
SPECIAL SERIES: RADIATION AND ADVANCED TECHNOLOGIES IN LMICS

review
articles

The Promise of Magnetic Resonance
Imaging in Radiation Oncology Practice in the
Management of Brain, Prostate, and
GI Malignancies
Shashank Srinivasan, DNB1; Archya Dasgupta, MD1; Abhishek Chatterjee, MD1; Akshay Baheti, MD2; Reena Engineer, MD, DNB1;

Tejpal Gupta, MD, DNB1; and Vedang Murthy, MD, DNB1

abstract

Magnetic resonance imaging (MRI) has a key role to play at multiple steps of the radiotherapy (RT) treatment
planning and delivery process. Development of high-precision RT techniques such as intensity-modulated RT,
stereotactic ablative RT, and particle beam therapy has enabled oncologists to escalate RT dose to the target
while restricting doses to organs at risk (OAR). MRI plays a critical role in target volume delineation in various
disease sites, thus ensuring that these high-precision techniques can be safely implemented. Accurate
identification of gross disease has also enabled selective dose escalation as a means to widen the therapeutic
index. Morphological and functional MRI sequences have also facilitated an understanding of temporal changes
in target volumes and OAR during a course of RT, allowing for midtreatment volumetric and biological ad-
aptation. The latest advancement in linear accelerator technology has led to the incorporation of anMRI scanner
in the treatment unit. MRI-guided RT provides the opportunity for MRI-only workflow along with online ad-
aptation for either target or OAR or both. MRI plays a key role in post-treatment response evaluation and is an
important tool for guiding decisionmaking. In this review, we briefly discuss the RT-related applications of MRI in
the management of brain, prostate, and GI malignancies.
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INTRODUCTION

Magnetic resonance imaging (MRI) is an imaging
modality on the basis of the principle of nuclear
magnetic resonance. As hydrogen atoms constitute
the major share of the human body, it enables the use
of nuclear magnetic resonance for clinical imaging.1

Since the first human MRI images were acquired in
1977, MRI has evolved rapidly with the development
of relatively faster image acquisition, increase in
magnetic field strength, and improved image pro-
cessing techniques.2,3 The ability of noninvasive
characterization of internal anatomy attributed to
better soft-tissue clarity and the development of
functional sequences to capture the internal physi-
ology have facilitated numerous clinical applications of
MRI. In clinical practice, MRI plays a pivotal role in
diagnosis, disease staging, treatment planning, re-
sponse monitoring, and surveillance after treatment
completion.

Radiation oncology practice is deeply intertwined
with imaging, primarily aiding in target volume and
organs at risk (OAR) delineation and computing
radiotherapy (RT) doses in the planning process
(Fig 1). With the advancement and development of
conformal and high-precision techniques such as

intensity-modulated radiotherapy, stereotactic radi-
osurgery, stereotactic body radiotherapy (SBRT),
and particle beam therapy, the need for imaging
modalities with better anatomical information has
become essential.4,5 Insights from molecular imag-
ing such as positron emission tomography (PET)
and functional MRI have paved the way toward
dose painting.6 Similarly, midtreatment volumetric
and biological adaptation using morphological and
functional MRI sequences accounting for changes to
the target volumes and OAR can help improve the
therapeutic ratio in the form of adaptive RT.7 Image-
guided radiotherapy involving online imaging before
treatment delivery has improved the precision and
accuracy of treatment delivery.8 The traditional
platforms for image-guided radiotherapy involve
computed tomography (CT) built in the treatment
unit. The integration of a compatible MRI scanner
with a linear accelerator (linac) device has suc-
cessfully led to an MR-linear accelerator (MR-Linac),
which had been introduced in clinical practice, pop-
ularly known asMRI-guided radiotherapy (MRgRT).9,10

In this review, we briefly discuss the clinical applica-
tions of MRI in the management of brain, prostate, and
GI malignancies from the perspective of radiation
oncologists.
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ROLE OF MRI IN CONTEMPORARY RADIATION
ONCOLOGY PRACTICE

CNS Malignancies

Rationale and parameters. MRI forms an indispensable part
of the contemporary management of CNS tumors. The
superior soft-tissue resolution, true multiplanar imaging
capability, and the capacity for innate multiparametric
functional imaging such as diffusion-weighted imaging
(DWI), intravoxel incoherent motion, perfusion imaging,
chemical exchange saturation transfer, and blood oxy-
genation level-dependent predicate a decisive advantage
for MRI over all other forms of cross-sectional imaging in
this regard. Typically, field strengths of 1.5-3T are used for
routine imaging of CNS tumors, with no clear advantage of
the higher field strength in clinical practice.11 Imaging for

diagnosis and response assessment usually requires axial
T1 (pregadolinium and postgadolinium), axial T2, and fluid-
attenuated inversion recovery (FLAIR) sequences at min-
imum, with DWI, perfusion-weighted imaging, and MR
spectroscopy assisting initial diagnosis and later distinction
between tumor progression and pseudoprogression.12,13

Thin slice (1-2 mm width) volumetric sequences such as
3-dimensional fast spoilt gradient (3D FSPGR) and 3D
FLAIR offer the advantages of rapid acquisition, good image
reconstruction, and increased lesion detection rates, fa-
cilitating accurate delineation and ultra high-precision RT
planning.14-16 Additional sequences such as steady-state
free precession sequences (CISS/FIESTA sequence as
used by vendors) and fat suppression sequences are
often used in the delineation of skull base tumors or
targets in close relation to the brain stem and cranial nerves
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FIG 1. ROLE of MRI in radiation oncology workflow. CT, computed tomography; DWI, diffusion-weighted imaging; f-MRI, functional MRI;
IGRT, image-guided radiotherapy; MRI, magnetic resonance imaging; MRS, spectroscopy; OAR, organs at risk.
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(eg, chordoma, chondrosarcoma, meningioma, and schwan-
noma) because of anatomical clarity. Acquisition of thin-slice
MRI sequences aids in accurate estimation of lesion size as
higher slice width can lead to overestimation of the de-
lineated structures because of interslice interpolation.17

Initial imaging should ideally be performed no later than
72 hours after surgery, else delayed by 2 weeks to avoid
obfuscation of imaging findings by blood products and
postoperative changes.12 Imaging follow-up is usually
performed at 4-6 weeks after RT conclusion, at completion
of planned adjuvant therapy, and on clinical suspicion of
progression or symptomatic worsening.18 Diffusion tensor
imaging has proven beneficial in detecting radiation-
induced demyelination and axonal degeneration,19,20

resulting in neurocognitive deterioration providing a win-
dow of changes before clinical manifestation and early
interventions.

Clinical applications. MRI forms a crucial part of target
delineation in primary and metastatic tumors in the CNS.
Complementary sequences (T1 postcontrast MRI to de-
lineate the enhancing residual and areas of leptomeningeal
dissemination and T2/FLAIR to distinguish areas of infil-
trative and nonenhancing tumors) are typically used for
comprehensive delineation.21,22 MRI image fusion is typi-
cally achieved with a high degree of accuracy in the brain
and is facilitated by the presence of rigid bony anatomical
markers and limited movement of the brain within the
calvarium. Rigid registration algorithms are usually suffi-
cient for image fusion.23,24 The accuracy of image fusion is
confirmed by matching standard anatomical references
(clinoid processes, bony sella, tentorium cerebelli, and
vertebral artery). The standard imaging protocols share the
common caveat of inability to distinguish between infil-
trative disease and vasogenic edema with reliability while
delineating the clinical target volume. Additionally, con-
temporary recommendations on MRI anatomy facilitate
delimitation of the clinical target volume with respect to
anatomical barriers and provide useful adjuncts as practice
shifts to MRI-based planning and delivery in the current
decade25 (Figs 2A and 2B).

The target volumes (postoperative cavity, surrounding in-
filtrative disease/vasogenic edema) in gliomas can undergo
significant changes during the course of RT.26 The dynamic
changes offer the opportunity to modify elective target
volumes as areas of putative tumor tissue reduce in re-
sponders to therapy. Similarly, special consideration is to be
given to cystic tumors such as craniopharyngioma, wherein
a significant proportion of patients have been reported to
have changes in cyst dimensions requiring treatment
modifications during a course of fractionated RT spanning
over several weeks.27 Automatic contour propagation fa-
cilitates real-time adaptation with accurate delineation
in this regard.28 The significant challenges in this regard
remain the accurate determination of the shifting tumor-
normal tissue interface on anatomic and functional imaging.

Limited evidence does suggest that it may be possible to
distinguish the former from the latter through higher-order
radiomic analysis, allowing one to potentially de-escalate
RT in areas of response (reducing radiation necrosis and
corticosteroid and bevacizumab usage rates) while inten-
sifying therapy in voxels suggestive of radioresistance.29

Although anatomical variations in the target and OARs
are demonstrated during the course of fractionated RT, the
clinical merits either in terms of improving disease control
or reducing toxicities need to be proven from prospective
clinical trials.

Functional MRI constitutes a profusion of sequences that
allow for comprehensive biological assessment of a tumor
and is emerging as a useful adjunct for optimizing treat-
ment. It has long been known that metabolic abnormalities
(increased choline, reduced n-acetyl aspartate, and in-
creased lipid lactate) exist beyond the tumor.30 In addition,
areas with increased choline: n-acetyl aspartate ratios have
also been found to correlate with adverse outcomes and are
currently being targeted for dose escalation in clinical
trials.31 Additional emerging areas for assessing tumor
response include chemical exchange saturation transfer
MRI, which can potentially detect both early response and
tumor progression without the necessity for exogenous
contrast.32 Noncontrast-based studies providing a combi-
nation of both diffusion and perfusion matrices such as
intravoxel incoherent motion33 provide another powerful
tool for assessing response to treatment.34 It is quite likely
that such protocols in isolation or combination will provide
opportunities for real-time biological adaptation in the
setting of proliferation of MRI-based RT delivery systems
with rapid onboard functional imaging capability. Table 1
shows selected studies for the role of MRI related to RT for
brain tumors.

Prostate Cancer

Rationale and parameters. MRI is central to external beam
radiotherapy planning for prostate cancer. Multiparametric
MRI (mp-MRI) is the recommended technique in prostate
cancer combining anatomical with functional imaging. This
includes a high-resolution T2-weighted imaging (T2WI)
with at least two functional MRI techniques. DWI, dynamic
contrast-enhanced (DCE) perfusion imaging, and occa-
sionally MR spectroscopy are commonly used. 3-T scan-
ners are preferred to 1.5-T as they provide a higher signal to
noise ratio allowing for better structural and functional
details.38 The study is performed on an external-phased
array coil; using an endorectal coil does not offer significant
benefit and may be avoided. Thin-slice (3 mm without
interslice gap) T2W images with a small field of view (FOV)
are used to depict prostate anatomy.39 The high spatial
resolution enables accurate assessment of extracapsular
extension and seminal vesicle invasion. Addition of DWI
aids in differentiating malignant from benign lesions with
the former having restricted diffusion.40

MRI in Radiation Oncology

JCO Global Oncology 3



Clinical applications. MRI plays a pivotal role in target

volume delineation in prostate RT. The apex and base of

the prostate are often poorly visualized on CT. MRI helps to
differentiate the prostatic apex from the genitourinary

diaphragm and the penile bulb and the base of the prostate
from the bladder wall.

One of the biggest challenges for the use of MRI for volume
delineation is the accuracy of CT and MRI coregistration as

A B

C D

E F

FIG 2. Composite diagram of CT and MRI used for
radiation planning for brain, prostate, and GI ma-
lignancies. Representative CT and MRI scans ac-
quired during radiation planning process. (A) Axial
CT and (B) corresponding axial MRI T1-weighted
contrast-enhanced sequence for a patient with
glioblastoma. The target volumes are seen over the
left temporal lobe: GTV (magenta), CTV (blue), and
PTV (red). The extension of PTV in the basifrontal
region was a result of expansion from extension of
CTV in the superior slices (not seen in this image). (C)
Axial CT and (D) corresponding axial T2W MRI for a
patient with prostate cancer. Dominant intraprostatic
lesion clearly visualized (in red) on the MRI, whereas
it could not be discerned on the planning CT images,
thus facilitating dose escalation to the DIL. (E) Axial
CT and (F) corresponding axial T2WMRI for a patient
with locally advanced rectal adenocarcinoma. Target
volumes include GTV (red), CTV (purple), and PTV
(light blue). The extension of the gross disease into
the prostate could be accurately seen only on the
MRI. CT, computed tomography; CTV, clinical target
volume; DIL, dominant intraprostatic lesion; MRI,
magnetic resonance imaging; PTV, planning target
volume.
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TABLE 1. Selected Studies Showing the Clinical Application of MRI in CNS Tumors
Author, Year Study Criteria (No. of patients) Application Comments

Thornton et al,35 1992 GBM (60)—patients treated with CT-based planning with MRI (T1 plain,
T1C, and T2) information integrated

Delineation 1. MRI markedly increased apparent tumor volume, as compared with CT
Justifies the necessity of incorporating MRI into all contemporary

conformal planning

Stall et al,36 2010 GBM (40)—comparison of volumes drawn on T2 and FLAIR Delineation 1. FLAIR CTVs and PTVs significantly larger than those on T2
2. Incorporation of FLAIR abnormality does not lead to significant OAR

overdose
3. GTV at recurrence correlates best with FLAIR CTV
Substantiates the usage of FLAIR sequences as an integral imaging

sequence for planning in diffuse gliomas

Thrower et al,17 2021 Brain mets (28)—102 mets contoured on original images (1 mm)
Images resampled to simulate acquisitions at 2- and 3-mm slice

thickness
Recontoured by experienced physicians

Delineation Missed lesions:
1. 3% on 2 mm images
2. 13% on 3 mm images

Increased size of contour
1. 11% larger on 2 mm images
2. 43% larger on 3 mm images
3. Underscores the need for thin slice imaging to allow for optimal
delineation

Mehta et al,37 2018 GBM (3)—0.35-T MRI/cobalt(Viewray) Adaptation 1. General decrease in cavity measurements in all patients
2. One patient-transient increase followed by decrease
Showcased potential for daily imaging and onboard adaptation of plan to

improve tumor targeting and reduction of normal tissue irradiated

Lee et al,28 2019 GBM (14)—MRIs performed at fractions 0, 10, 20, and 30
Three sets of contours:
1. Manual
2. Rigidly registered (static)
3. Semiautomatic propagation

Compared using DSC and HD
Dosimetric impact determined by comparing D0.03 cc

Adaptation Using manual contours as reference, when compared with static
contours, propagated contours have
1. Significantly higher DSC
2. Significantly lower HD
3. Significantly lower absolute difference in D0.03 cc

Semiautomatic propagated contours have more accurate delineation and
thereby facilitate more accurate OAR reporting

Stewart et al,26 2021 GBM (61)—
MRIs performed at fractions 0, 10, 20, and 30
Target dynamics were quantified by
1. Absolute volume (V)
2. Volume relative to Fx0 (Vrel)
3. Migration distance (dmigrate; the linear displacement of the GTV or
CTV relative to Fx0)

Adaptation 1. GTV (CTV) migration distances were . 5 mm in 46% (54%) of
patients at Fx10, 50% (58%) of patients at Fx20, and 52% (57%) of
patients at P1M

2. 40% of patients exhibited a decreased GTV (Vrel ≤ 1) with a
dmigrate. 5 mm during chemoradiation therapy

Clinically meaningful tumor dynamics encountered make a convincing
case for daily MRI-guided RT and online plan adaptation

Abbreviations: CT, computed tomography; CTV, clinical target volume; DSC, dice similarity coefficient; FLAIR, fluid-attenuated inversion recovery; GBM, glioblastoma; GTV, gross tumor volume;
HD, Hausdorff distance; mets, metastases; MRI, magnetic resonance imaging; OAR, organs at risk; P1M, post chemoradiation 1 month; PTV, planning target volume; RT, radiotherapy.
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pelvic organs have nonrigid anatomy. The CT and T2WMRI
images are fused using rigid automatic registration algo-
rithm (on the basis of bony landmarks) and thereafter can
be adjusted manually. For patients who have gold fiducial
seeds implanted before the simulation scans, the images
are aligned on the basis of the midpoint of the gold seeds.
The prostate is then evaluated in all three planes to ensure
precise anatomical superimposition. The presence of gold
fiducial markers offers advantages for image coregistration
as it overcomes the issue of accurately defining bony
landmarks on MRI. Wegener et al41 showed that with the
use of gold markers, the CT and MRI matching precision
was within 2 mm.

Some of the issues precluding accurate CT-MRI coregis-
tration are variations in rectal and bladder filling and patient
position for the two scans with CT scan usually performed
on a flat couch with knee support and the MRI being
performed on a rounded table top unless using a dedicated
MRI simulator. Chen et al42 showed that significant fusion
uncertainties of . 4 mm were seen in 8.6% (ante-
roposterior direction) and 11.4% (superoinferior direction)
of the patients with higher difference when scans were
performed on different days. Patients with gold seed
markers in situ had less prostate fusion uncertainties.

Prostate volume, as delineated on MRI, is nearly 30%-40%
smaller than that delineated on CT with less interobserver
variability.43-47 The maximum discrepancy in the two vol-
umes is in the region of the prostatic apex and at the base of
the seminal vesicles. Reduction in the target volumes
potentially translates into better OAR sparing. Steenbakkers
et al48 showed that the rectal wall for CT-delineated prostate
plans received 5.1 Gy higher equivalent uniform dose, and
the penile bulb received 11.6 Gy higher mean dose than
the MRI-delineated prostate plans. This also meant that
allowing for the same rectal wall dose, the planning target
volume (PTV) dose could be escalated from 78 Gy to 85 Gy
using plans on the basis of MRI delineation of the prostate.
Ali et al49 compared intensity-modulated radiotherapy
plans generated using CT-MRI delineation versus CT alone
and found a statistically significant reduction in dose to the
bladder and rectum with an approximately 22% reduction
in Gr2 GU toxicity for CT-MRI patients, as compared with
CT alone.

Patients with prostate cancer who develop local recurrence
tend to do so at the site of the dominant intraprostatic lesion
(DIL).50 mp-MRI provides excellent visualization of the DIL
and has allowed the escalation of dose to the DIL to . 90
Gy51,52 (Figs 2C and 2D). The FLAME trial randomly
assigned patients with localized prostate cancer to either
standard RT (77 Gy to the entire prostate) or an additional
integrated focal boost to the DIL to a dose of upto 95 Gy. The
dose-escalation arm showed a superior biochemical
disease-free survival (92% v 85%, P, .001) at 5 years with
no difference in overall survival or toxicity.53 Most studies for
DIL boost have used a combination of T2WI plus DCE plus

DWI for delineation of the DIL. However, recent studies have
suggested that the actual DIL may correlate better with the
volume delineated on Ga 68 prostate membrane–specific
antigen PET-CT. Zamboglou et al54 reported the combined
use of prostate membrane–specific antigen PET CT and
mp-MRI for the delineation of DIL and correlated it with the
tumor control probability (TCP) on the basis of histology. On
average, 86%6 10%, 74%6 17%, and 93%6 5% of GTV
as seen on the histology specimen overlapped with PTV
generated on PET, MRI, and combined PET/MRI, re-
spectively. The plan generated using combined information
from PET and MRI had significantly higher TCP values than
either PET or MRI alone.

MRI as the sole imaging modality for RT treatment planning
is gaining ground saving additional CT scan required for RT
planning and eliminating the uncertainties from coregis-
tration. As part of the MRI-only workflow, a pseudo-CT or
synthetic CT is generated for dose computation. The
methods for generating synthetic CT can be classified into
voxel-based, atlas-based, and hybrid methods,55 with ex-
pected dose differences performed on synthetic images
compared with standard CT being within 1%.56,57 MRI-only
workflow also enables automatic delineation of prostate and
OARs which can be manually adjusted. Patient setup for
treatment is achieved by matching synthetic DRRs with a
success rate of . 90%58,59 with constraints in remaining
10% because of inability to accurately identify gold fiducial
markers appearing as signal void. Other issues include
artifacts generated by metallic implants,59 large separation
resulting in body contour reaching outside the FOV, and
image distortion related to motion artifacts.

Interfraction and intrafraction variation of the prostate
during RT has significant dosimetric and clinical implica-
tions. The use of MR-Linac can improve accuracy of de-
livery and combine it with real-time adaptive planning.
Online matching of prostate using MRI is more accurate
and thus can also be a factor in reducing PTV margins.60

The use of cine-MRI during beam delivery affords the
option to intervene in the event of extreme anatomical
changes. Using motion monitoring and gating, it has been
reported that 2D shifts during treatment are required
in . 20% of all delivered fractions.61 Table 2 shows se-
lected studies highlighting the role of MRI in various as-
pects of RT for prostate cancer.

Multiple prospective studies exploring the utility of MR-
Linac for prostate RT are currently underway. Recently, the
interim analysis from the phase III randomized MIRAGE
study was presented65 comparing SBRT for localized
prostate cancer (40 Gy/5 fr) using CT versus MRI guidance.
The primary end point was acute grade ≥ 2 GU toxicity
within 90 days. One hundred patients were evaluated (51
CT and 49 MRI arm). MRI-guided SBRT had significantly
lower acute grade ≥ 2 GU and GI toxicity (22.4% v 47.1%,
P = .01 and 0 vs 13.7%, P = .01, respectively). Patient-
reported outcome in the form of EPIC-26 bowel domain
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scores was also in favor of the MRI-guided SBRT arm. Of
note, the PTV margins used for MRI guidance were smaller
than those for CT guidance (2 mm and 4 mm, respectively)
and could have contributed to the large difference in the
effect between the two arms.

GI Malignancies

Rationale and parameters. MRI has had a far-reaching
impact in the management of GI malignancies right from
staging, RT treatment planning, and execution to follow-up.
MRI for rectal cancer should be performed using a 1.5-T or
3-T scanner with phased array coil positioned from the
sacral promontory to 10 cm below the pubic symphysis.66

The use of an endorectal coil is not beneficial.67 The
standard rectal MRI protocol includes 2D FSE T2-weighted
non-fat–suppressed sequences. The sagittal series from
one pelvic sidewall to another locates the tumor. Axial
images are taken with a large FOV covering the entire pelvis
and a smaller FOV with , 3 mm slice thickness axial and
coronal to the long axis of the tumor. For low-lying rectal
tumors, high-resolution coronal images are used to dem-
onstrate levator muscles, sphincter complex, and inter-
sphincteric plane. These sequences have high accuracy for
identifying invasion of adjacent organs and mesorectal
fascia and for extramural vascular invasion.67

Traditionally, for liver lesions, multiphase CT or MRI is used
for imaging. MRI has been shown to have higher sensitivity
compared with CT scan for the diagnosis of hepatocellular

carcinoma, especially for lesions , 1 cm.68 The minimum
specifications for liver MRI include the use of a minimum
1.5-T scanner with phased array torso coil. The minimum
sequences to be acquired are T2-weighted (with and
without fat saturation), T1-weighted in- and out-of-phase
images, dynamic postcontrast gadolinium T1-weighted
gradient echo sequence (3D preferable), and preferably
DWI. The dynamic sequences would include late arterial
phase (30-35 seconds postcontrast), portal venous phase
(60-70 seconds postcontrast), and delayed phase (3-5
minutes) with , 5 mm slice thickness.69 Patients need to
hold breath similarly for each sequence. The addition of
DWI increases the detection rates, especially for smaller
tumors.70 There is also emerging use of hepatobiliary-
specific contrast agents such as gadoxetate disodium,
which is progressively transported into hepatocytes and
excreted through the bile ducts.

Clinical applications. MRI is becoming a cornerstone in the
RT planning process for upper abdominal tumors. Voroney
et al compared MRI and CT-derived target volumes for liver
tumors (primary and metastases) and found significant
differences in the median percentage surface area differ-
ence. Themedian values for the percentage of surface area
differing by 3mm and 5mm in spatial position between CT-
GTV and MRI-GTV were 55% and 26%, respectively, with
certain tumor foci visible only on MRI.71 Pech et al72

showed that the volume of liver metastases contoured
using MRI was significantly larger than that on CT, with the

TABLE 2. Selected Studies Showing the Clinical Application of MRI in Prostate Cancer
Author, Year Study Criteria (No. of patients) Application Comments

Rasch et al,43

1999
n = 18
Prostate delineated on CT and
MRI for all patients

Delineation 1. The average ratio of volume delineated on CT v MRI was
1.4

Emphasizes the routine use of MRI along with CT data set for
target volume delineation

Rischke et al,62

2013
n = 5
90 GTV data sets with DIL
delineation on T2WI, DWI, and
DCE by six observers

Target delineation for DIL 1. Excellent interobserver agreement based when DIL
contoured on T2WI andDCEwith lesser degree of difficulty
of delineation as compared with DWI

Shows feasibility of DIL boost using MRI

Gunnlaugsson
et al,63 2019

n = 7
CTV delineated on CT/MR and MR
only 7-11 months apart

Target delineation in MRI only
workflow (comparing MR/CT v
MRI-only workflow)

1. 18% reduction in mean CTV volume in MRI-only workflow
delineation

Highlights the increased precision with MRI-only workflow as
it overcomes CT/MRI coregistration issues

Tetar et al,61 2019 n = 140
700 fractions (SBRT) delivered
using MRI only workflow with
online plan adaptation

MRgRT-treatment and online
adaptation

1. Plan reoptimized in 97% of fractions
2. All adapted treatment plans passed patient-specific QA
3. The average duration of an MRgRT fraction was 45
minutes

Established feasibility of MR-Linac use in clinical practice

Bruynzeel et al,64

2019
n = 104
SBRT 36.25 Gy/5 fr using MR-
Linac (phase II), primary end
point early toxicity

MRgRT-toxicity data 1. Maximum cumulative ≥ Gr2 GU and GI toxicity was
23.8% and 5%, respectively, which peaked at last fraction
and declined at 6 weeks follow-up

2. Corroborated by PROMs data
First prospective study to report toxicity data for patients
treated by MRgRT

Abbreviations: CT, computed tomography; CTV, clinical target volume; DCE, dynamic contrast enhanced; DIL, dominant intraprostatic lesion; DWI, diffusion-
weighted imaging; Gr2, grade 2 toxicity; GTV, gross tumor volume; GU, genitourinary; MRgRT,MRI-guided radiotherapy;MRI, magnetic resonance imaging;MR-Linac,
MR-linear accelerator; QA, quality assurance; PROM, patient-reported outcome measurement; SBRT, stereotactic body radiotherapy; T2WI, T2-weighted imaging.
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difference between the target volumes being 181% for T1w
images, 178% for contrast-enhanced T1w, and 246% for
T2w sequences.

MRI-based target volume delineation in rectal cancer has
been studied in a limited number of patients, and it has
been shown that theMRI-derived volume is smaller than CT
with significant differences when anal canal and sigmoid
are involved73 (Figs 2E and 2F). Issues with CT and MRI
coregistration owing to bladder filling and rectal distention
at the time of the two scans preclude the routine use of MRI
for external beam radiotherapy planning in rectal cancers.
The best use of MRI for RT planning in rectal cancers may
be for dose escalation wherein the T2 intermediate bright
tumor can be accurately delineated and selectively boosted
to a higher dose.74

Managing motion of upper abdominal organs is a significant
issue during RT planning and execution. Breathing-related
motion artifacts during planning CT acquisition lead to in-
correct target delineation, altered dosimetry, and eventually
excessive PTV margins. Cine-MRI can be used to directly
visualize the 3-dimensional tumor motion. Studies for liver
motion using cine-MRI have demonstrated that four-
dimensional CT scan underestimated motion while fluo-
roscopy overestimated motion relative to cine-MRI.75 Pan-
creatic motion as assessed using cine MRI ranges from 6 to
34 mm, suggesting individualized PTV margins.76

Table 3 summarizes selected studies highlighting the role
of MRI in various aspects of RT for GI malignancies.

MR-guided RT is most suitable for sites where isodensity on
CT does not allow discrimination of targets, especially if

TABLE 3. Selected Studies Showing the Clinical Application of MRI in GI Tumors
Author,
Year Study Criteria (No. of patients) Application Comments

Pech
et al,72

2008

Liver mets (43 mets)—GTV delineated on CT and
MRI for all patients

Target delineation 1. Tumor volume as contoured on MRI markedly
increased over that contoured on CT

Emphasizes the need for incorporating MRI as a
complementary investigation for target volume
delineation and planning in radiotherapy for
upper abdominal tumors

Tan
et al,73

2010

Ca rectum (15) T3 rectal cancer—GTV drawn on
planning CT and MRI performed in treatment
position

Target delineation 1. The mean CT-GTV/MR-GTV ratio was 1.2
2. Discrepancy between the two contours was seen

when there was invasion of sigmoid and anal
canal

Explores the role of simulationMRI for rectal cancer

Heerkens
et al,76

2014

Ca pancreas (15)—two cine MRIs of 60 s duration
performed

MOSSE adaptive correlation filter used to quantify
tumor motion in AP, lateral, and CC directions

Motion management 1. Maximum motion in CC direction, average
15 mm (6-34 mm), AP direction average 5 mm,
lateral average 3 mm

Study brings to light the role of MRI in
individualization of PTV margins and active
motion management strategies

Henke
et al,77

2017

Oligometastatic or unresectable primary liver (10)
or nonliver (10) upper abdominal malignancies
(phase I study)—underwent SMART-50 Gy/5 fr

MRgRT—treatment
and online
adaptation

1. Daily adapted plan deemed to be superior to
initial plan for 83.5% (81 of 97) fractions

2. 100% of nonliver fractions were adapted
3. 61 of 81 (75%) fractions adapted for reversing

OAR constraint violation
4. 20 fractions adapted to increase PTV dose

coverage
5. Median on-table time: 79 minutes
6. Local PFS 95% and 89.1% at 3 and 6 months,

respectively
7. No Gr3 toxicity at 6 months
First prospective clinical study of SMART

de Jong
et al,78

2015

Meta-analysis—included studies (n = 46 studies/
2,224 patients) evaluating the performance of
MRI, CT, and endoscopic ultrasound (ability to
detect complete response) for restaging of locally
advanced rectal cancer (T3-T4 and/or N1) after
neoadjuvant therapy

Post-treatment
response
evaluation (as part
of watch and wait
strategy for organ
preservation)

1. Pooled accuracy: 75%
2. Sensitivity: 95%
3. Specificity: 31%
4. Positive predictive value: 83%
5. Negative predictive values: 47%
Findings suggest that MRI may be more useful to

rule out complete response rather than to
confirm it

Abbreviations: AP, anteroposterior; CC, craniocaudal; CT, computed tomography; MRgRT, MRI-guided radiotherapy; mets, metastases; MOOSE,
MinimumOutput Sum of Squared Error; MRI, magnetic resonance imaging; OAR, organs at risk; PFS, progression-free survival; PTV, planning target volume;
RT, radiotherapy; SMART, stereotactic MR-guided online adaptive RT.
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TABLE 4. Selected Ongoing Studies on MR-Linac in Brain Tumors, Prostate Cancer, and GI Cancers

Study (country) Study Design
Target
Accrual Study Population Intervention Primary End Point

Estimated
Year of

Completion

Brain tumors

Unity-Based MR-Linac Guided
Adaptive Radiotherapy for
High Grade Glioma (UNITED)

NCT04726397
(Canada)

Phase II, single
arm

40 GBM receiving RT in 15 or 30# with or
without temozolamide, expected
survival . 12 weeks and maximum
final planning volume , 150 cm3

Reduced (5 mm) CTV margin with weekly
adaptive RT on MR-Linac

Marginal failure within 1 year
from radiation

2024

MR-Linac Guided Adaptive
FSRT for Brain Metastases
From Non-small Cell Lung
Cancer (NSCLC)

NCT04946019 (China)

Phase II, single
arm

55 Histologically/cytologically confirmed
NSCLC with 1-10 brain metastases on
CEMRI

FSRT to brain metastases—30 Gy/5 fr on
MR-Linac

1 year intracranial
progression-free survival

2023

Prostate cancer

Five or Two MRI-Guided
Adaptive Radiotherapy
Treatments for Prostate
Cancer (FORT)

NCT04984343 (USA)

Phase II,
randomized

136 Low- and intermediate-risk prostate
cancer, IPSS , 18

1:1 random assignment to either 37.5 Gy/5
fr (alternate days) or 25 Gy/2 fr (atleast
72 hours apart) with or without SIB to
prostate with or without seminal vesicles

Change in the number of
patient-reported GI
symptoms using the EPIC
at 2 years after treatment
completion

2027

Hypofractionated Expedited
Radiotherapy for Men With
localisEd proState Cancer
(HERMES)

NCT04595019 (UK)

Phase II,
randomized

46 Prostatic adenocarcinoma with
Gleason’s score 3 + 4 or 4 + 3, initial
PSA , 25 ng/mL, MRI stage T3a or
less

36.25 Gy in 5 fractions (boost to 40 Gy to
tumor/prostate CTV) over 10 days v 24
Gy in 2 fractions (boost to 27 Gy to tumor/
prostate CTV) over 8 days

GU toxicity at 12 months 2028

MIRAGE Study
NCT04384770 (USA)

Phase III,
randomized

300 Histologically confirmed clinically
localized prostatic adenocarcinoma

5 fractions of CT-guided SBRT over 14 days
v 5 fractions of MRI-guided SBRT over
14 days

Incidence of acute grade ≥ 2
GU physician-reported
toxicity

2027

GI cancers

Stereotactic MRI-guided on-
table Adaptive Radiation
Therapy (SMART) for Locally
Advanced Pancreatic Cancer

NCT03621644 (USA and Israel)

Phase II, single
arm

133 Locally advanced pancreatic cancer
considered to be borderline
resectable or unresectable having
received atleast 3 months of systemic
therapy

50 Gy/5 fr with MRI image guidance and
online adaptive RT delivered atleast
twice a week

GI toxicity 2026

Abbreviations: CEMRI, contrast-enhanced magnetic resonance imaging; CT, computed tomography; CTV, clinical target volume; EPIC, Expanded Prostate Cancer Index Composite; FSRT, fractionated
stereotactic radiotherapy; GBM, glioblastoma; GU, genitourinary; IPSS, international prostate symptom score; MRI, magnetic resonance imaging; MR-Linac, MR-linear accelerator; NSCLC, non–small-cell
lung cancer; PSA, prostate-specific antigen; RT, radiotherapy; SBRT, stereotactic body radiotherapy; SIB, simultaneous integrated boost.
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mobile. This makes the upper abdomen an ideal candidate
for the application of this modality, considering the growing
role of SBRT for primary or metastatic liver tumors and
pancreatic cancers to improve therapeutic ratio. A panel of
radiation oncologists and radiologists with experience in
MRgRT have published an atlas for OAR contouring of
upper abdomen.79 Peristalsis-related motion artifacts create
difficulties for delineation in MR online workflow. However,
drinking a glass of water shortly before the treatment fraction
may help in visualizing structures, and antiperistaltic agents
may reduce motion artifacts. Continuous real-time 2D cine-
MRI is used to monitor target motion, thus obviating the
need for implanting fiducial markers.80 Changes in stomach
filling and bowel distention in close proximity to targets call
for online adaptation, especially for peripheral liver tumors
and pancreatic lesions. There are two kinds of adaptive
workflows: adapt to shape and adapt to position. Adapt to
shape entails an adaptation of structures as seen on the day
of treatment, whereas adapt to position refers to an isocenter
shift because of the inability to shift the couch on the 1.5-T
MR-Linac. Henke et al demonstrated the use of MRgART in
their study of SBRT (50 Gy/5 fr) for metastases or unre-
sectable abdominal tumors, wherein all constraints were
met on initial radiation planning. However, for 81 of the 97
fractions, a daily adapted plan was deemed superior. Three
quarters of the plans were adapted because of violation of an
OAR constraint while the rest were performed to improve

target coverage. No≥ grade 3 toxicities were observed in the
15-month follow-up period.77

MRI in conjunction with sigmoidoscopy for response
evaluation after neoadjuvant chemoradiation in rectal
cancers has heralded the wait and watch policy for patients
with complete clinical response.81,82

Table 4 summarizes selected ongoing studies on MR-Linac
for brain, prostate, and GI malignancies.

FUTURE DIRECTIONS

The field of medical imaging and MRI is undergoing
continuous refinements with contributions from physics,
computer science, and related disciplines. Ultra high-field
MRI systems using 7T have been introduced in clinical
practice, and 10.5T MRI has been tested in humans
recently to generate better structural and functional in-
formation from enhanced signal-to-noise and contrast-to-
noise ratios.83,84 The contribution of artificial intelligence in
quantitative analysis of medical imaging is an active area of
research and is more popularly known as radiomics.85 With
MRI used in multiple steps of radiation oncology practice,
radiomic analysis is expected to have a significant impact in
the future to lead the way toward personalized radiation
therapy.85,86 One of the major advances in the recent era in
the therapeutic delivery of RT has been the introduction of
MR-Linac in clinical practice. As described in previous
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sections, the clinical application of MRgRT is still in its
infancy, with two MR-Linacs introduced for patient treat-
ment in the past 5 years. Generation of TCP and normal
tissue complication probability models from daily MRgRT
along with rapid contour propagation and plan optimization
algorithms provide the window for real-time treatment
adaptation as well as dose modification (escalation/de-
escalation) for target and OARs87,88 (Fig 3). With ongo-
ing conceptual refinements and applications, improving
the precision of treatment delivery and better provision of
adaptive RT, the actual clinical merits in toxicity reduction
and/or better control rates need to be solicited in the future,
compared with the available linac-based RT. Inspired by
the IDEAL (Idea, Development, Exploration, Assessment,
and Long-term evaluation) recommendations as described
for the surgical development process,89 the concept of
R-IDEAL framework has been introduced for radiation
oncology innovations.90 Given the higher cost of the
commercially available MR-Linacs compared with stan-
dard linear accelerators, it will be necessary to critically
analyze the forthcoming evidence in the context of cost-
benefit analysis, which is included in stage 3 of the R-IDEAL
framework. The MR-Linac platform entails higher time on
couch for the patient and demands increased human re-
sources with the involvement of therapists, physicists, and
oncologists. With artificial intelligence–based algorithms, fast

and robust real-time optimization procedures, modifications
of contour, and planning can potentially make the adaptive
workflow more efficient and less time-consuming. Further
technological advances in the accelerator device of the
MR-Linac with the ability to deliver higher-energy beams,
thin-width microleaf collimators are desired in the future to
improve radiation conformality. Finally, MRI provides op-
portunities for delivery of anticancer therapies such as
MR-guided focused ultrasound, which can be used to in-
duce hyperthermia, temporary opening of the blood-brain
barrier, triggering drug delivery, and microbubble (ultra-
sound contrast) stimulation as radiosensitizers.91-94

In conclusion, the contemporary practice of radiation on-
cology involves MRI in multiple instances including diag-
nosis, treatment planning, treatment delivery, midtreatment
adaptation, response assessment, and surveillance. MR-
Linac has been introduced in clinical practice recently is
promising for real-time adaptation, improving the thera-
peutic ratio, although future clinical studies are warranted to
establish the clinical advantages. Further developments in
functional imaging sequences and quantitative imaging
analysis incorporating artificial intelligence strategies are
expected to have significant contributions in the future to
pave the way toward precision oncology.
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