aimed at creating the highest accurate
predictive model for GBS possible, using the 16 relevant
features identified with the QSA-PAM method. 2is effort
enriches our previous work on this topic using Machine
Learning methods. For this approach, we applied five en-
semble methods: Boosting, Bagging, C5.0, Random Forest,
and Random Subspace. We compare the results obtained by
these methods against previous results using 15 single
classifiers: kNN, SVMLin, SVMPoly, SVMGaus, SVMLap,
C4.5, SLP, MLP, RBF-ANN, JRip, OneR, Naive Bayes, BLR,
MLR, and LDA.

2ree types of experiments were performed: four GBS
subtypes classification, OVA classification, and OVO clas-
sification in order to make the comparison.

In the first experiment, Random Forest was the best
ensemble method and outperformed all single classifiers.

In the second experiment, no ensemble method stood
out over the rest in all four classifications. However, single
classifiers outperformed ensemble methods in all cases.

Finally, in the last experiment, Random Subspace
and Random Forest were the best ensemble methods.
Also, these methods outperformed single classifiers in two
classifications.

We consider that the proposed predictive model iden-
tifies the best method for each classification case. Knowing
which classifiers are the best in the diagnostic tasks in the
different scenarios (4 subtypes, OvO, and OvA) could serve
as a basis to build an expert system that implements the best
models. 2is system would facilitate the decision making of
physicians in the diagnosis of subtypes. As we mentioned
before, many studies report significant differences in the
severity and outcome of patients among the different sub-
types of GBS. Knowing in advance the specific subtype of
GBS suffered by the patient allows the physicians and pa-
tient’s relatives to take the appropriate measures for their
recovery.

A priori, ensemble methods are expected to outperform
single classifiers, due to the reason that they use different
strategies designed for this purpose, usually consisting of
repeating the classification process with the misclassified
examples by giving them greater weight in future iterations
(Boosting) and until using multiple classification trees in
combination with methods of sampling with replacement

(Random Forest). In this study, we make this analysis with
five different ensemble methods and 15 single classifiers. It
represents a contribution in the Machine Learning area.
From Neurology perspective, this contribution consists of
indicating which of the single classifiers and the ensemble
methods are the best in the tasks of distinguishing between
subtypes of the SGB.

As future work, we will further tackle the imbalanced
data problem. We are also interested in investigating the
optimal tuning of the parameters used in Boosting, Bagging,
and Random Subspace. 2e models generated by the clas-
sifiers mentioned above can be embedded in expert systems
to act as assistants in the decision making of the specialists.
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Supplementary Materials

We provide supplementary material organized in two sec-
tions: Experimental Design and Results. In the first section,
we show results from Boosting (Table 4), Bagging (Table 5),
C5.0 (Figure 2), Random Forest (Figure 3), and Random
Subspace (Table 6) tuning procedures, as a complement for
Parameter Optimization/Setting (Section 2.4.5). In the
second section, Table 7 is complementary material for Four
GBS Subtypes Classification (Section 3.1), Tables 8 and 9 are
complementary material for Impact Analysis of the 16
Relevant Features in the Diagnostic Model (Section 3.2),
Tables 10–17 are complementary material for OVA Clas-
sification (Section 3.3), and Tables 18–29 are complementary
material for OVO Classification (Section 3.4). (Supple-
mentary Materials)
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J. José Méndez-Castillo, “Finding relevant features for iden-
tifying subtypes of Guillain-Barré syndrome using quenching
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