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Abstract: The intestinal epithelium is continuously exposed to abundant stress stimuli, which relies
on an evolutionarily conserved process, autophagy, to maintain its homeostasis by degrading and
recycling unwanted and damaged intracellular substances. Otherwise, disruption of this balance
will result in the development of a wide range of disorders, including colorectal cancer (CRC).
Dysregulated autophagy is implicated in the regulation of cellular responses to stress during the
development, progression, and treatment of CRC. However, experimental investigations addressing
the impact of autophagy in different phases of CRC have generated conflicting results, showing
that autophagy is context-dependently related to CRC. Thus, both inhibition and activation of
autophagy have been proposed as therapeutic strategies against CRC. Here, we will discuss the
multifaceted role of autophagy in intestinal homeostasis and CRC, which may provide insights for
future research directions.
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1. Introduction

The mucosal surface of the gastrointestinal tract continuously encounters abun-
dant stimuli originating from both endogenous and exogenous sources, including
metabolic alterations, a variety of bacterial species, chemical irritants, and agents that
produce oxidative stress. Autophagy, a stress-responsive process, is tightly linked to
the maintenance of intestinal cellular homeostasis [1,2] (Figure 1). Under conditions of
physiological stress, cells in the intestinal mucosa frequently accumulate unwanted
and damaged intracellular substances. In this case, autophagy can be triggered to
transport them to the lysosomes for degradation and recycling [3]. Intestinal epithelial
cells (IECs) and intestinal stem cells rely on this mechanism to ensure their survival,
as it helps maintain protein and organelle quality by selectively degrading and recy-
cling aggregates of impaired or unnecessary proteins, mitochondria, peroxisomes, and
endoplasmic reticulum (known as selective autophagy) [4–6]. Moreover, autophagic
degradation of the intestinal tight junction proteins governs the intensity of the in-
testinal barrier. Apart from this, autophagy plays a central role in the host–microbiota
interactions, where it eliminates potential pathogens and forms an integral component
of anti-infectious immunity [2].

In contrast, defective autophagy predisposes normal IECs to undergo malignant
transformation. Although the exact etiological mechanisms underlying CRC remain mul-
tifactorial and largely unknown, it is well established that both genetic predisposition
and environmental factors contribute to its initiation and development. The genetic basis
underpinning sporadic CRCs is well defined by theories such as the adenoma–carcinoma
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sequence model, suggesting that CRC is driven by sequential genetic and epigenetic
mutations, arising from normal epithelial cells to dysplastic adenomas and, ultimately,
carcinomas [7–10]. Various genetic events are required during the malignant transforma-
tion, involving mutations of Adenomatous polyposis coli (APC), KRAS, and P53 [7,8,10]. It
is essential to perceive that across stages of CRC tumorigenesis, alteration of autophagy-
related genes plays a significant role. A large genome-wide association study identified
genetic variants of transcription factor EB (TFEB), a positive regulator of the autophagic
pathway that promotes the expression of autophagy genes [11,12], as a novel risk fac-
tor associated with CRC susceptibility [13]. Mutation of another autophagy regulator,
UV-radiation-resistance associated gene (UVRAG), which activates the Beclin1-PI3KC3
complex, also underpins the genetic basis of CRC tumorigenesis [14]. Similarly, genetic
alterations involved in the endocytosis-autophagy network were frequently observed in
KRAS-wild-type CRC [15].

Given that it generally takes years to decades for adenomas to transform into car-
cinomas, the mutated precursor cells constantly endure endogenous and exogenous
stress [16,17]. A clear role has emerged for autophagy in CRC cells, where it exerts
diverse effects on cellular adaptation to tumor microenvironmental cues and therapeu-
tic stress, which ultimately results in cell survival, death, or growth inhibition [18,19].
First, highly proliferative CRC cells tend to have a limited supply of nutrients. In the
context of nutrient deprivation, autophagy is triggered to provide energy sources and
metabolites to sustain metabolism and tumor growth [20–22]. Moreover, insufficient
and irregular neovascularization of rapidly proliferating CRC cells causes a hypoxic
microenvironment, where autophagy is harnessed to eliminate protein aggregates and
damaged endoplasmic reticulum (ER) and mitochondria [4,5]. This contributes to the
prevention of the overproduction of reactive oxygen species (ROS) and reduction of
oxidative and ER stress, thereby preserving genomic integrity [23]. In addition, intestinal
microorganisms with oncogenic properties continuously cause an abnormal microenvi-
ronment that profoundly affects the initiation and progression of sporadic CRC [24]. The
involvement of autophagy in the interaction of microbiota and CRC is complicated and
differs in a temporal manner [1,2]. Finally, abnormal autophagy is activated in response
to treatment and confers resistance to therapeutic challenges. In this context, autophagy
protects CRC cells from drug-induced apoptosis and induces them into a slow-cycling,
drug-tolerant state.

In this review, we focus on the regulatory roles of autophagy in the maintenance of
intestinal homeostasis. Meanwhile, we discuss how dysregulation of this conserved process
orchestrates different stress factors in a context-dependent manner in distinct stages of CRC
development and progression and under therapeutic pressure, with the aim of providing a
perspective for future research.
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Figure 1. Functional mechanisms of autophagy. The most-studied form of autophagy is macroau-
tophagy, a multistage and dynamic process. Autophagy is negatively regulated by the cell growth 
promoter rapamycin complex 1 (mTORC1), while the sensor of energy deprivation AMP-activated 
kinase (AMPK) activates autophagy. The canonical autophagy consists of four sequential stages: 
initiation, phagophore formation, phagophore elongation, and autophagosome–lysosome fusion 
[25]. During the initiation phase, the UNC-like autophagy-activating kinase 1 (ULK1) complex 
serves as a bridge between the upstream mTOR and AMPK and downstream autophagosome for-
mation [26,27]. The complex is composed of ATG13, focal adhesion kinase-family-interacting pro-
tein of 200 kDa (FIP200), ATG101, and ULK1, in which ULK1 is the core protein with serine/threo-
nine kinase activity [28]. After being stimulated by nutrient deficiency and stress-related pathways, 
phosphorylated ULK1 subsequently leads to membrane nucleation, which requires activation of 
class III phosphatidylinositol-3 kinase complex I (PI3KC3-CI). Formed by beclin-1, vacuolar protein 
sorting 34 (VPS34), autophagy-related protein 14- like protein (ATG14L), p150, and nuclear recep-
tor-binding factor 2 (NRBF2), this multiprotein complex can be activated through ULK-dependent 
phosphorylation [29]. The nucleation of the isolation membrane, known as the phagophore, further 
expands with the support of PI3KC3-CI [30]. At the phagophore assembly site, the complex pro-
duces PI3P, favoring the recruitment of the effector proteins (such as WIPI/II), thus resulting in the 
phagophore elongation [31]. This phase is further promoted by the ubiquitin-like conjugation sys-
tem, involving the E1 ligase, ATG7, the E2 ligase, ATG3, and the E3 ligase complex, 
ATG12/ATG5/ATG16L [32]. Through ATG4-dependent proteolytic cleavage, followed by the action 
of the conjugation system, microtubule-associated proteins 1A/1B light chain 3 (LC3) can be trans-
formed to lipidated LC3 (LC3-II), which is instrumental for elongation and closure of the phago-
phore [33]. Meanwhile, LC3-II physically links to substrates that contain the LC3-interacting region 
(LIR) motif, thereby targeting them for degradation. Once phagophores are closed, the ensuing au-
tophagosomes fuse with lysosomes to form autolysosomes; within them, the delivered contents are 
degraded and recycled [34]. 

2. Autophagy Maintains Intestinal Epithelial Homeostasis under Physiological Stress 
The intestinal mucosa is constantly exposed to alimentary and bacterial antigens as 

well as mechanical stress, which relies on an intact intestinal barrier and healthy gut mi-
crobiota to maintain intestinal homeostasis that would otherwise cause infection, inflam-
mation, and cellular damage [1,35–37]. Regulation of autophagy plays a key role in the 
ability of the gut epithelium to cope with cell stress, as elucidated by lines of evidence 
from experimental and clinical studies (Figure 2). 

Figure 1. Functional mechanisms of autophagy. The most-studied form of autophagy is macroau-
tophagy, a multistage and dynamic process. Autophagy is negatively regulated by the cell growth
promoter rapamycin complex 1 (mTORC1), while the sensor of energy deprivation AMP-activated
kinase (AMPK) activates autophagy. The canonical autophagy consists of four sequential stages:
initiation, phagophore formation, phagophore elongation, and autophagosome–lysosome fusion [25].
During the initiation phase, the UNC-like autophagy-activating kinase 1 (ULK1) complex serves as a
bridge between the upstream mTOR and AMPK and downstream autophagosome formation [26,27].
The complex is composed of ATG13, focal adhesion kinase-family-interacting protein of 200 kDa
(FIP200), ATG101, and ULK1, in which ULK1 is the core protein with serine/threonine kinase
activity [28]. After being stimulated by nutrient deficiency and stress-related pathways, phospho-
rylated ULK1 subsequently leads to membrane nucleation, which requires activation of class III
phosphatidylinositol-3 kinase complex I (PI3KC3-CI). Formed by beclin-1, vacuolar protein sorting
34 (VPS34), autophagy-related protein 14- like protein (ATG14L), p150, and nuclear receptor-binding
factor 2 (NRBF2), this multiprotein complex can be activated through ULK-dependent phosphoryla-
tion [29]. The nucleation of the isolation membrane, known as the phagophore, further expands with
the support of PI3KC3-CI [30]. At the phagophore assembly site, the complex produces PI3P, favoring
the recruitment of the effector proteins (such as WIPI/II), thus resulting in the phagophore elonga-
tion [31]. This phase is further promoted by the ubiquitin-like conjugation system, involving the E1
ligase, ATG7, the E2 ligase, ATG3, and the E3 ligase complex, ATG12/ATG5/ATG16L [32]. Through
ATG4-dependent proteolytic cleavage, followed by the action of the conjugation system, microtubule-
associated proteins 1A/1B light chain 3 (LC3) can be transformed to lipidated LC3 (LC3-II), which
is instrumental for elongation and closure of the phagophore [33]. Meanwhile, LC3-II physically
links to substrates that contain the LC3-interacting region (LIR) motif, thereby targeting them for
degradation. Once phagophores are closed, the ensuing autophagosomes fuse with lysosomes to
form autolysosomes; within them, the delivered contents are degraded and recycled [34].

2. Autophagy Maintains Intestinal Epithelial Homeostasis under Physiological Stress

The intestinal mucosa is constantly exposed to alimentary and bacterial antigens
as well as mechanical stress, which relies on an intact intestinal barrier and healthy gut
microbiota to maintain intestinal homeostasis that would otherwise cause infection, inflam-
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mation, and cellular damage [1,35–37]. Regulation of autophagy plays a key role in the
ability of the gut epithelium to cope with cell stress, as elucidated by lines of evidence from
experimental and clinical studies (Figure 2).
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Figure 2. Role of autophagy in intestinal homeostasis maintenance Multiple roles of autophagy in
intestinal homeostasis are shown, including regulating the survival of intestinal epithelial cells and
intestinal stem cells, the host–microbiota interactions, and the intestinal tight junctions.

The IECs constitute the first line of defense, which includes the formation of the physi-
cal barrier as well as the integration of regulatory mechanisms. As the intestinal epithelium
is one of the most vigorously regenerative tissues in adults, its turnover serves as a crucial
mechanism for the protective effect provided by the mucosal barrier, which is achieved
through a balance of cell apoptosis and proliferation in crypts [38]. Mouse models with
ATG14 or Rb1cc1/Fip200 deleted in the intestinal epithelium exhibited extensive intestinal
villous atrophy, suggesting that autophagy is protective against cell death during home-
ostasis in the intestinal epithelium [39]. Mechanistically, these autophagy-related proteins
defended intestinal epithelial cells from TNF (tumor necrosis factor)-triggered apopto-
sis [39]. Moreover, intestinal homeostasis is maintained by leucine-rich repeat-containing
G protein-coupled receptor 5-positive intestinal stem cells (LGR5+ ISCs) for constant tissue
regeneration. Notably, autophagy has been demonstrated to play a cytoprotective role in
the LGR5+ ISCs against toxic and infectious injuries. During irradiation damage, muramyl
dipeptide (MDP), a microbiota-derived product, can be recognized by NOD2 in LGR5+

ISCs, thereby promoting cell survival by mediating the clearance of ROS. This reduction of
ROS was achieved via mitophagy induction coordinated by NOD2 and ATG16L1, which
eliminate damaged mitochondria in ISCs and therefore enhance epithelial repair [40]. In
addition, autophagy contributes to LGR5+ ISCs maintenance under conditions of irradia-
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tion and chemotherapy. Following these stresses, ATG7-dependent DNA damage repair
was stimulated, facilitating ISCs survival. Activation of autophagy on fasting showed a
protective effect on LGR5+ ISCs against oxaliplatin and doxorubicin-induced DNA damage
and cell death [41].

The balance of host–microbiota interactions has profound impacts on the host’s intesti-
nal health. Notably, the crucial role of autophagy lies in maintaining intestinal microbiota
homeostasis, and dysfunctional autophagy is known to cause gut microbial dysbiosis [42].
As previously demonstrated in the mouse model with conditional inactivation of Atg5
in IECs, blockade of the autophagic flux led to a remarkable alteration and reduced the
diversity of gut microbiota [43]. The altered colonization pattern involved decreased abun-
dances of anti-inflammatory microorganisms and enrichment of proinflammatory bacterial
groups, many of which are believed to be associated with inflammatory bowel disease
(IBD) and colorectal cancer (CRC) [43].

The proposed mechanisms by which autophagy modulates the balance of bacterial
flora include direct degradation of harmful bacteria and regulation of the antibacterial
immune response. Under physiological conditions, all intestinal bacteria are coated with
complement protein C3 [44]. Following the invasion of potentially pathogenic microor-
ganisms into the intestinal mucosa, C3 on the bacterial surfaces can be targeted by host
cytosol ATG16L1, thereby activating the autophagy system [45]. Apart from this, it has
been reported that MyD88, the canonical adaptor for inflammatory signaling pathways,
was also required during the process of autophagy induction [46]. It is worth mentioning
that autophagy in IECs can affect the expression and secretion of antimicrobial peptides
(AMPs) to restrict bacterial dissemination [47]. Interestingly, several mouse models in
which different autophagy genes are deleted in IECs (including ATG16L1, ATG4B and
LC3B) showed an enhanced response to microbiota-induced type I interferon (IFN-I) sig-
naling [48]. This spontaneous activation of IFN-I in IECs conferred protection against the
pathogen Citrobacter rodentium and chemical injury via C-C motif chemokine receptor 2
(CCR2)-dependent monocyte recruitment, fortifying the intestinal barrier in response to
both infectious and non-infectious stress [48]. Although autophagy was demonstrated to
have an adverse function in antimicrobial activity and tissue repair, as evidenced by this
study, the immunomodulatory properties of IFN-I signaling may be far more nuanced
under different circumstances, such as autoimmune diseases and tumor immunity [48,49].

Epithelial cells in the intestinal tract attach via tight junctions (Tjs) including claudin,
occludin, etc. TJ modulation is closely linked to intestinal permeability, and autophagy
has been implicated in enhancing intestinal barrier function via TJ regulation [1]. By
mediating the lysosomal-dependent degradation of claudin-2, a pore-forming protein,
starvation-induced autophagy reduced intestinal permeability of ions and small molecules
in IECs [50]. Further mechanistic investigation revealed that autophagy-triggered claudin-2
degradation was dependent on clathrin-mediated endocytosis, where claudin-2 directly
binds to adaptor related protein complex 2 subunit mu 1 (AP2M1), and an increased claudin-
2-AP2M1-LC3 association was observed [51]. In contrast, proinflammatory cytokine tumor
necrosis factor alpha (TNF-α) weakened the intestinal barrier. This was mediated by the
inhibitory effect of TNF-α on autophagy, which resulted in elevated claudin-2 expression
and impaired epithelial tight junction [52]. Another TJ-associated protein, occludin, is
also tightly regulated by autophagy in IECs. Notably, beclin 1 interacted with occludin on
the cell membrane, leading to the endocytosis of occludin and, subsequently, defective TJ
barrier function. While this process was autophagy independent, autophagy activation
was shown to counteract the effect of Beclin 1 and restore the endothelial barrier [53].

Overall, these findings revealed that autophagy is required for the maintenance of
intestinal homeostasis, but its beneficial or deleterious nature can vary depending on
the setting.
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3. Autophagy Coordinates Cellular Adaptation to Stress in the Progression of CRC
3.1. Autophagy Enables Adaptation to Metabolic Alteration-Induced Stress

After oncogenic transformation, the established tumor is highly proliferative and
metabolically active, requiring large amounts of energy and metabolic precursors. Un-
like other normal cells, cancer cells constitutively utilize glycolysis to sustain oncogenic
metabolism [54]. In such a situation, autophagy serves as a mechanism of survival [22].
Given that a key feature of autophagy has been suggested to supply substrates to fuel
metabolism, it is constantly active under nutrient-competent conditions to enhance tu-
mor growth [55]. Cancer cells utilize it as an alternative source of nearly all aspects of
metabolic fuel and reduce oxidative stress, creating “autophagy addiction” [55–57]. Oth-
erwise, autophagy-deficient tumor cells suffer from metabolic vulnerabilities and energy
crises in the stressed microenvironment. Indeed, in the transformed IECs, not the adjacent
normal IECs, autophagy is indispensable for cell metabolism [42]. Deletion of ATG7 in
intestinal adenoma blocked its progression to malignancy via p53-induced growth arrest
and AMPK-dependent downregulation of glycolytic genes [42], consistent with the theory
that cancer cells exhibit a particular addiction to autophagy [58,59].

Starvation-induced reduction of nutrient inputs, such as glucose and amino acids,
leads to decreased intermediate metabolites of various metabolic pathways; for example,
the tricarboxylic acid (TCA) cycle [60]. This will ultimately lower the ratio of adeno-
sine triphosphate (ATP) to adenosine diphosphate (ADP) and adenosine monophosphate
(AMP), energy stress that can be sensed by AMPK [61]. Once activated, AMPK suppresses
ATP-consuming pathways and upregulates energy-generating processes, including au-
tophagy [62]. In contrast, another major autophagy modulator, mTOR, is sensitive to
the abundance of amino acids and is activated by available nutrients. In addition, other
regulators including ATF4, SIRT1, and TFEB govern the transcription of autophagy-related
genes, in response to nutrient availability and reduction status [62]. Together, there is an
intricate regulatory network that integrates autophagy with response to metabolic cues.

Interestingly, the metabolic reliance on autophagy of tumors may be dependent on
their mutational status. Prior studies have revealed different degrees of autophagy ad-
diction across multiple carcinoma types, most notably in Ras-driven tumors, including
lung cancer, pancreatic cancer, prostate cancer, and CRC [58,63–65]. KRAS is mutated in
approximately 40% of CRC patients and is associated with poor prognosis and therapy
resistance [66]. For Ras-transformed CRC cells, enhanced glucose metabolism is required
for their high rates of proliferation in starvation. Autophagy has been shown to facilitate
glycolytic flux in H-RASV12 cells [63], likely due to its potential to degrade macromolecules
and provide metabolic substrates. Interestingly, autophagy is able to protect mitochondrial
function in H-RASV12 and K-RASV12 cells. This was achieved through the supply of sub-
strates for mitochondrial metabolism, presumably TCA-cycle metabolites, via conversion
of pyruvate and fatty acids into acetyl-CoA [64]. Defective autophagy in H-RAS V12 and
K-RASV12 models also impaired mitochondrial respiration, causing reduced energy levels
and increased oxidative stress [64]. However, while lack of autophagy in a mouse model
of KRAS-driven lung cancer resulted in impaired fatty acid oxidation, it was absent in the
BRAF-driven mouse model [67]. This raises the question as to the influence of genotype on
the metabolic role of autophagy, which is broadly unknown in CRC.

Apart from glucose metabolism, autophagy is closely associated with fatty acid
metabolism. Fatty acid β-oxidation in mitochondria produces acetyl CoA, thereby fu-
eling the TCA cycle [68]. Indeed, CRC patient-derived adipocytes were shown to favor
the survival of CRC cells under the condition of nutrient deprivation. Mechanistically,
the adipocytes secreted free fatty acids, which in turn are absorbed and utilized by colon
cancer cells by inducing autophagy and mitochondrial fatty acid β-oxidation via AMPK
activation [69]. In addition to cell-autonomous autophagy, host autophagy has a metabolic
role in the antitumor immunity of CRC [70]. In activated Treg cells, autophagy was function-
ally stimulated and negatively regulated mTORC1-dependent glycolytic metabolism, thus
promoting their metabolic homeostasis and immunosuppressive function [71]. Together,
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these studies suggested the metabolic vulnerabilities mediated by autophagy and provided
opportunities for therapeutic intervention in CRC (Figure 3).
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In this context, autophagy serves as an alternative source of nearly all aspects of metabolic fuel. By
coordinating glycolysis, fatty acid β-oxidation, and tricarboxylic acid cycle, autophagy is intimately
connected to the metabolic reprogramming of CRC.
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3.2. Autophagy Enables Adaptation to Hypoxia-Induced Stress

Due to rapid proliferation, excessive oxygen consumption, and abnormal microvascu-
lature, the tumor mass of CRC is constantly exposed to reduced oxygen levels. Hypoxia
is one of the major hallmarks of the CRC microenvironment, and autophagy is elicited to
enable tumor cells to thrive in this situation. Hypoxia-inducible factor (HIF-1), the major
transcription factor complex in response to hypoxic conditions, can induce autophagy
through upregulation of autophagy-related genes, crosstalk with the mTOR signaling,
and production of reactive oxygen species (ROS) [72–74]. Notably, under hypoxia stress,
functional mitochondria play an indispensable role in ROS generation and subsequent
HIF-1 stabilization.

The association of autophagy dysfunction with CRC initiation is evident in prior stud-
ies, in which essential autophagy genes, including Atg7 [42], Atg16l1 [75], and UVRAG [14],
were edited in mice. In these cases, the arisen neoplasms would accumulate large amounts
of autophagic cargo, most obviously damaged mitochondria [76]. Mitochondria is re-
sponsible for the adaptation of cells to a variety of stressors, and autophagy functions to
eliminate defective mitochondria, a process known as “mitophagy” [77]. Indeed, during
the onset of CRC, enhanced mitophagy in IECs was demonstrated to cause lysosomal
membrane permeabilization via an iron(II)-dependent mechanism. In turn, the elevated
lysosomal permeability led to release of proteases and subsequent antigen presentation,
thereby activating CD8+ T cells and antitumor immunity [78]. Excess ROS is another
type of stress generated by abnormal cellular metabolism, hypoxia, and proteotoxic stress
during intestinal tumorigenesis [6]. It was shown that autophagy in IECs was essential for
counteracting ROS to enhance barrier integrity, and therefore attenuated the development
of CRC [79].

Nevertheless, although autophagy prevents tumor formation at the early stage of
intestinal carcinogenesis, it is not the case once the malignant transformation is established.
Tumor-initiating cells (TICs), a cell subpopulation endowed with unlimited self-renewal
and enhanced tumor-formation capacities, are known to greatly favor CRC initiation [80].
Under hypoxic conditions, autophagy promoted the self-renewal of TICs and their tu-
morigenic potential [81]. Conversely, autophagy suppressed the growth of the more
differentiated counterpart cells [81]. As another example, Atg7-deficiency in IECs attenu-
ated intestinal tumorigenesis in Apc(+/−) mice by the regulation of microbiome-mediated
antitumor responses [42]. In samples taken from CRC patients, upregulation of Beclin 1 was
related to HIF-1α overexpression, which further correlated with higher histological grade,
disease stage, and poor prognosis [82]. Regarding the molecular mechanism, under nor-
moxic conditions, Bcl-xL and Bcl-2 interacted with beclin-1, thereby inhibiting autophagy.
In contrast, under hypoxic conditions, HIF-1α promoted the expression of proapoptotic
genes BNIP3 and BNIP3L, which are associated with Bcl-xL and Bcl-2 to release beclin-1,
thus triggering prosurvival autophagy in CRC cells [72]. In addition, HIF-1α upregulated
miR-210, which suppressed Bcl-2 and induced autophagy to reduce the radiosensitivity
of CRC [83]. Hypoxia also causes the accumulation of misfolded or unfolded proteins,
leading to the unfolded protein response (UPR), and extended UPR signaling promotes
cellular apoptosis. In CRC cells, hypoxia elicited UPR and the downstream key factor
eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3). Subsequently, EIF2AK3
upregulated transcription factors ATF4 and CHOP to enhance the expression of LC3 and
ATG5, thereby triggering cytoprotective autophagy [84]. Moreover, a recent study also
demonstrated a sequential activation of AMPK, HIF-1α, HIF-2α, and JNK that accounted
for the autophagy induction in CRC cells exposed to low oxygen levels [85]. Thus, these
studies highlighted the distinct roles of autophagy in coordinating hypoxia stress response
at different stages of colorectal development (Figure 4).
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Figure 4. Autophagy coordinates cellular adaptation to hypoxia. Epithelial hyperproliferation results
in a reduced level of oxygen, and dysregulated autophagy is involved in response to hypoxia. In
transforming IECs, autophagy prevents cancer initiation via the elimination of hypoxia-induced
accumulation of damaged cellular substances; while in transformed CRC cells, it promotes cancer
cell survival by orchestrating multiple stress response pathways.

3.3. Autophagy Enables Adaptation to Oncogenic Microorganism-Induced Stress

As discussed above, accumulating evidence has supported the involvement of gut
microorganisms in intestinal homeostasis and the etiology of sporadic CRC [2,86]. Bac-
terium pattern is different in CRC patients compared to healthy individuals. Through
sequencing studies of the intestinal microbiota, the contribution of certain bacteria, includ-
ing Fusobacterium nucleatum, Escherichia coli, and Bacteroides fragilis in CRC has been
well established [87,88]. These infectious agents trigger DNA damage in host genetics by
producing genotoxins, generating carcinogenic metabolites, regulating host cell signaling
pathways, and shaping the cancer immune landscape in CRC [89–94].

A prime example of the role of microbiota-mediated autophagy in CRC is Fusobac-
terium nucleatum. Fusobacterium nucleatum, a Gram-negative anaerobe, is frequently
present in the oral cavity and is commonly involved in dental plaques and periodontal
disease [95]. Of note, Fusobacterium nucleatum was found in approximately 30% of CRC
tissues in patients [96], and its abundance was positively associated with lymph node
metastasis [97] and worse prognosis [98]. Interestingly, Fusobacterium nucleatum was
enriched in CRC tissues from patients who relapsed after chemotherapy [24]. Although
5-fluorouracil (5-FU) in combination with platinum-based chemotherapy has been the
first-line therapy for CRC patients [99], most patients develop chemoresistance during
treatment and relapse after the initial response [100]. Mechanistic investigations revealed
that infection with Fusobacterium nucleatum activated the innate immune response via
TLR4 and MYD88-dependent signaling, which resulted in downregulation of miR-4802 and
miR-18a*. Subsequently, reduction of these microRNAs attenuated their target on the 3′UTR
regions of ULK1 and ATG7 genes, thus alleviating the silencing of autophagy. Eventually,
activated autophagy gave rise to chemoresistance to oxaliplatin and 5-fu by protecting
CRC cells from drug-induced apoptosis [24]. This has highlighted the prominent role of
Fusobacterium nucleatum in coordinating a network of immune responses and autophagy
to govern chemoresistance in CRC. Similarly, this network has also been implicated in
CRC metastasis. Upon infection, Fusobacterium nucleatum induced the expression of
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CARD3 in CRC cells, an essential kinase involved in innate and adaptive immune signaling.
Upregulation of CARD3 then enhanced autophagic flux, thereby promoting the formation
of liver and lung metastases in mouse models [101]. Nevertheless, the specific mechanism
by which CARD3 regulates autophagy has been elusive and warrants further investigation.

Another mucosa-associated bacterium, Escherichia coli, is likely to exert an oncogenic
phenotype in CRC through crosstalk with autophagy in a time-dependent manner. Acti-
vated autophagy can protect against CRC initiation in response to bacterial-induced stress.
During the early stage of CRC initiation, increased epithelial autophagy eliminated the
intracellular Colibactin-producing Escherichia coli to ameliorate malignant transformation
in ApcMin/+ mice [75]. Colibactin-producing E coli (CoPEC), a colonic mucosa-associated
E coli frequently detected in CRC patients, are able to promote CRC development by
inducing genomic instability and inflammation [93,102,103]. There was evidence that
autophagy-mediated elimination of Colibactin-producing Escherichia coli (CoPEC) lim-
ited the carcinogenesis process in ApcMin/+ mice by stimulating bacteria-induced DNA
damage repair via RAD51 and reducing the secretion of inflammatory cytokines IL 6 and
IL 8 [75]. Following this, at the mid phase of CRC development, the invasive E. coli that
successfully colonized the colonic epithelium blocked autophagy to avoid clearance, achiev-
ing persistent infection. The repression of autophagy by E. coli, in turn, led to increased
generation of ROS and epithelial hyperproliferation. However, as the dysplasia tissue
progressed, autophagy was upregulated to eradicate the pathogen, suggesting an E. coli
-independent tumor growth in the late stage of CRC development [104]. In line with this,
the only time window when antibiotic intervention exhibited a tumor-suppressive effect
was in the middle stages of tumor development [104]. Hence, the interplay between gut mi-
crobes and autophagy changes over time in the course of CRC development and therefore
awaits future studies (Figure 5).
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Figure 5. Distinct roles of autophagy in microbiota-induced stress. Sporadic CRC is driven by
sequential genetic and epigenetic mutations, and environmental factors, arising from normal epithelial
cells to dysplastic adenomas and, ultimately, carcinomas. During this process, a link between CRC
tumorigenesis, infection with certain bacteria, and autophagy has been established. Time-dependent
interactions between autophagy and intestinal bacteria are shown.
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4. Autophagy Modulates Response to Therapeutic Stress in CRC

Although the above studies have highlighted the different roles of autophagy in
coordinating environmental cues with CRC tumorigenesis and development, extensive
laboratory evidence supported the stimulation of autophagy under therapeutic stress in
CRC [105]. Given that numerous stress-sensing signaling pathways that elicit autophagy
are utilized by CRC treatment approaches, many of these drugs have been revealed to
induce cytoprotective autophagy [106]. In addition to surgery, patients with CRC are
treated with combination regimens that involve chemotherapy, radiation therapy, and
targeted therapy, tailored to specific pathologic staging and genetic status. Exposure to
these therapeutic approaches can trigger autophagy that can enable tumor survival via
DNA damage response, ER stress response, mTOR and AMPK signaling, and other stress-
activated signaling pathways [105]. Indeed, cytoprotective autophagy has been seen as a
crucial mechanism underpinning therapeutic resistance in CRC [107]. Moreover, as demon-
strated by several preclinical studies and clinical trials, combining autophagy inhibitors
with standard conventional therapies can improve the drug response of CRC [107]. Here,
we focus on the roles of autophagy under different therapeutic stresses and the mechanism
by which it mediates drug resistance in CRC (Figure 6).
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Figure 6. Autophagy under therapeutic stress in CRC. Autophagy activation has been observed
during chemotherapies, targeted therapies, and PDT against CRC. In most cases, autophagy serves
as a survival mechanism by protecting cells from apoptosis or maintaining cell survival in a DTP
state; therefore, autophagy inhibition may be an effective therapeutic strategy in CRC. Paradoxically,
autophagy is indispensable in the immune response to chemotherapy in CRC; hence, suppression of
autophagy may result in a reduction of immunogenicity of cancer cells and impair antitumor immune
immunity. Therefore, whether autophagy inhibitors should be combined with conventional therapies
warrants further investigation.
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4.1. Autophagy Regulates Cellular Response to Chemotherapy

The commonly used chemotherapeutics for treating CRC include fluorouracil (5-FU),
oxaliplatin, and irinotecan, alone or in combination [66]. FU, an analog of uracil, mainly
suppresses thymidylate synthase, which prevents the generation of thymidine needed for
DNA synthesis, thereby inhibiting the proliferation of CRC cells [108]. In CRC models
in vitro and in vivo, autophagy activation has been observed upon 5-FU treatment and pro-
tected cells from 5-FU-induced apoptosis [109]. The underlying mechanisms involved the
upregulation of Bcl-xL, a key crosstalk factor between autophagy and apoptosis, and activa-
tion of the P53-AMPK-mTOR pathway [109]. Abnormal activity of metabolic enzymes also
contributes to autophagy-mediated chemoresistance. ABHD5, a lipolytic factor situated in
the lysosome, binds to PDIA5 to attenuate its inhibitory effect on ribonuclease RNASET2.
In turn, RNASET2 regulates RNA degradation in autophagolysosomes, producing oligonu-
cleotides, including uracil [110]. Treatment with 5-FU triggered metabolic reprogramming
in CRC cells, and the expression of ABHD5 enhanced autophagic uracil yield, thus con-
ferring 5-FU resistance due to decreased intake of 5-FU as external uracil [111]. Another
report observed the induction of autophagy as a key mechanism of irinotecan resistance
in TP53-defective CRC cells through the MAPK14/p38α pathway [112]. In addition, au-
tophagy elicited by extracellular cytokine IL-6 protected CRC cells against the cytotoxic
effects of 5-FU and oxaliplatin via the JAK2/BECN1 signaling axis [113]. Similar findings
were made in microsatellite instability (MSI) CRCs, where mutation of a key autophagy
regulator, UVRAG, led to a significant reduction in functional autophagy and became more
responsive to 5-FU, oxaliplatin, and irinotecan [114].

The extensive laboratory studies above supported that autophagy engages in a com-
plex interplay with apoptosis under therapeutic stress. Interestingly, apart from apoptosis,
autophagy serves as a key mechanism for maintaining cell survival in a drug-tolerant per-
sister (DTP) state to survive the stressful environment caused by chemotherapy [115,116].
In this context, CRC cells reversibly transition into a largely quiescent or slow-growing state,
and after withdrawal of treatment, they exit the DTP state and regain the ability of growth
and proliferation [117,118]. Mechanistically, this is achieved by employing an evolutionarily
conserved program, diapause, which is adopted by hundreds of mammalian species that
can suspend embryonic development under unfavorable environmental conditions [119].
Remarkably, as revealed by analyses of expression signatures of the diapause-like DTP in
CRC models, this phenotype was maintained via downregulation of the mTOR pathway
and upregulation of the autophagy program [120]. Therefore, combination therapy of
chemotherapy and autophagy inhibitors represented an innovative therapeutic strategy to
disrupt the survival mechanism and prevent cancer relapse [120].

4.2. Autophagy Regulates Cellular Response to Targeted Therapies

Aberrant activation or upregulation of oncogenes including EGFR, KRAS, NRAS, and
BRAF are frequently present in CRC [121]. Biologics targeting EGFR, such as cetuximab
and panitumumab, are often incorporated into the chemotherapy regimens based on the
mutation status of individual patients [122–125]. Anti-EGFR monoclonal antibodies act
by blocking access of ligands to the binding domain of EGFR and promoting its inter-
nalization and degradation. The interplay between EGFR and autophagy involves RAS
PI3K-AKT-mTOR pathways, which serve as the downstream signaling of EGFR as well as
the key regulatory network of autophagy [126]. Given the common mechanisms shared
by internalized EGFR and autophagy, it is not surprising that activation of autophagy was
demonstrated to underlie the acquired resistance of anti-EGFR therapies. Indeed, it has
been reported that treatment with the EGFR antibody cetuximab can elicit autophagy in
CRC cells and protect them from therapy-induced apoptosis [127,128]. Mechanistic investi-
gations revealed that cetuximab suppressed the expression of HIF-1α and subsequently
Bcl-2, which attenuated the inhibitory effect of Bcl-2 on beclin 1 and enhanced the formation
of the beclin 1/hVps34 complex, thus activating autophagy [127]. Moreover, cetuximab
downregulated miR-216b, which can impair the translation of Beclin-1 through binding to
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3′-UTR of its mRNA, thereby inducing cytoprotective autophagy [128]. Therefore, these
studies suggested the potential of autophagy inhibitors to sensitize CRC to anti-EGFR
monoclonal antibodies.

BRAF-V600E mutation activates the MEK/ERK pathway, conferring a poor prognosis
in CRC patients [129]. Targeted combination therapy with BRAF inhibitor encorafenib plus
EGFR inhibitor cetuximab has been shown to extend overall survival and approved for
second-line therapy [130]. Intriguingly, targeting MEK/ERK pathway using MEK inhibitor
trametinib induced prosurvival autophagy by activating the LKB1/AMPK/ULK1 axis
in KRAS-mutated pancreatic ductal adenocarcinoma [131]. This was similarly relevant
to CRC, since combination therapy of trametinib with autophagy inhibitor chloroquine
demonstrated significant antitumor effects in patient-derived xenografts (PDX) of BRAF-
mutated CRC [131]. Another monoclonal antibody, bevacizumab, which targets VEGF
and interrupts tumor angiogenesis, has been extensively used in CRC [132]. In mouse
xenografts of CRC, bevacizumab elicited autophagy and blockade of autophagy with
chloroquine displayed synergistic antiproliferative effects against tumor [133]. Photody-
namic therapy (PDT), in which photosensitizers are irradiated and excited by light, leads to
ROS generation and accumulation, and eventually cell death [134]. This novel technique
has become a complement to traditional cancer treatment. Notably, it has been reported that
PDT can activate autophagy in CRC, and pharmacological autophagy inhibitors enhanced
therapeutic sensitivity to PDT [135]. Together, autophagy serves as a key survival mecha-
nism in response to chemotherapies, targeted therapies, and PDT against CRC; therefore,
autophagy inhibition may be an effective therapeutic strategy in CRC.

4.3. Autophagy Regulates Cellular Response to Immunotherapy

While autophagy was convincingly shown to be hijacked by cancer cells to resist ther-
apeutic challenges, the consensus that combining autophagy inhibitors with chemotherapy
should be regarded as a general therapeutic strategy has been challenged. It is important
to perceive that conventional chemotherapies exert anticancer effects not only through
a direct cytotoxic mechanism, but also partly owing to the re-stimulation of antitumor
immune function [136]. Interestingly, evidence has indicated that autophagy has a major
role in immunological control in response to immunogenic chemotherapy in CRC [137,138].
In the context of anticancer chemotherapy exposure, autophagy-competent CRC favored
ATP secretion from malignant cells, thereby enhancing the recruitment of dendritic cells
and T lymphocytes [137]. Moreover, similar findings were revealed in melanoma, where
chemotherapy and radiotherapy-induced autophagy has been shown to augment the
sensitivity of tumor cells to lysis by cytotoxic T cells [138,139]. Together, these lines of
evidence highlighted that suppression of autophagy might, at least in part, result in a
reduction in immunogenicity of cancer cells, and hence defective immune response and
relapsed disease.

On theoretical grounds, this detrimental side effect exerted by autophagy inhibition
that blunts the antitumor immunity in CRC may be circumvented via combined admin-
istration with an immune checkpoint inhibitor [105,140]. Indeed, it has been shown that
blocking PIK3C3/VPS34 in combination with anti-PD-1/PD-L1 immunotherapy exhib-
ited promising efficacy in CRC [141,142]. However, in this study, autophagy inhibition
achieved by targeting PIK3C3/VPS34 promoted the attraction of cytotoxic immune cells
via STAT1/IRF7-dependent production of CCL5 and CXCL10 [141,142]. Along similar
lines, experimental studies addressing the impact of autophagy on cancer immune land-
scape have yielded a wealth of controversial results across various cancer types. In mouse
models of melanoma and breast cancer, the levels of T cell infiltration and T cell responses
remained unchanged upon autophagy inhibition [143], whereas in other studies, loss of
autophagy was believed to facilitate recruitment of antitumor immune effector cells to the
tumor bed [144–147]. The extrapolation can be made that targeting different autophagy
proteins may elicit different impacts on cancer immune response and presumably involves
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autophagy-independent mechanisms. Hence, there is still a lack of knowledge regarding
the interaction between autophagy and antitumor immunity.

5. Clinical Implications and Future Perspectives

Mounting evidence suggested a prominent role of autophagy in the development
of cancer, especially in those organs that are constantly challenged by environmental
stressors, such as the large intestine [148]. The idea that autophagy serves as a survival
mechanism for tumor cells has provided the logical rationale for autophagy inhibition as
a therapeutic strategy in CRC [149]. Indeed, autophagy inhibitors, notably chloroquine
(CQ) or hydroxychloroquine (HCQ), have been widely adopted in combination with
traditional chemotherapy/radiotherapy in clinical trials of multiple tumor types. Other
specific inhibitors are also in development and need further investigation in preclinical
and clinical trials [150]. Although the safety of these drugs has been demonstrated, the
efficacy of autophagy inhibition has varied widely between patients with different types
of tumors and at different stages [148]. These reported clinical outcomes, which are not
always encouraging, exemplify the underlying limitations of the clinical applications of
autophagy inhibition.

It is critical to note that autophagy has multifaceted and opposing roles in the world of
oncology. First, it also plays a cytotoxic role under certain circumstances, which is related
to its regulation of apoptosis by the degradation of different proapoptotic or antiapoptotic
factors. As such, autophagy inhibition is a bad idea since it would protect malignant cells
from undergoing programmed cell death. Moreover, in the context of tumor initiation,
growth, and therapeutic pressure of CRC, autophagy functions in a context-dependent
manner. For different cell types along the course of the adenoma-carcinoma sequence,
including normal IECs, hyperproliferative IECs, adenoma cells, and carcinoma cells, au-
tophagy exerts opposing effects in the presence of distinct microenvironmental conditions.
For example, autophagic defects predispose normal cells to malignant transformation,
whereas tumor cells can exploit autophagy to thrive under the hostile microenvironment
and survive anticancer therapy. In the meantime, while accumulating studies support
that autophagy operates in a cell-intrinsic fashion, it also has a cell-extrinsic function. A
prime example of this is its relevance in immunological control, where autophagy is re-
sponsible for the immunostimulatory signal-sending (notably, ATP) and effector immune
cell recruitment [151].Thus, based on these observations, autophagy inhibition may be
counterproductive in cancer therapy. To address this dilemma, evaluation with appropriate
biomarkers of the status of autophagy, that is, prosurvival or prodeath, whether tumori-
genic or tumor-suppressive, may aid in selecting patients who will benefit from autophagy
inhibition or induction therapy.

Another issue about the clinical implication of autophagy manipulation is drug speci-
ficity. Currently, most pharmacological modulators of autophagy do not selectively target
autophagy. Various inhibitors that regulate the different steps of autophagy, including
those targeting mTORC1, ULK1, Beclin1, and so on, also interfere with other oncogenic
signaling cascades. The ubiquitous effects of autophagy on normal tissues may also limit
the clinical utility of autophagy regulators, given that deficiency of autophagy can result in
neurodegeneration, lysosomal storage diseases, and other organ dysfunction [152]. Thus,
with the increasing understanding of the non-autophagic role of autophagy-related pro-
teins, as well as the potential toxicity of global autophagy modulation on non-transformed
tissues, specific regulation of autophagy-related functions local to tumor lesions is required
to prevent adverse effects.

Overall, it is impossible to achieve long-term remission and cure through a single-
agent treatment in cancer; therefore, combination therapy utilizing multiple means holds
great potential for optimal management of CRC [105]. Thus, further explorations that shed
additional light on the pleiotropic mechanisms of autophagic machinery more accurately
will be critical to help enhance the effectiveness of current CRC therapy.
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