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Systems biology analysis identifies TNFRSF9 as a functional marker of
tumor-infiltrating regulatory T-cell enabling clinical outcome prediction
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Regulatory T cells (Tregs) are enriched in the tumor microenvironment and play key roles in immune eva-
sion of cancer cells. Cell surface markers specific for tumor-infiltrating Tregs (TI-Tregs) can be effectively
targeted to enhance antitumor immunity and used for stratification of immunotherapy outcomes. Here,
we present a systems biology approach to identify functional cell surface markers for TI-Tregs. We
selected differentially expressed genes for surface proteins of TI-Tregs and compared these with other
CD4+ T cells using bulk RNA-sequencing data from murine lung cancer models. Thereafter, we filtered
for human orthologues with conserved expression in TI-Tregs using single-cell transcriptome data from
patients with non-small cell lung cancer (NSCLC). To evaluate the functional importance of expression-
based markers of TI-Tregs, we utilized network-based measure of context-associated centrality in a
Treg-specific coregulatory network. We identified TNFRSF9 (also known as 4-1BB or CD137), a previously
reported target for enhancing antitumor immunity, among the final candidates for TI-Treg markers with
high functional importance score. We found that the low TNFRSF9 expression level in Tregs was associ-
ated with enhanced overall survival rate and response to anti-PD-1 immunotherapy in patients with
NSCLC, proposing that TNFRSF9 promotes immune suppressive activity of Tregs in tumor. Collectively,
these results demonstrated that integrative transcriptome and network analysis can facilitate the discov-
ery of functional markers of tumor-specific immune cells to develop novel therapeutic targets and
biomarkers for boosting cancer immunotherapy.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Lately, immune checkpoint inhibitors are widely used for anti-
tumor treatment owing to their beneficial therapeutic efficacy
and long-term duration effect [1,2]. Thus, the better understanding
of cancer–immune interactions in the tumor microenvironment
(TME) will improve the efficacy of cancer immunotherapy [3]. Reg-
ulatory T cells (Tregs) suppress tumor immune surveillance by
inhibiting effector T cell responses [4,5]. In addition, Tregs are pref-
erentially enriched in the TME to sustain immunotolerance for can-
cer cells [5–10]. Tumor-infiltrating Tregs (TI-Tregs) express
immune checkpoint molecules such as CTLA-4, PD-1, TIM-3,
LAG3, and TIGIT [11–14]. Therefore, TI-Tregs are considered major
cellular targets for cancer immunotherapy [10,13,15–17]. In addi-
tion, novel cell surface proteins specific for TI-Tregs would provide
new opportunities to modulate the antitumor activity of immune
cells in TME. For example, antibody blockade against TI-Treg-
specific receptors that promote immune suppressive activity will
enhance the clinical outcome of antitumor treatments. CD25 is a
surface protein commonly used as a marker for Tregs [7,8,18–
20]. However, inhibition of normal Tregs would lead to severe
autoimmunity during cancer immunotherapy [21]. Therefore, tar-
get specificity of the TI-Treg marker is a critical factor for its ther-
apeutic purpose [22–24]. In the present study, we performed
systems biology analysis across bulk and single-cell transcriptome
profiles from multiple species and network-based analysis to iden-
tify functional surface proteins specific for TI-Tregs. We retrieved
TNFRSF9, whose inhibition was reported to increase anti-tumor
immunity [25,26], among the final candidates for surface marker
proteins. Our result also suggests that other candidate proteins
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are also likely to be useful therapeutic targets that modulate TI-
Treg activity. Notably, for the first time, we demonstrated that
TNFRSF9 expression level in the TI-Tregs can predict response to
anti-PD-1 immunotherapy in human non-small cell lung cancer
(NSCLC), which verifies functional impact of TNFRSF9 in immune–
tumor interactions. These results demonstrate feasibility of identi-
fication of functional markers for tumor-reactive immune cells to
facilitate development of novel therapeutic targets and biomarkers
for improving cancer treatment via modulating immune–tumor
interactions.
2. Material and methods

2.1. Differential expression (DE) analysis for mouse bulk RNA-seq data

We used bulk RNA sequencing (RNA-seq) data for CD4+ T cells
of the murine lung cancer model generated during our previous
study [9]. This provided transcriptome profiles for six different
CD4+ T cell populations: tumor-infiltrating Treg from tumor-
bearing mouse (TBM-TI-Treg) and conventional CD4+ T cell from
tumor-bearing mouse (TBM-TI-Tconv), spleen-derived Treg from
tumor-bearing mouse (TBM-SP-Treg) and those from normal
mouse (NM-SP-Treg), spleen-derived conventional CD4+ T cell
from tumor-bearing mouse (TBM-SP-Tconv) and those from nor-
mal mouse (NM-SP-Tconv) (available from GSE120280 of Gene
Expression Omnibus [27]). Approximately 2,600 mouse genes for
cell surface proteins were compiled through gene filtration from
the Consensus Coding Sequence (CCDS) database [28] for ‘‘cell
membrane and cell surface” proteins annotated using Swiss-Prot
[29] and for ‘‘external side of plasma membrane” proteins anno-
tated via Gene Ontology (GO) [30] with only experimental evi-
dence (represented by evidence codes of IDA, IPI, IMP, IGI, IEP,
TAS and EXP). Sequence reads of mouse RNA-seq data were aligned
to the mouse reference genome (UCSC mm10) [31] using STAR-
2.5.2a [32], and subsequently quantified based on FeatureCounts
[33]. DE analysis was performed using DESeq2 [34] and Character-
istic Direction [35] analyses. For DESeq2 analysis, we selected
genes with fold change (FC) > 2 and P < 0.01 as candidates. For
Characteristic Direction analysis, genes were selected as candi-
dates if their characteristic scores were higher than that of the uni-
formmodel (

ffiffiffiffiffiffiffiffi
1=n

p
; n = number of genes). Only genes with positive

characteristic scores were selected to obtain induced genes in the
tumor. For evaluation of candidate mouse genes in human cancer
data, we identified their human orthologous proteins based on
bidirectional best hits using basic local alignment search tool [36].

2.2. Human scRNA-seq data analysis

Single-cell RNA sequencing (scRNA-seq) data for CD4+ T cells
from patients with NSCLC were obtained from a previous study
(available from GSE99254) [37]. For scRNA-seq data analysis, we
used presorted T cells from the original studies (TTR: tumor Treg,
NTR: normal Treg, PTR: PBMC Treg, TTH: tumor Tconv) without
additional annotation work. For DE analysis, DEsingle [38] was per-
formed to compare TTR and three other cell types (TTR vs NTR, TTR
vs PTR, TTR vs TTH). All differentially expressed genes (DEGs) were
selected if they had an FC > 2 and P < 0.01.

2.3. Mouse microarray data analysis

Microarray data of lymphocytic choriomeningitis virus (LCMV)-
infected Treg cells were obtained from a previous study (available
from GSE63876) [39] for mouse Tregs with chronic virus infection,
those with acute virus infection, and naïve Tregs. DE analysis for
microarray data was performed using the Limma package [40]
861
and Characteristic Direction analysis [35]. The same criteria for
DEG selections were employed for mouse RNA-seq data analysis.
DEGs specific for Tregs with chronic virus infection were obtained
by subtracting DEGs for acute Tregs vs naive Tregs from DEGs for
chronic Tregs vs naive Tregs. We defined core TI-Treg signature
genes by using the intersection between DEGs for TBM-TI-Treg of
the mouse lung cancer model and DEGs for Tregs with chronic
virus infection of mouse.

2.4. Construction of the Treg-specific coregulatory network

Genes with similar expression patterns tend to be regulated
together and are functionally associated [41]. Thus, coregulatory
relationships can indicate functional coupling of two genes in cer-
tain cellular contexts. We inferred functionally associated genes in
the context of Tregs based on the correlation of gene expression
across the three distinct populations of mouse Tregs from the
mouse lung cancer model using RNA-seq data (TBM-TI-Treg,
TBM-SP-Treg, NM-SP-Treg). To avoid false positive links by techni-
cal variance, we filtered out genes whose maximum expression
levels across samples were lower than those for genes expected
not to express in T cells, such as marker genes for B cells (CD19,
CD79A, CD79B) and macrophages (CD163, CD14, CSF1R). Finally,
expression values of 4,446 genes were root mean square (RMS)
normalized and applied to Pearson’s correlation coefficient (PCC)
analysis to infer coexpression links. By only using links with a sig-
nificant PCC (P < 0.01), we finally obtained the Treg-specific coreg-
ulatory network composed of 924,319 links among 4,427 genes. To
evaluate the quality of the network, we assessed the network mod-
ularity of genes involved in Treg functions for autoimmunity using
within-group connectivity significance. We compiled genes associ-
ated with rheumatoid arthritis, psoriasis, and multiple sclerosis
genes, often differentially expressed in Tregs, from the DisGeNET
database [42]. We measured significance of connectivity for each
group of disease genes in the Treg-specific network based on the
null network model of 100,000 random links for the same group
size.

2.5. Network-based measure of context-associated centrality

The functional importance of genes for a relevant cellular con-
text can be assessed by integration of the functional gene network
with context-associated genes. In this approach, functional central-
ity of each gene for the given biological context is evaluated by
overrepresentation of its connected network neighbors in DEGs
associated with the context of interest using Fisher’s exact test,
resulting in context-associated centrality (CAC) scores. For the list
of genes associated with the context of TI-Treg, we used core TI-
Treg signature genes which are the intersection of DEGs for TBM-
TI-Treg from the mouse lung cancer model and DEGs for Treg from
the mouse chronic virus infection model. We finally calculated CAC
scores with the Treg-specific network and core TI-Treg signature
genes.

2.6. Survival analysis

RSEM normalized expression data of lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) were obtained
from The Cancer Genome Atlas (TCGA) (https://gdac.broadinsti-
tute.org/). Survival data were obtained from TCGA Pan-Cancer Clin-
ical Data Resource (TCGA-CDR) [43]. The expression level of
TNFRSF9 was normalized for the amount of Treg using the expres-
sion level of FOXP3. Patients were labeled as ‘‘High” or ‘‘Low” when
the normalized expression level of TNFRSF9was within the top 30%
or below the bottom 30%, respectively. Kaplan-Meier analysis was
performed for overall survival.

https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
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3. Results

3.1. Overview of systems biology approach to identify functional
markers of TI-Tregs

We used a systems biology approach to identify functional
markers of a tumor-specific immune cell type, TI-Treg, based on
the integrative analysis of three sets of CD4+ T cell transcriptome
profiles from distinct biological contexts (Fig. 1) [44]. First, we
identified DEGs for surface proteins of TI-Tregs using bulk tran-
scriptome data from the mouse lung cancer model. Second, we fil-
tered expression-based markers from the mouse lung cancer
model for human DEGs for TI-Tregs using single-cell transcriptome
data from patients with NSCLC. Third, we evaluated the functional
importance of expression-based markers for TI-Tregs based on
context-associated network centrality, in which bulk transcrip-
tome data from mouse Tregs with chronic virus infection were
used to define core signature genes for TI-Treg context.

Majority of orthologous genes between mouse and human have
conserved expression in immune cells [45]. Because of high exper-
imental accessibility to the mouse system, it would be advantages
to obtain candidate genes conserved between mouse and human
for the follow-up studies. In addition, different technologies of
gene expression measurement tend to complement each other,
improving both sensitivity and specificity of expression-based
gene prioritization [46]. Therefore, we combined candidate genes
generated with transcriptome data of tumor-associated immune
cell obtained from different organisms, mouse and human, along
with different technical platforms, bulk RNA-seq, single-cell RNA-
seq and microarray. Marker genes that play key roles in a specific
immune cell type in a specific biological context, such as tumor tis-
sue, would be promising therapeutic targets. Functional impor-
tance does not correlate with expression change in the relevant
biological context, because many effector genes downstream of
the regulatory hierarchy, rather than upstream key regulators,
often show larger expression changes during transition to the con-
text. Thus, we harnessed network-based measures of functional
importance, which not only account for the expression changes
of target genes of interest but also those of other genes functionally
connected to the target genes in the network. Network-based rein-
terpretation of gene expression data was found useful in prioritiza-
tion of essential genes [47] and disease genes [48], and drug
repositioning [49].
3.2. Identifying marker genes for cell surface proteins of TI-Tregs in
mouse

The first requirement for the marker gene is a noteworthy
change in expression specific for the target cellular context. For
this study, we tested DE for TI-Tregs compared with other CD4+

T cells. If marker proteins are expressed on the cell surface, modu-
lation of cellular functions by antibody-based agonists or antago-
nists would provide opportunities for therapeutic applications.
Therefore, we focused on approximately 2,600 mouse genes encod-
ing cell surface proteins (Material and Methods) in our search for
TI-Treg marker genes. We performed two complementary DE anal-
ysis methods, DESeq2 and Characteristic Direction [34,35], to
increase the reliability of candidate genes. While DESeq2 performs
gene-by-gene DE analysis, Characteristic Direction considers over-
all expression profiles. DEGs specific for TI-Tregs were obtained by
comparing their expression profiles with those of five other CD4+ T
cell populations derived from various tissue contexts, TBM-TI-Treg
compared with TBM-TI-Tconv, TBM-SP-Treg, TBM-SP-Tconv, NM-
SP-Treg, and NM-SP-Tconv (Fig. 2a), resulting in five sets of DEGs.
As two complementary DE analysis methods were used, 10 sets of
862
DEGs were obtained in total. We used the intersection of the 10
sets of DEGs, resulting in 25 candidate marker genes (Table S1).
We retrieved well-known immune checkpoint molecules, Pdcd1,
Ctla4, Tigit, Cd74, and Icos [13,50–54] and Ccr8, a previously
reported chemokine receptor for TI-Tregs [8], among the 25 candi-
date markers. This suggests that the other candidate genes are also
likely associated with immune–tumor interactions.

3.3. Filtration for expression-based markers for TI-Tregs conserved in
human

Systematic comparison of global gene expression profiles of
immune cells between mouse and human demonstrated that
although the expression patterns of most orthologous genes
between both these immune systems were highly conserved, sev-
eral hundred genes showed clearly divergent expression between
them [45]. Therefore, we needed to validate markers of mouse
immune cells in human counterparts for future clinical application.
To verify the 25 expression-based marker genes from the mouse
lung cancer model in the human tumor, we utilized single-cell
transcriptome data for CD4+ T cells from patients with NSCLC
[37]. We performed DE analysis using DEsingle [38] for presorted
and annotated T cells from the original studies (TTR: tumor Treg,
NTR: normal Treg, PTR: PBMC Treg, TTH: tumor Tconv). To identify
DEGs for TI-Tregs, we compared TTR with three other cell types
(TTR vs NTR, PTR, and TTH). We found six of the candidates,
TNFRSF9, CCR8, CCRL2, CD83, TIGIT, ICOS, differentially expressed
in TTR compared with all other cell populations in human NSCLC
(Fig. 2b). Thus, we conclude that these six validated markers that
showed conserved DE specific for TI-Tregs can be used for clinical
applications.

3.4. Coregulatory gene network for measuring functional importance
of markers

Expression-based marker genes of tumor-associated Tregs are
not necessarily key players in Treg functions in the tumor. To val-
idate the functional importance of expression-based marker genes,
we employed a network-based measure of functional importance,
network centrality. The functional importance of several genes
depends on cellular context. Thus, we needed to measure network
centrality, accounting for context-specific information available
from context-associated expression signatures. Therefore, we cal-
culated the CAC of a gene based on enrichment of context-
associated signature genes among functionally connected genes
to the target gene in the network.

As marker genes that play important roles in Treg function were
sought, a network of genes specific for Tregs was appropriate for
the analysis. To construct such a network, we utilized bulk RNA-
seq profiles for Tregs from three distinct tissue contexts of the
murine lung cancer model (TBM-TI-Treg, TBM-SP-Treg, NM-SP-
Treg). We inferred coregulatory links based on the coexpression
of gene pairs across bulk RNA-seq profiles and obtained a network
comprising 924,319 links among 4,427 genes by using links with a
significant PCC (P < 0.01) (Fig. 3a). Treg anomalies cause wide spec-
trum of autoimmune diseases [55]. There may exist a group of
genes for Treg function and homeostasis, which are expected to
collaborate closely with each other in Treg. Therefore, we assessed
the quality of the Treg-specific network based on the modularity of
genes involved in the autoimmune diseases such as rheumatoid
arthritis, psoriasis, and multiple sclerosis, which were compiled
from the DisGeNET database [42]. We found that within-group
connectivity for all three disease gene sets was significantly higher
compared with the null model (P < 0.00001, 0.00316, and 0.0019,
respectively; Fig. 3b). In contrast, genes associated with autism (a
neuropsychological disorder), type 2 diabetes (a metabolic disease)



Fig. 1. Schematic overview of a systems biology approach to identify functional marker genes of tumor-infiltrating regulatory T cells (TI-Tregs).
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and cancer did not show significantly higher within-group connec-
tivity than null model in the Treg-specific network (Fig. S1). These
results together suggest that the constructed Treg-specific network
will provide reasonable quality for follow-up network-based
analysis.

3.5. TI-Treg markers have high functional importance

Thereafter, we acquired a list of signature genes associated with
TI-Tregs. All DEGs for TBM-TI-Treg from the murine lung cancer
model could have been used; however, they also carry genes irrel-
evant to TI-Tregs. Thus, we filtered DEGs for TBM-TI-Treg for
another set of DEGs from Tregs with tumor-like condition, chronic
virus infection [56]. Previous studies demonstrated similar tran-
scriptional features of tumor-infiltrating CD8+ T cells to those of
cells with chronic virus infection [57,58], implying that CD4+ T cells
may also show similar transcriptional responses to the tumor and
863
chronic virus infection. Thus, their overlap will provide a core gene
signature of tumor-specific Tregs. We compiled an expression sig-
nature of chronic virus-specific Tregs from microarray-based tran-
scriptome profiles for murine Tregs isolated from naïve and
infected mice with chronic (LCMV CL13) or acute virus (LCMV
Armstrong) [39]. We subsequently identified DEGs for Tregs with
chronic virus infection by comparison with those with acute virus
infection and no infection. Thus, 193 DEGs (152 upregulated and
41 downregulated, Table S2-3) overlapped with 692 DEGs from
tumor-specific murine Tregs and 1,167 DEGs from murine Tregs
infected with the chronic virus, which indicates a significant asso-
ciation of transcriptional features between tumor and chronic virus
infection contexts as we hypothesized (P = 1.32E-81 by Fisher’s
exact test).

Finally, genes of the Treg-specific network were ranked by CAC,
which was distinct from normal degree centrality measure based
on the entire set of connected neighbors in the network. In CAC,



Fig. 2. Expression-based marker genes of TI-Tregs in mouse and human. (a) Volcano plots that show differential expression analysis from comparisons of tumor-bearing
mouse TI-Treg (TBM-TI-Treg) with five other CD4+ T cell types in different tissue contexts: conventional CD4+ T cell from tumor-bearing mouse (TBM-TI-Tconv), spleen-
derived Treg from tumor-bearing mouse (TBM-SP-Treg) and those from normal mouse (NM-SP-Treg), spleen-derived conventional CD4+ T cell from tumor-bearing mouse
(TBM-SP-Tconv) and those from normal mouse (NM-SP-Tconv). The final 25 candidate markers by intersection of the comparisons are marked in red. (b) Violin plots that
show the expression of six human genes differentially expressed in tumor Treg (TTR), normal Treg (NTR), PBMC Treg (PTR), tumor Tconv (TTH). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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a hub gene with a more substantial overlap between network
neighbors and context-associated signature genes was ranked
higher in the prioritized candidate list (Fig. 3c). Notably, all six
expression-based markers for human TI-Tregs, TIGIT, TNFRSF9,
ICOS, CCR8, CD83, and CCRL2, were ranked within the top 10%,
which indicates that they are likely to play major roles in tumor-
associated Treg functions (Fig. 3d, Table S4-5). These results also
864
suggest that antibody-mediated stimulation or inhibition of these
surface markers can modulate Treg functions in the tumor, poten-
tially leading to changes in immune–tumor interactions.

The successful prioritization of functional markers for TI-Tregs
may depend on TI-Treg-associated signature genes and network
links specific for Tregs. To test whether using a cell-type specific
network is critical, we performed the same gene prioritization



Fig. 3. Network-based prioritization of functional markers of tumor-infiltrating regulatory T cells (TI-Tregs). (a) Layout of coregulatory network for Tregs (Treg-specific
network). Genes associated with rheumatoid arthritis (RA) are represented as red nodes. (b) Within-group connectivity for each group of genes associated with multiple
sclerosis (MS), psoriasis, and RA. Within-group connectivity by Treg-specific network and read disease gene sets are represented as red stars. (c) Illustrative summary of
context-associated centrality (CAC). (d) Genes sorted by CAC score (-log10(q-value) of enrichment of network neighbors among context-associated signature genes) and six
expression-based markers in human TI-Tregs are represented as red points. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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analysis with an integrated functional gene network for mouse,
MouseNet (v2) [59]. Notably, all six markers for human TI-Tregs
had no connection to context-associated signature genes in Mouse-
Net. This indicates that gene prioritization by CAC works accu-
rately with coregulatory networks for relevant cell types, rather
than a highly comprehensive and integrated functional network.

3.6. TNFRSF9 levels in tumor Tregs can predict clinical outcome in
human lung cancer

Among the six final candidates for TI-Treg functional markers,
TNFRSF9 is known as a Treg-specific gene [26]. Thus, we tested
its potency as a biomarker for clinical outcome using bulk tran-
scriptome profiles for tumor samples. As we identified markers
from the murine lung cancer model and verified them in human
lung cancer, we used bulk RNA-seq profiles for TCGA-LUAD and
TCGA-LUSC samples along with their clinical annotations as valida-
tion data. For the expression level of FOXP3 that is proportional to
the amount of TI-Tregs in the tumor sample, no prediction power
was observed for overall survival as expected (Fig. 4a). However,
we found that the expression level of TNFRSF9 normalized by that
of FOXP3 favored poor prognosis (Fig. 4b). This indicates that the
expression of TNFRSF9 in TI-Tregs negatively influences the prog-
nosis of anticancer treatment. The observed prognostic prediction
by the expression level of TNFRSF9 in TI-Tregs was also validated
in an independent cohort of patients with NSCLC recruited in Swe-
den (available from GSE81089) [60] (Fig. 4c-d). Despite of distinct
tumor immune microenvironment across different cancer types
865
[61], we wonder if the TI-Treg-specific expression level of TNFRSF9
can predict prognosis in other cancer types. From the analysis on
34 distinct cancer types using data available in TCGA, we found
that high TI-Treg-specific expression level of TNFRSF9 could predict
poor survival in four additional cancer types: glioma (GBMLGG),
head and neck squamous cell carcinoma (HNSC), pancreatic adeno-
carcinoma (PAAD) and uveal melanoma (UVM) (Fig. S2). In addi-
tion, we tested whether the expression level of TNFRSF9 in TI-
Tregs correlates with stage of lung cancer and found that it was
significantly higher in stage-4 patients compared with stage-1
patients (P = 0.03, Mann-Whitney U test) (Fig. S3).

Next, we tested the expression level of TNFRSF9 in the prediction
of response to anti-PD-1 immunotherapy. We used bulk RNA tran-
scriptome data for tumor biopsies from a cohort of patients with
NSCLC who underwent anti-PD-1 inhibitor treatment (available
from GSE135222) [62]. We found that the expression level of
TNFRSF9 normalized by that of FOXP3 inversely correlated with
the response rate to anti-PD-1 immunotherapy, whereas the abun-
dance of Tregs could not predict the anti-PD-1 response (Fig. 4e-f).
We conducted similar analysis for two independent cohorts of mel-
anoma patients with anti-PD-1 treatment [63,64], but could not
observe significant correlation between TI-Treg-specific expression
level of TNFRSF9 with the anti-PD-1 response rate. These results
may be attributable to the distinct tumor immune microenviron-
ment among different cancer types [61]. Therefore, we conclude
that the expression level of TNFRSF9 in TI-Tregs is a novel biomarker
that can predict the prognosis of anticancer treatment and response
to anti-PD-1 immunotherapy in human lung cancer.



Fig. 4. TNFRSF9 expression level in tumor-infiltrating regulatory T cells (TI-Tregs) is predictive of clinical outcomes in anticancer treatment. (a-b) Kaplan-Meier analysis
curves by high (top 30%) and low (bottom 30%) expression levels of FOXP3 (a), expression level of TNFRSF9 normalized by that of FOXP3 (b) in tumor samples from The Cancer
Genome Atlas-lung adenocarcinoma (TCGA-LUAD) and TCGA-lung squamous cell carcinoma (LUSC). (c-d) Kaplan-Meier analysis curves by high (top 40%) and low (bottom
40%) expression levels of FOXP3 (a), expression level of TNFRSF9 normalized by that of FOXP3 (b) in tumor samples from Swedish cohort of lung cancer (GSE81089) (e-f)
Waterfall plots showing expression changes from baseline (median) for FOXP3 (e) and TNFRSF9 normalized by FOXP3 (f) in tumor samples from patients with non-small cell
lung cancer (NSCLC) treated by anti-PD-1 inhibitors (GSE135222).
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4. Discussion

TNFRSF9, also known as 4-1BB, was reportedly expressed in
mouse and human TI-Tregs [25]. TNFRSF9 was also reported as
an activation marker for tumor-reactive Tregs [37]. In addition,
the anticancer effect of anti-4-1BB treatment was reported in mul-
tiple types of mouse cancer such as thymoma, neuroblastoma,
bladder cancer, glioblastoma, prostate cancer, and renal cancer
models [25,26]. Results from our study together with these previ-
ous reports confirm that TNFRSF9 is associated with the activation
of TI-Tregs, and their inhibition may boost anticancer treatments
including lung cancer immunotherapy by reducing immune sup-
pressive function of Tregs in tumor. However, TNFRSF9 also acts
as a costimulatory receptor for CD8+ T cells, thus an agonistic anti-
body for TNFRSF9 is already under clinical trial. Therefore, direct
targeting of TNFRSF9 to suppress TI-Tregs should be practiced with
care. Whether the use of 4-1BB blocking antibody is beneficial in
controlling tumor growth or not might be dependent on the tumor
microenvironment. For instance, in the immunosuppressive tumor
microenvironment with a large population of Treg cells and rela-
tively few CD8+ T cells, the use of 4-1BB blocking antibody will
help induce overall anti-tumor immune activity. On the other
hand, the use of 4-1BB agonistic antibody may be an effective
treatment option in the immunogenic tumor microenvironment
where the abundance of CD8+ T cells is relatively high compared
to that of Treg cells. To the best of our knowledge, this is the first
demonstration of the usefulness of TNFRSF9 as a biomarker to pre-
dict the response to anti-PD-1 immunotherapy. Thus, this study
expands the clinical application of TNFRSF9 expression in TI-Tregs
as a potential biomarker in anti-PD-1 cancer immunotherapy.

In the present study, we utilized network-based prioritization
of genes with functional importance. The network-based gene pri-
oritization approach has already proven useful in identification of
genes associated with cancer and other human diseases [49,65–
68]. We applied a similar network-based strategy to identify func-
tional markers for particular types of immune cells associated with
tumor context. We also found that network-based gene prioritiza-
tion for specific cell types works accurately with the coregulatory
network for relevant cell types, as shown in this study using a
Treg-specific coregulatory network to prioritize functional marker
genes of Tregs. In theory, cell-to-cell variance of single-cell tran-
scriptome data enables inference of the cell type-specific coregula-
tory network [69]. However, there is a great challenge in single-cell
network inference due to high levels of technical noise and sparsity
in single-cell transcriptome data. Nevertheless, a single-cell gene
regulatory network will be useful in generalizing our approach to
identify functional markers of other immune cell subsets in various
disease contexts.
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