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Abstract

Understanding the mechanisms that generate complex host-parasite interactions, and

how they contribute to variation between and within hosts, is important for predicting risk

of infection and transmission, and for developing more effective interventions based on

parasite properties. We used the T. retortaeformis (TR)-rabbit system and developed a

state-space mathematical framework to capture the variation in intensity of infection and

egg shedding in hosts infected weekly, then treated with an anthelminthic and subse-

quently re-challenged following the same infection regime. Experimental infections indi-

cate that parasite intensity accumulates more slowly in the post-anthelminthic phase but

reaches similar maximum numbers. By contrast, parasite EPG (eggs per gram of feces)

shed from rabbits in the post-treatment phase is lower and less variable through time.

Inference based on EPG alone suggests a decline in parasite intensity over time. Using a

state-space model and incorporating all sources of cross-sectional and longitudinal data,

we show that while parasite intensity remains relatively constant in both experimental

phases, shedding of eggs into the environment is increasingly limited through changes in

parasite growth. We suggest that host immunity directly modulates both the accumulation

and the growth of the parasite, and indirectly affects transmission by limiting parasite

length and thus fecundity. This study provides a better understanding of how within-host

trophic interactions influence different components of a helminth population. It also sug-

gests that heterogeneity in parasite traits should be addressed more carefully when exam-

ining and managing helminth infections in the absence of some critical data on parasite

dynamics.

Author summary

Host-parasite interactions frequently lead to complex dynamics of infection that can be

difficult to explain when parasite data are not accurate or complete, which is often the

case in natural systems. We used the helminth-rabbit study case and developed a state-
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space mathematical model to capture the variation in intensity of infection and egg shed-

ding in an experimental trial where hosts were infected weekly, then treated with an

anthelminthic and subsequently re-challenged following the same infection regime. Simu-

lations indicate that hosts control the parasite proportionally to the accumulated force of

infection and intensities decrease both in the pre- and post-treatment phase. The peak

and mean intensity of infection is similar before and after treatment; however, the degree

of egg shedding declines proportionately with parasite body length and both traits are

lower in the post- than the pre-treatment phase. The intensity of infection fails to ade-

quately explain the variation in the degree of shedding within and between hosts. Instead,

this pattern is captured by changes in parasite body length. More attention should be

given to the host-parasite interactions within hosts and the impact of external perturba-

tion on the dynamics of infection and transmission.

Introduction

The large variation in disease severity and transmission often observed among individuals

infected with helminths is strongly determined by the local conditions that incoming

and established parasites encounter within the host, in addition to variation in the exposure

of hosts to infective stages [1–3]. These conditions are mainly determined by the current

and previous immuno-physiological attributes of the host, such as the local immune profile

or the level of chemical homeostasis, and ecological parasite processes mostly driven by

intensity-dependent competition for resources [1, 4–15], where intensity represents the

number of parasites in infected hosts. Host and parasite constraints have been shown to

affect both the intensity and the life history of parasites with interactions that frequently

lead to non-linear dynamics of infection and complex trade-offs between parasite life-his-

tory traits.

The within-host regulation of gastrointestinal helminths, and the consequences for the

dynamics and life history of the parasite, remains a subject of ongoing research [4, 16–19]. The

fundamental challenge is to provide convincing evidence for the mechanisms that affect the

intensity of infection and the way parasite traits (i.e. development, fecundity and shedding)

adjust to these changes. Ultimately, the understanding of these processes under ecological

and immunological forces, and their relative contribution to the observed phenotype of infec-

tion, is important for explaining the often large variation in the host’s ability to control the

infection.

A useful approach to disentangling the contribution of these two forces is by examining

how parasites adjust to external perturbations, such as anthelminthic treatments. Anthel-

minthics are commonly delivered over one to several days (depending on the type of treat-

ment) and parasites are removed within hours or multiple days; however, in endemic areas

reinfection is inevitably the norm. Because of this, by altering the number of parasites compet-

ing for host resources and/or the strength of intensity-dependent immune responses [20, 21]

treatments lead to patterns of infection and re-infection that can be fundamentally different [2,

4, 22] than treatment-free settings. Indeed, the transient disruption caused by the drug treat-

ment resets the background environment by placing the initial parasite population to 0, thus

upon re-infection the new incoming parasites face a primed environment where competition

for resources is minimal and/or the immunity still holds some memory from the previous his-

tory of infection. Any change in the dynamics of parasite establishment from the pre-treatment

to the post-treatment phase should be due to the additional effects of memory in the immune
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response. In contrast, no changes in parasite dynamics between treatments should be indica-

tive of a regulation by ecological forces driven by intensity-dependent processes in the parasite

population.

Irrespective of the anthelminthic treatment, following the constant exposure to infective

stages and the accumulation of parasites within the host, the intensity of infection will exhibit

a logistic growth with host age if regulated by intensity-dependent ecological forces, such as

processes of competition for space and food [4]. A hump-shaped age-intensity profile, where

older hosts carry fewer parasites, is indicative of an immune response that regulates the para-

site population with a strength that increases proportionately with the force of infection [1,

20]. Other processes can generate this convex profile [2, 22] but here we address this shape as

an immunity-generated process. Our previous observations in the Trichostrongylus retortaefor-
mis—rabbit system have conformed to the latter pattern, indicating immune regulation [12,

23–26].

The interpretation of the relative contribution of these two forces—ecological limitation

through parasite competition for resources and host immune regulation—have conventionally

relied on either cross-sectional measures of parasite intensity or longitudinal measures of egg

shedding. However, both of these approaches have limitations. For instance, the common

method of using age-related, cross-sectional measures of parasite intensity, from dead or

drug-treated hosts, assumes that sequential cross-sectional observations in different animals

approximate the temporal progression of parasite intensity in a single or average animal and is

indicative for a time series of infection [1, 10, 21, 22, 27–31]. This necessarily averages out the

within-host heterogeneity in parasite dynamics and traits, as it assumes that the unobservable

or hidden dynamics of infection in individuals measured at later times behave similarly to

those measured at earlier times. This problem can be circumvented by using time series of par-

asite shedding, which allows observations of individual host variation during the course of the

infection. However, this method requires the assumption that the amount of eggs or larvae

shed by a host into the environment is directly proportional to the actual parasite burden [32,

33] and remains constant over time. Yet, an increasing number of studies have shown that this

assumption is rarely confirmed or correct [34–43] and the view that the infection-shedding

relationship remains constant over time can lead to wrong conclusions. Indeed, any feedback

between parasite intensity and fecundity/shedding, or between-host immunity and parasite

fecundity, would violate this assumption.

The apparent limitations in the conventional measures of within-host parasite dynamics

reflect two challenges in the inference for dynamical systems: the states of interest are often

not directly measurable (e.g. parasite burden prior to sacrifice) and/or they are only indirectly

measurable (e.g. egg shedding as an indicator of adult parasite burden). State-space or hidden

Markov models provide a statistical framework that links a dynamical model of the progres-

sion of unobservable states through time to observable measures [44–47]. This class of statisti-

cal models has increasingly been used to study the dynamics of infectious diseases at the host

population level, where the true incidence of infection is only partially observable through a

subset of cases reported through surveillance [48–50].

To understand the relative contribution of immunity and parasite ecological constraints to

patterns of helminth intensity, fecundity and shedding, we developed a within-host state-space

model of parasite dynamics using a laboratory experiment and the Trichostrongylus retortaefor-
mis(TR)-rabbit system. By linking a dynamic model to an observation model and by combin-

ing cross-sectional data on TR intensity, body length and fecundity with longitudinal data on

egg shedding we are able to reconstruct the unobservable dynamics of infection within each

individual and make inference on the underlying dynamic processes. Specifically, to evaluate

changes in TR dynamics and traits following external perturbations and provide a mechanism
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of regulation we compare the model performance before and after anthelminthic treatment

and under constant exposure to infective stages.

Results

Observations from cross-sectional and longitudinal data

The regular exposure of rabbits to a constant amount of TR infective larvae leads to a convex

pattern between the intensity of infection and host age (i.e. sampling time) both in the pre-

and post-treatment phase of the experiment (Fig 1). This is clearer for some rabbits, which is

consistent with our previous work [22, 51, 55]. There was no significant difference between

pre- and post- treatment in the mean and maximum intensity of infection, controlling for

sampling date (ANOVA p-value = 0.528, for additional results see S2 Table). The convex age-

intensity profile in both experimental phases, slower parasite accumulation, and delayed

increase in egg shedding in the post-treatment phase, is suggestive of an effect of accumulated

exposure on the establishment and/or clearance of TR. However, it is difficult to make a defini-

tive conclusion from the data as they reflect averages from rabbits sampled at a single time

point and variation in TR intensity among hosts is high.

The time series of eggs shed in the feces (EPG) by every animal also exhibited a tendency to

a convex pattern with host age (Fig 2(a) and 2(b)). The peak in EPG was reached in approxi-

mately 4 weeks in both phases of the infection. The number of eggs shed was significantly

lower in the post-treatment (pre- and post-phase, mean = 1842 eggs (range 1000–3850) and

890 eggs (range 475–1325), respectively; mixed effects ANOVA p-value <0.001 with rabbit

included as a random effect, S3 Table).

The ratio of the number of eggs in utero per female length was not significantly different

between phases (p = 0.35; Poisson regression, S2 Fig, S4 Table). However, we found that adult

TR were significantly shorter in the post-treatment compared to the pre-treatment phase

(body length post- vs pre-phase 95% CI: 6.49 − 6.61 mm vs 7.12 − 7.25 mm Fig 2), after

accounting for the effect of sampling time (DPI), the section of the intestine and their interac-

tions (p = 0.006; mixed effects ANOVA with rabbit as a random effect; S5 Table); consistent

with the overall lower rate of egg shedding in the post-treatment phase.

Projected effect from the estimated model parameters

Forward simulations from the fitted model (Fig 3) replicated the qualitative patterns described

by the experimental data. The simulated intensity of infection was comparable between pre-

and post-treatment, albeit more variable in the pre-treatment. The number of TR eggs shed

was also lower and less variable in the post-treatment, consistent with the original data. Addi-

tionally, the fitted model also predicted smaller parasites at 60 days following initial exposure

in the post-treatment phase of the experiment, consistent with the observed data (Fig 3(c), see

further discussion below).

A total of nine parameters were fitted from the parasite population dynamic and the individ-

ual growth models for every rabbit, both in the pre- and post-treatment phase of the experi-

ment. In the population dynamic model, we estimated parameters corresponding to the

baseline establishment of infective larval stages (L3), γ1, adult parasite clearance, β1, and the

degree of either the intensity of adult infection (γ3, β3) or the cumulative exposure (γ2, β2) on

establishment and clearance rates (Table 1). Parameter estimates based on the joint likelihood

for the longitudinal and cross-sectional data (Fig 3) indicate that the baseline rate

of establishment was reduced in the post-, compared to the pre-treatment phase of the

experiment; the posterior mean and central 95th quantiles of the fraction of L3 larvae that

establish are 0.94 (0.84, 0.98) and 0.88 (0.75, 0.95), respectively (Fig 3—panel (a)). The lower
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Fig 1. Observed and simulated adult worm intensity and parasite fecundity at each sampling point. (a) Circles give

the estimated adult parasite intensity, 4-times the number of worms counted, at each sampling time during the pre-

treatment phase. Lines indicate simulated adult parasite intensity each day. Each line reflects a simulation based on a

single parameter draw from the posterior density; line shading reflects likelihood weight (darker is higher likelihood);

clusters of lines reflect clustering of parameter values for individual animal fits. (b) Circles give the estimated parasite

fecundity, EPG divided by 0.03, at each sampling time during the pre-treatment phase. Points are connected indicating

repeated observations from a single rabbit. The abrupt truncation of the time series is due to animal sampling. Lines

indicate simulated parasite fecundity each day. Shading and clustering of lines are as in (a). (c) Estimated adult parasite

intensity for the post-treatment phase. Circles and lines are as in (a). (d) Estimated parasite fecundity for the post-

treatment phase.

https://doi.org/10.1371/journal.pcbi.1006167.g001
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establishment rate in the post-treatment phase is consistent with the later peak in the intensity

of TR infection observed. Estimates of adult parasite clearance were low in both the pre- and

post- treatment phases of the experiment and the baseline clearance rate was similar in both

phases. Overall, parameter estimates were highly variable among rabbits (see points below Fig 3

Fig 2. Distribution of observed and simulated worm lengths. (a) The distribution of parasite lengths over time for the pre-

treatment phase of the experiment. Black circles give the lengths of all observed worms on each sampling day. Red circles give the

mean parasite length for each rabbit. Circles have been jittered in the x-dimension for clarity. The red line indicate the linear trend

in the mean parasite length. (b) The distribution of parasite lengths over time for the post-treatment phase of the experiment.

Circles and line are as in panel (a)). (c) and (d) The simulated distribution of parasite lengths at day 60 for pre- and post-treatment

phases, respectively.

https://doi.org/10.1371/journal.pcbi.1006167.g002
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Fig 3. Marginal posterior distributions for parameter estimates. Panels give the sampled posterior distribution, conditional on the

observations from all rabbits, for (a) baseline establishment, γ1, (b) effect of cumulative exposure on establishment, γ2, (c) effect of parasite

intensity on establishment, γ3, (d) maximum daily clearance, β1, (e) effect of cumulative exposure on establishment, β2, (f) effect of parasite

intensity on establishment, β3, (g) mean final length, μL, (h) variance in final parasite length, and σL (i) parasite growth rate, α. The posterior for

pre-treatment animals is shown in blue, the posterior for post-treatment animals is shown in red. The x-axis in each panel spans the range of the

uniform prior for each parameter. Below each panel is shown the posterior mean (circle) for each individual animal and the central 95% of the

rabbit-specific posterior distribution. Estimates for animals sampled on days 15, 30, 45, 60 are plotted from top to bottom; pre-treatment

animals are shown in blue, post-treatment animals are shown in red.

https://doi.org/10.1371/journal.pcbi.1006167.g003

Changes in parasite traits can affect the infection dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006167 June 11, 2018 7 / 23

https://doi.org/10.1371/journal.pcbi.1006167.g003
https://doi.org/10.1371/journal.pcbi.1006167


panels (b), (c), (e), (f)). We note that the posterior mean for larval establishment tended to be

lower (Fig 3—panel (a)) and adult clearance tended to have higher mean (Fig 3—panel (c)) in

animals sampled later in the experiment. There is a weak trend for a stronger effect of TR inten-

sity and cumulative exposure on establishment (Fig 3—panels (b), (c)) in the animals sampled

later in the experiment.

Averaged over all rabbits in the experiment there was no consistent effect of either cumula-

tive exposure to infective stages or current adult intensity on either larval establishment or

adult clearance rate; the posterior distribution is similar to the uniform prior distribution for

these four parameters when the model is fit to all rabbit simultaneously. Averaged over all

rabbits, there was a strong effect of the treatment on the distribution of parasite lengths; the

posterior mean and central 95th quantiles of parasite mean final length in the pre- and post-

treatment phases are 9.1 mm (8.0, 10.4) and 7.9 mm (7.4, 8.8), respectively (prior mean and

95th percentiles 9.0 mm (7.1, 10.9)).

Sensitivity analysis

In both sub-models (cumulative exposure submodel and current intensity submodel (S1

Appendix)), the general patterns remained consistent; specifically the larval establishment

rate remained lower and mean final body length of parasites were shorter in the post-treatment

phase. As in the full model, the posterior mean for the model fit to all rabbits simultaneously

showed no strong evidence of an effect of cumulative exposure to infective stages (cumulative

exposure sub-model) or TR intensity (current intensity sub-model) on establishment or clear-

ance (S5 Fig).

Compared to the full model with the cross-sectional and longitudinal data, the model fit

with longitudinal data only, results in broadly similar patterns in the parameter estimates (S3

Fig). However, the estimated effect of the treatment on establishment of L3 larvae and the esti-

mated adult parasite final length was greater than that from the fit based on the full likelihood

for the longitudinal and cross-sectional data.

We can directly compare the observed adult parasite length distribution to the predicted

size distribution of parasites at the end of the pre- and post-treatment phases of the experiment

for the models fit only to the longitudinal observations (which include no explicit length data)

and to both longitudinal and cross-sectional observations. The mean (and IQR) of observed

TR lengths at 60 days in the pre- and post- phases was 7.1 mm (6.2, 7.9) and 6.17 mm (5.3, 6.9)

respectively; a mean difference of 0.93 mm. For the model fit to both the longitudinal and

Table 1. Mean, 2.5th and 97.5th quantiles of the posterior distribution of model parameters (full-model) in the pre-treatment and post-treatment phase. Note that

γ2, γ3, β2, β3 are presented on a log scale as values are small.

Pre-treatment Post-treatment

Mean 2.5th 97.5th Mean 2.5th 97.5th

γ1 0.94 0.84 0.98 0.89 0.75 0.98

ln(γ2) -4.1 -8.0 -3.2 -3.9 -8.5 -3.1

ln(γ3) -4.1 -8.1 -3.2 -3.2 -8.4 -2.5

β1 0.03 0.00 0.12 0.03 0.00 0.14

ln(β2) -3.4 -8.4 -2.5 -3.5 -8.3 -2.7

ln(β3) -3.8 -8.6 -2.9 -3.4 -8.3 -2.5

μL 9.07 8.06 10.48 7.87 7.42 8.83

σL 0.66 0.14 0.99 0.81 0.15 0.99

α 0.30 0.27 0.35 0.29 0.27 0.38

https://doi.org/10.1371/journal.pcbi.1006167.t001
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cross sectional observations, the corresponding predicted mean (and IQR) lengths of adult

parasites at 60 days in the pre- and post- phases were 8.1 mm (7.5, 8.7) and 7.0 mm (6.7, 7.5),

respectively; a predicted mean difference of 1.1 mm. For the model fit to only the longitudinal

EPG observations the corresponding mean (and IQR) lengths of adult parasites at 60 days in

the pre- and post- phases were 8.8 mm (8.0, 10.2) and 7.3 mm (7.0, 7.7) respectively; a pre-

dicted mean difference of 1.5 mm. Thus, the model fit to only the EPG data, including no

explicit length data, estimates a larger effect of anthelminthic treatment on adult parasite

length than the full model that includes length data.

Within-host trends in parasite length

Both the empirical analyses and model fits suggest a cumulative effect of time, which here

reflects the cumulative exposure to both larvae and adult TR, on TR growth, namely body

length. Based on the observed data, we found a significant fixed effect of both treatment and

sample day on parasite length in a mixed model with a random effect for rabbit; AIC for the

null model of no fixed effects, model with treatment only, and model with treatment and sam-

ple day is 9450.1, 9437.5, 9433.7, respectively (Fig 4(a). To investigate the role of host immunity

on these patterns, we repeated the same analysis, including the additive effect of IgA and IgG.

There was no significant effect of the Igs, suggesting that individual rabbit-level variation in

antibody response could not explain variation over and above the cumulative effect over time.

We note that when the antibody variables were included in models that did not include sam-

pling day, all were significant; thus time was confounded with the increasing trend in antibody

measures across all rabbits, but the host-to-host variation in antibody response did not provide

additional explanatory power. We note that the level of both serum and mucosal IgA and IgG

increased monotonically over time (Fig 4(b)–4(e)) as mean TR length decreased. We note fur-

ther that both serum and mucosal IgA and IgG levels at the first sampling date (day 15) of the

post-treatment phase were similar to those on the last sampling day (day 60) of the pre-treat-

ment phase (Fig 4(c) and 4(e)), indicating that immunity remained relatively high during the

month in which rabbits were not infected.

Discussion

Experimental infections of rabbits with the intestinal helminth TR showed that animals shed

significantly fewer TR eggs following re-infection after anthelminthic treatment. This reduced

shedding could arise from fewer established parasites or less fecund females. We showed that

the mean number of adult TR was not significantly different between pre- and post- treatment

phases. We also showed that the fecundity per female body length relationship was comparable

but there was a significant reduction in adult TR body length in the post-treatment phase.

We interpret the reduction in observed egg shedding as primarily driven by limitation of TR

growth rather than a decrease in parasite number.

However, this descriptive analysis can only provide a limited understanding of the pro-

cesses generating the experimental patterns and the way they impact the life-history traits of

TR. Here, we integrated both cross-sectional and longitudinal data sources in a hierarchical

model, which provides a clearer understanding of the within-host constraints on parasite

intensity of infection, growth and fecundity. Our modeling results complement our previous

empirical findings on this system [12, 51, 54] by showing that the dynamics of TR were likely

driven by a limitation in the establishment of infective larvae.

Full model simulations well described the observed data and suggested that parasite estab-

lishment was mainly affected by exposure to infective stages, and parasite growth critically

affected egg shedding. The convex relationship between host age (i.e. time post infection) and
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TR intensity, and the significant reduction of body length and eggs shed in the post-treatment

phase, are indicative of the immune mediated control of TR, which support the stronger contri-

bution of this driver compared to ecological, parasite intensity-dependent forces, in agreement

with our previous work on this system [12, 22, 25, 29, 52]. The IgA and IgG antibody response

at the start of the post-treatment phase of the experiment was consistent with that at the end of

Fig 4. Mean parasite length and antibody levels over time. (a) The mean parasite length per animals at each sampling point post

initial infection for the pre-treatment (left) and post-treatment (right) phases. The size of points are scaled by the square root of the

number of parasites collected per animal variation in the number of worms in each rabbit. (b) The levels of serum IgA (index of

optical density, see Methods) collected on the last sampling point for each animal, (c) the levels of serum IgG collected on the last

sampling point for each animal, (d) the levels of mucus IgA collected on the last sampling point for each animal, (e) the levels of

mucus IgG collected on the last sampling point for each animal.

https://doi.org/10.1371/journal.pcbi.1006167.g004
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the pre-treatment phase, suggesting that IgA and IgG decrease relatively slowly following para-

site removal and at reinfection parasites experience an already activated immune habitat.

The slower TR establishment and shorter lengths in the post-treatment phase are consistent

with limitation by this stronger immune response. We suggest that acquired immunity, which

developed proportionally to the accumulated exposure to infective stages over each of the

two phases of the experiment, maintained good memory in the absence of infection (i.e. one

month) and quickly reacted to the re-infection in the post-treatment phase. This is consistent

with the observation that both serum and mucus IgA and IgG levels at the start of the post-

treatment phase were at the same level as at the end of the pre-treatment phase. The slower

population growth in the post-treatment phase did not facilitate parasite growth and fecundity

as would be expected under a model of intensity-dependent limitation; on the contrary, body

length was significantly shorter indicating that immunity also affects parasite traits. Moreover,

in both phases of the experiment, adult TR clearance tended to be low, consistent with the

notion that TR can cope with the hostile local immune environment [26, 62] once established

and developed into adults.

We note that rabbit to rabbit variation was high. While there were no consistent effects of

TR intensity or cumulative exposure on establishment or clearance across all rabbits, the poste-

rior parameter estimates were highly variable among individual animals. We were unable to

identify a strong immune correlate of this individual level variation. In particular, though

there was a significant individual level effect of antibody (IgA or IgG, in mucus or serum) on

TR length, this effect was not significant when sampling date was included in the model, sug-

gesting that the antibody effect is blurred by sampling time. This lack of a clear relationship

should not be interpreted as an absence of immune constraints on TR dynamics and traits.

We note that the dynamic nature of the within-host dynamics, the individual variability in

immune measures, and the sample sizes used in this experiment may mean this study was

under-powered to directly observe an effect of antibody levels on within-host parasite popula-

tion sizes or life-history characteristics over and above the temporal trends presented here.

Our findings are consistent with previous work on sheep where immunity is likely to delay

the maturation of infective larvae resulting in smaller adults at a later time [51]. The immuno-

logical basis for the reduced parasite length following re-infection is well described in sheep

[55, 63, 64]. A reduction in the number of eggs shed by stunted parasites has been previously

reported from field and laboratory work [8, 11, 37, 54, 55, 59, 65–68]. The mechanism com-

monly proposed in all these studies is a limitation of parasite body growth with increasing lev-

els of exposure, mediated by host and/or parasite processes. There is also evidence that body

length and number of eggs in utero increase below a parasite intensity threshold, but above

this value the intensity-traits relationship becomes negative [69]. Our findings support these

studies but we also show that, immunological constraints, which scale with accumulated expo-

sure, have a relatively stronger impact on parasite traits than parasite intensity-dependent eco-

logical processes. Moreover we show that changes in parasite traits, rather than intensity,

better explains the variation in the degree of shedding before and after anthelminthic treat-

ment. Ultimately, these relationships can provide insight of the trophic processes affecting the

evolution of parasite resistance, namely, the parasite traits that are most critically constrained

and how they are affected over time; for instance, during multiple re-infections [15].

Our analyses of sub models revealed broadly consistent patterns. Sub-models that included

only the effects of cumulative exposure to infective stages or adult parasite intensity estimated

low larval establishment and shorter mean adult body lengths in the post-treatment phase,

consistent with the patterns seen in the full model. An analysis based only on longitudinal

observation of eggs shed in feces, an indirect measure of the within-host dynamics that

includes no explicit information about parasite body length, gave qualitatively consistent
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insights about the effect of immune limitation on larval establishment and TR growth, but

tended to over-estimate quantitative effects relative to the full model including the direct,

cross-sectional observations. This is notable because it suggests that observations of egg shed-

ding alone can inform the general trend in worm intensity through time, but is not sufficient

to recover the observed changes in worm traits.

Overall, the population dynamics of T. retortaeformis appear to be characterized by a high

variation among rabbits, suggesting that caution must be taken in the interpretation of cross-

sectional observations. Heterogeneities in the intensity of infection and degree of shedding

among hosts have important implications for the accumulation of infective stages in the envi-

ronment and transmission. Recognizing the mechanisms responsible for such a pattern and,

more critically, the components of the parasite life cycle that are more strongly affected, is fun-

damental for a better understanding of the dynamics of helminth infections and for developing

more effective control measures where parasites are endemic. Consistent with previous work

[70, 71] we show that, following anthelminthic treatment, parasites regain intensities similar to

pre-treatment conditions, albeit more slowly, but parasite fitness is consistently altered. By

appreciating that parasite traits do change in response to cumulative exposure, and limitations

on parasite traits may persist following external perturbations, it is possible to provide more

accurate estimate of the risk of infection. For helminths regulated by host immunity we should

expect a decrease in the fitness of the parasite population with host age, even if parasite inten-

sity is reduced through anthelminthic treatment, and overall lower risk of infection irrespec-

tive of their parasite load. This trend in parasite fecundity over time, likely in response to the

immune response, may have long term effects on parasite persistence and development of

drug resistance. This observed pattern would predict that there is a cost to the parasites that

develop resistance to drugs, as they would be expected to be shorter and less fecund over time.

Conclusion

Our modeling framework provides a novel approach to the study of helminth infections at the

host level. Indeed, while offering a parsimonious explanation of the forces driving the dynam-

ics of the parasite it also identifies the traits that are primarily constrained and the processes

that generate such patterns. Moreover, the impact of external perturbations, namely anthel-

minthic drug treatment, is well captured in the simulated dynamics of infection. Ultimately,

although this modeling approach needs information both on longitudinal and cross-sectional

data it can provide quantitative predictions on changes in helminth intensity and traits under

testable external disturbance.

Methods

Ethics statement

All the animal procedures were approved by the Institutional Animal Care and Use Commit-

tee of The Pennsylvania State University (USA).

The system and the empirical data

The intestinal helminth Trichostrongylus retortaeformis (TR) is a common parasite of the Euro-

pean rabbit (Oryctolagus cuniculus). Hosts become infected by ingesting herbage contaminated

with infective third stage larvae (L3). Larvae colonize the small intestine where they mature

into adults that reproduce and shed eggs into the environment through the host’s feces. We

previously showed that rabbits develop a strong type 1 and type 2 immune response that can

clear or reduce the parasite load, although there is no life-long protection and animals are
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constantly re—infected under endemic exposure [12, 51–53]. The initial type 1 response is

probably a reaction to the bacterial infiltration in the intestinal wall damaged by the move-

ments of larvae across the tissue during maturation [25, 54]. This inflammatory response does

not seem to affect the long—term ability of the rabbit to control the infection, which occurs

through a type 2 immune response [12, 25]. We also showed that there is a negative relation-

ship between body length, or fecundity (i.e. number of eggs in utero per body length), and

both antibody IgA levels and intensity of infection [51, 54]. While immunity plays an impor-

tant role to the dynamics of this helminth [12, 29, 55], it is still unclear if ecological density-

dependent parasite processes also have any impact on parasite dynamics and traits and how

they adjust to these host and parasite driven forces under anti-helminthic perturbation.

Here we performed a laboratory experiment where we quantified parasite variables (counts,

body length and egg shedding through feces) and immune response (IgA and IgG antibodies)

before and after anthelmintic treatment and over a six-month period. Out-bred, New Zealand,

2 months old, male rabbits were housed in single cages with a 12h light cycle and a daily access

to 125 g of standard rabbit pellets and water ad libitum. Animals (n = 36) were orally trickle

dosed every 7 days with 400 infective third stage larvae (L3) suspended in 5 ml of tap water;

control animals (n = 12) only received tap water. In the current study we focus only on the

infected rabbits; the feces of control animals were routinely monitored for TR eggs and were

found to be zero at all time points and no parasites were found in the intestine of control ani-

mals at sacrifice; we take this as evidence of the independence of infections in rabbits. Groups

of four infected animals were sacrificed at days 15, 30, 45 and 60 post initial infection. At day

60, animals were orally treated for five consecutive days with the broad spectrum anthel-

minthic Fenbendazole at dosage adjusted by animal body mass (5mg fenbendazole/kg body

weight, based on a 10% suspension (100 mg/ml)) (Panacur, Intervet Inc., USA). Infection was

then suspended for 30 days, including the 5 day drug treatment, and subsequently reinstated

following the same infection procedure and sampling frequency with four animals sacrificed at

days 90, 105, 120, 135 and 150 post initial infection. The removal of TR by the anthelminthic

drug means that L3 larvae introduced in the post-treatment phase experience the same popula-

tion dynamic conditions as in the pre-treatment, though may experience a novel immunologi-

cal environment due to the history of prior exposure. We selected a one-month hiatus in the

re-infection to allow the immune response enough time to decrease in the absence of parasites

and mimic the natural condition of lack of exposure for a limited period, but one that was

longer than the weekly dosing. This experimental design allows us to investigate the relative

contribution of coupling between ecological and immunological forces within the host. Specif-

ically, it provides a context for the effect of host immunity (which necessarily depends on

parasite intensity) as well as parasite population on parasite establishment, development and

reproduction of new parasites in nature. The treatment successfully removed all the parasites

as no eggs were found in the feces during the one month following anthelminthic treatment

also no parasites were found in the intestine of rabbits sampled prior to the start of the post-

treatment phase at day 0 (or 90 days post initial infection). The sampling points were selected

to be compatible with the helminth life cycle (pre-patent period about 12 days) and to provide

information on the parasite variables over the course of the infection. At every sampling point,

animals were processed as described previously [25]. Briefly, the small intestine was divided

into four sections (from duodenum to ileum: SI–1 to SI–4) and the parasites from one half of

each section were collected in a 50mL tube and then counted and sexed in 10x2.5 ml aliquots

from that tube (i.e. raw counts reflect 50% of worms in 50% of each section of the intestine).

For every section, a sample of randomly selected specimens (� 50 parasites for each sex) was

stored in 10% PBS—buffered formalin and subsequently processed for biometry data (body

length (male and female) and number of eggs in female’s uterus) [51, 54]. Along with these
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cross—sectional data, we also collected longitudinal records on the number of parasite eggs

shed in feces of every host twice a week starting from the second week post initial (re–) infec-

tion, following standard parasitological procedures (eggs per gram of feces, EPG, [56]). In

summary, for each host we collected four distinct parasite measurements: total count from a

fraction of intestine, body length (male and female) and eggs in (female’s) uterus at the time

of individual sampling, as well as eggs shed through host’s feces every week prior to rabbit

sampling.

Parasite-specific antibody responses (IgA and IgG) were measured in the blood serum

(every week) and in the duodenum mucus (at sampling points) using indirect ELISAs. We

used homogenates of adult TR as the source of antigen, as described previously [25, 51]. The

following dilutions were used: IgA mucus extracts 1: 10, serum samples 1: 20; IgG mucus 1: 20

and sera 1: 160. Briefly, all dilutions were prepared in 1% (w/v) non-fat milk diluted in Phos-

phate buffered saline (ph7.2) supplemented with 0.05% Tween-20 (Fisher Scientific, Hampton,

NH). Antigen-antibody complexes were allowed to form overnight at 4˚C prior to addition

of anti-rabbit IgA or IgG detection antibody (diluted 1:2000 in the same buffer that was used

for diluting test samples). Quantification was based on spectrophotometric analysis; antibody

values were then transformed and standardized into optical density (OD) indexes based on

positive and negative control samples that were included in each assay plate, see full details

reported in our previous work [25, 51, 57]. For simplicty we refer to the OD index as “antibody

levels”.

The model framework

To examine the model for the within-host dynamics of infection and development of TR, we

applied a state-space modelling framework that linked the quantified data of parasite intensity

—a direct but cross-sectional measure of the state of interest, and time series of fecal egg

counts—an indirect longitudinal measure of parasite intensity—to dynamic models that

describe the time progression of the unobservable states (parasite counts and size) via an

observation model [58].

Dynamic models

We modeled the dynamics of parasite intensity within the host as a birth-death process (i.e.

establishment of infective L3 larvae and parasite mortality/clearance), where the rates of estab-

lishment and clearance are assumed to depend on both cumulative exposure to L3 larvae and

current adult parasite intensity. The population of adult parasites at time t + 1, Pt+1 is the result

of the combined effect of cumulative exposure and parasite clearance
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where Λ is the known force of infection (i.e. weekly L3 dose: assumed to be 0 on the days when

larvae are not administered and 400 on the days of infection), γ1 is the baseline probability of

parasite establishment, γ2 and γ3 give the per capita reduction in L3 establishment due to either

new L3 larvae or established adults, respectively. The baseline probability of clearance is given

by β1, β2 and β3 give the per capita increase in clearance rate (e.g. adult mortality) due to new

L3 larvae or established adults, respectively.

The expected body length (in mm) of individual parasites at time t, xt is described by the

discrete time logistic model [59],
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where α is the mean developmental rate in length and L is the mean final length of an adult

parasite. The distribution of parasite length at age t, is assumed to be normal with expectation

μL and variance s2

L
. Based on our lab measurements we assumed that all L3 larvae start at an

initial mean length x0 of 1.069 mm and standard deviation of 0.062 (a total of 53 L3 larvae

were sampled to estimate the length distribution at the start of the experiment). The starting

L3 size distribution is assumed to be constant at all times during the experiment. Adult male

parasites are assumed to have mean final length that is 0.75 times that of adult female parasites

which is� 8mm [51, 54]; the mean final length μL reflects the average of all male and female

parasites assuming a 1:1 sex ratio.

Observation models

For every rabbit, and at each sampling point, parasite counts from one quarter of each of the 4

small intestine sections were combined and the observed number of parasites at time t, Ct, was

thus assumed to be distributed as follows:

Ct � BinomialðP
t
; 0:25Þ

where Pt is the observed parasite intensity in the whole small intestine at the time of sampling

in that specific rabbit. The observed counts of parasites at each length, was binned into length

classes of 0.25 mm intervals between 2 and 20 mm. The resulting vector Z, of length 72, with

elements zl is assumed to be drawn from a multinomial distribution with probability vector

equal to the proportion of simulated parasites in each size class. Binning the lengths into these

discrete classes allows the use of a multinomial likelihood, with expectation determined by the

simulated length distribution, without assuming an explicit functional form of distribution of

parasite lengths.

The number of parasite eggs shed by every host (EPG, based on the average of 2 measure-

ments a week) is a partial observation of the total number of parasite eggs, Et discharged by an

animal on a given day. EPG counts are assumed to reflect approximately 3% of the average

daily fecal production by a rabbit (based on 30g of dry feces from laboratory rabbits of similar

age and under the same feeding regime, unpublished data) and assumed to be uniform across

the different animals and constant over the day (see S4 Fig for sensitivity of fitted parameters

to the assumed observation rate). The observed number of eggs shed is assumed to be distrib-

uted as:

EPGt � Poissonð0:03EtÞ:

This makes the implicit assumption that the rate of eggs shed is homogeneous through time

and that the sampled feces are representative of all feces from a given animal.

Parasite fecundity (i.e. the number of eggs in utero per adult female parasite at sampling

day t) is known to be positively correlated with parasite length [51, 54, 60]. The observed rela-

tionship between eggs in utero and female parasite length(S2 Fig, S4 Table) was fit using a gen-

eralized linear mixed model (GLMM), with Poisson error distribution. We also tested whether

the slope of this relationship changed from the pre-treatment to post-treatment phase of the

experiment. In the simulation model, the total number of eggs produced by every female at

time t was a random draw from the fitted GLMM, conditional on the predicted length of that

female. Only body lengths longer than 4mm, the length at which females are assumed to be

sexually mature, were considered (no eggs were observed in females smaller than 4mm

throughout the experiment (S1 Fig)). The estimated fecundity of the total helminth population

at time t, Et was then quantified as the sum of eggs over all adult females, predicted by the pop-

ulation dynamic (Eq (1)) and individual growth (Eq (2)) models.
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Model fitting

We used a Bayesian particle filter method [61] to estimate the parameters of the parasite popu-

lation dynamic model (Eq (1)) and the individual parasite growth model (Eq (2)) indepen-

dently for each rabbit. The posterior distribution for all parameters was estimated by sampling

from a large (50, 000) set of parameter combinations with probability proportional to the

product of the joint prior probability and the approximate likelihood, where the latter is calcu-

lated via a particle filter (explained below), for each parameter combination. Candidate param-

eters were sampled from conditionally independent uniform distributions. The upper and

lower bounds on the uniform prior distributions were chosen to limit dynamics to the range

of observed data.

We estimated an approximate likelihood for each parameter combination using a particle

filter [49]; an algorithm for estimating the likelihood for models where the exact likelihood

cannot be stated analytically but realizations of the model can be generated by simulation [50].

These methods have a long history in signal processing and have been recently applied in a

number of population dynamic and epidemiological scenarios with partial or imperfect obser-

vation of state variables [44–47]. The evaluation of the estimated likelihood requires two linked

models: a dynamic model to generate the forward projection of the state variables—here the

within-host parasite intensity and body length distribution (Eqs (1) and (2))—and an observa-

tion model to evaluate the likelihood of observing the data—in our case—parasite counts,

EPGs and parasite lengths, conditional on the values of the unobservable state variables.

The steps below outline the approximation of the likelihood for each parameter combina-

tion, ϕk for k = 1. . .50, 000 for a single rabbit. We treat all rabbits as statistically independent

and thus the likelihood of parameter combination given the observations for all rabbits is the

product of the individual rabbit likelihoods; below we present estimates conditional on the

observations for all rabbits jointly, and each rabbit independently. The evaluation of the parti-

cle filter for one parameter combination returns an estimated likelihood, which is used in the

calculation of the posterior sampling probability. To evaluate the particle filter for the longitu-

dinal observations of EPG for rabbit r conditional on one specific parameter combination the

following approach was implemented:

1. We initialize simulations by assuming an initial dose of 400 L3 larvae, with lengths distrib-

uted as Gaussian with mean 1.069 mm and standard deviation of 0.062 mm (see above).

2. We simulate N stochastic realisations (termed particles) of the system in daily time steps up

to day 7 (i.e., the interval between L3 dose and EPG measurement)—the parasite population

are simulated according to Eq (1), and their related body-lengths according to Eq (2).

3. We then generated N stochastic realizations of total EPG corresponding to the simulated

parasite population sizes and length distributions by taking random draws from the egg-

length model (S2 Fig) for the simulated adult female parasite population with length greater

than 4 mm (we considered only observed eggs in females longer than 4mm, (S2 Fig)) and

summing over all females.

4. We evaluated the likelihood of the observed EPG at that observation step conditional on

each simulated particle (i.e. for simulated particle, i, the EPGt * Poisson(0.03Et)), where i
varies from 1 to N). The mean likelihood over all N particles gives an estimate of the likeli-

hood of the EPG observation at time t.

5. Finally, we re-sampled the simulated particles (i.e. the simulated trajectories of parasite

population size, length distribution and total EPG), with replacement, using sampling prob-

abilities proportional to the likelihood of the observed EPG for each particle.
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6. We then return to step (2) and simulate parasite intensity and size distribution forward to

the next observation point, taking the re-sampled particles from step (5) as the new starting

point.

This process was repeated for all EPG observation points; the average of the likelihood of all

N particles at each time point gives an estimate of the conditional likelihood of the observed

EPG at time step t. The product of these conditional likelihoods, for all observations, 1 to Tr,
(where Tr is the time of sacrifice for rabbit r in days) is then the estimated joint likelihood

of the longitudinal EPG observations from each rabbit for a single parameter combination
QTr

t¼1
LðEtjEPGtÞ; �kÞ.

On the final observation—the day of animal sacrifice, we evaluated the likelihood of the

cross-sectional observations of parasite intensity and parasite length. The conditional likeli-

hood of the observed parasite intensity (OTr
) was calculated from the average of the likelihood

for each N simulated parasite intensities (PTr ), which is given by LðOTr
jPTr ; �kÞ, assuming

OTr
� BinomialðPTr ; 0:25).

The conditional likelihood of the observed parasite lengths (XTr
) was calculated given the

average of the likelihood for each of the N simulated lengths distributions (ZTr
), is given by

LðXTr
jZTr

; �kÞ, assuming that the observed vector of counts in length classes is a Multinomial

draw, with trials equal to the number of observed adult parasites and probability vector equal

to the proportion of simulated parasites at the final time step, Tr, in each size class for particle

i. The product of these two likelihoods gives the estimated likelihood of the cross-sectional

observations from each individual rabbit for a single parameter combination.

The product of the estimated likelihoods for the longitudinal and cross-sectional observa-

tions gives the total likelihood of all observations for a single parameter combination for each

rabbit. We assume that all rabbits are independent, thus the total likelihood for parameter

combination ϕk is the product of the likelihoods for all, R, rabbits

LRj�k ¼
YR

r¼1

�YTr

t¼1
LðEtjEPGt; �kÞðLðOTr

jPTr ; �kÞÞðLðXTr
jZTr

; �kÞÞ
�
:

As many parameter combinations have very low likelihood, we implemented a two-step

algorithm for computational convenience. We first estimated the likelihood for all parameter

combinations using N = 100 particles and discarded all parameter combinations with esti-

mated likelihood less than 1% of the maximum. We then re-estimated the likelihood for the

remaining parameter combinations using N = 1000 particles, to obtain a more precise estimate

of LR.

After estimation of the likelihood for each parameter combination, we generate draws from

the posterior distribution by re-sampling the parameter combinations, with replacement,

using probabilities proportional to the likelihood for all rabbits. We compare this posterior dis-

tribution to that derived by re-sampling parameter combinations, with replacement, using

probabilities proportional to the likelihood of the longitudinal observations only; e.g. assuming

the cross-sectional data were not available.

We also generated rabbit-specific parameter estimates by re-sampling parameter combina-

tions, with replacement, using probabilities proportional to the likelihood for each rabbit

independently.

We fitted the same model framework to the pre- and post-treatment phase independently,

assuming no explicit effects on the post-treatment dynamics from the pre-treatment condi-

tions; as such any effect of the pre-drug exposure would be reflected in the estimated rates and

strength of cumulative exposure on establishment and clearance.
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To examine the single effect of either cumulative exposure of infective stages or intensity of

adult infection on explaining the dynamics observed, we fitted sub-models that set the effects

of cumulative exposure (γ2 and β2) or the effects of parasite intensity (γ3 and β3) to 0 (S5 Fig).

Supporting information

S1 Appendix. Sub-model frameworks for the parasite population dynamics. Here, we pres-

ent the two sub-models that are nested within the full population dynamic model presented in

the main text.

(PDF)

S1 Fig. Schematic of the experimental setup. We performed a laboratory experiment by

infecting the European rabbits (Oryctolagus cuniculus) with their common intestinal helminth

Trichostrongylus retortaeformis. Animals were orally trickle dosed every 7 days with 400 infec-

tive third stage larvae (L3) where control animals were orally treated with tap water. Groups of

4 infected and 2 control rabbits were sacrificed at days 15, 30, 45 and 60 post initial infection.

At day 60, animals were orally treated for 5 consecutive days with the anti-helminthic Fenben-

dazole at dosage adjusted by body mass. Infection was then suspended for 30 days and subse-

quently reinstated following the same infection procedure and sampling frequency with 6

animals sacrificed at days 105, 120, 135 and 150 post initial infection. For each individual ani-

mal we collected three distinct parasite measures: abundance, body length and eggs in utero at

the time of sampling (i.e. cross-sectional data) and eggs shed weekly (longitudinal data) start-

ing from the second week post initial infection prior to sampling. Together with parasite data

we also quantified host immune measures—like IgA and IgG (mucus and serum both).

(TIF)

S2 Fig. Relationship between eggs in utero and adult parasite body length in females from

the pre(solid curve)- and post(dashed curve)-treatment phase. A random number of T.
retortaeformis specimens were collected from the small intestine of rabbits at every sampling

point and their body length and number of eggs in utero -for the females- were measured

using our established protocol [51, 54]. Eggs in utero were positively correlated to female

body length (Generalized Linear Mixed model, GLMM, with a log-link function, Poisson error

distribution and rabbit as a random effect)(S4 Table), however, this relationship was not signif-

icantly different in the pre- and post-anthelminthic treatment phases of the experiment

(p = 0.35). Grey shading gives a 95% prediction interval.

(TIFF)

S3 Fig. Parameter estimates from EPG (the longitudinal data) only. Panels give the sampled

posterior distribution, conditional on the observations from all rabbits, for (a) baseline estab-

lishment, γ1, (b) effect of cumulative exposure on establishment, γ2, (c) effect of parasite inten-

sity on establishment, γ3, (d) maximum daily clearance, β1, (e) effect of cumulative exposure

on establishment, β2, (f) effect of parasite intensity on establishment, β3, (g) mean final length,

μL, (h) variance in final parasite length, and σL (i) parasite growth rate, α. The posterior for

pre-treatment animals is shown in blue, the posterior for post-treatment animals is shown in

red. The x-axis in each panel spans the range of the uniform prior for each parameter. Below

each panel is shown the posterior mean (circle) for each individual animal and the central 95%

of the rabbit-specific posterior distribution. Estimates for animals sampled on days 15, 30, 45,

60 are plotted from top to bottom; pre-treatment animals are shown in blue, post-treatment

animals are shown in red.

(TIF)
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S4 Fig. Sensitivity analysis of the parameters. In the main text, we present a model that

assumes 3% of eggs shed in the feces are counted, based on 30g dry weight of feces produced

per day. Each panel gives the central 95% of the sampled posterior distribution for pre-treat-

ment (lower line) and post-treatment (upper line) animals assuming that observed egg shed-

ding was 50% lower (low), and 50% higher (high) than the assumption made in the main text

(null). Individual panels indicate each parameter (a) baseline establishment, γ1, (b) effect of

cumulative exposure on establishment, γ2, (c) effect of parasite intensity on establishment, γ3,

(d) maximum daily clearance, β1, (e) effect of cumulative exposure on clearance, β2, (f) effect

of parasite intensity on clearance, β3, (g) mean final length, μL, (h) variance in final parasite

length, and σL (i) parasite growth rate, α. The absence of lines indicates a model for which a

given parameter was not present.

(TIF)

S5 Fig. Comparison of full and sub-models. In the main text, we present a model with effects

of both cumulative parasite burden and parasite intensity on both larval establishment and

adult clearance. Each panel gives the central 95% of the sampled posterior distribution for pre-

treatment (lower line) and post-treatment (upper line) animals for the intensity-only (int),

exposure-only (exp), and full models (full). Individual panels indicate each parameter (a) base-

line establishment, γ1, (b) effect of cumulative exposure on establishment, γ2, (c) effect of para-

site intensity on establishment, γ3, (d) maximum daily clearance, β1, (e) effect of cumulative

exposure on clearance, β2, (f) effect of parasite intensity on clearance, β3, (g) mean final length,

μL, (h) variance in final parasite length, and σL (i) parasite growth rate, α.

(TIF)

S1 Table. Prior distributions for model parameters. Prior distributions were uniform on a

transformed scale.

(PDF)

S2 Table. ANOVA table to test alternate models for total number of adult parasites per

rabbit. The base model includes only the sampling date (DPI), subsequent models include all

variables in the rows above.

(PDF)

S3 Table. Likelihood ratio tests of alternate models for Egg per Gram (EPG) of feces. The

base model includes only the sampling date (week), subsequent models include all variables in

the rows above. In all models, the rabbit from which parasites were sampled, was treated as a

random effect.

(PDF)

S4 Table. Summary table for the GLMM that represents the relation between eggs in the

utero and parasite body length in S2 Fig. The number of eggs per female parasite is modeled

as a function of parasite length (mm) and experimental phase (pre- and post-) with a random

effect the rabbit from which parasites were sampled. We used a log-link function and Poisson

error distribution.

(PDF)

S5 Table. Likelihood ratio tests of alternate models of female parasite length. The base

model includes only the sampling date (DPI), subsequent models include all variables in the

rows above. In all models, the rabbit from which parasites were sampled was treated as a ran-

dom effect.

(PDF)
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