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Abstract

Background: Dengue is the most important arbovirus disease in tropical and subtropical
countries. The viral envelope (E) protein is responsible for cell receptor binding and is the main
target of neutralizing antibodies. The aim of this study was to analyze the diversity of the E protein
gene of DENV-3. E protein gene sequences of 20 new viruses isolated in Ribeirao Preto, Brazil, and
427 sequences retrieved from GenBank were aligned for diversity and phylogenetic analysis.

Results: Comparison of the E protein gene sequences revealed the presence of 47 variable sites
distributed in the protein; most of those amino acids changes are located on the viral surface. The
phylogenetic analysis showed the distribution of DENV-3 in four genotypes. Genotypes |, Il and llI
revealed internal groups that we have called lineages and sub-lineages. All amino acids that
characterize a group (genotype, lineage, or sub-lineage) are located in the 47 variable sites of the E
protein.

Conclusion: Our results provide information about the most frequent amino acid changes and
diversity of the E protein of DENV-3.

Background

During the first decades of the 20t century, dengue was
considered a sporadic disease, causing epidemics at long
intervals. However, dramatic changes in this pattern have
occurred and, currently, dengue is the most important
mosquito-borne viral disease worldwide. Approximately,
3 billion people are at risk of acquiring dengue viral infec-
tions in more than 100 countries in tropical and subtropi-
cal regions. Annually, it is estimated that 100 million

cases of DF and half a million cases of dengue DHF/DSS
occur worldwide resulting in approximately 25,000
deaths [1]. Dengue disease can be caused by any of the
four antigenically related viruses named dengue virus type
1,2,3and 4 (DENV-1, -2, -3 and -4). All of these serotypes
can cause a large spectrum of clinical presentations, rang-
ing from asymptomatic infection to dengue fever (DF)
and to the most severe form, dengue haemorrhagic fever/
dengue shock syndrome (DHF/DSS). Early diagnosis of
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dengue virus infection, which can be achieved by detect-
ing a viral protein or genome, is important for patient
management and control of dengue outbreaks [2].

Dengue is an enveloped virus with a single-stranded, pos-
itive-sense RNA genome of about 11 kb containing a sin-
gle open reading frame, flanked by untranslated regions
(5'and 3' UTR) [3]. The viral RNA encodes a single poly-
protein, which is co- and pos-translationally cleaved into
3 structural (C, prtM and E) and 7 nonstructural proteins
(NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5) proteins [4].
The envelope (E) glycoprotein is the major component of
the virion external surface, responsible for important phe-
notypic and immunogenic properties. E protein is a mul-
tifunctional protein, which is involved in cell receptor
binding and virus entry via fusion with host cell mem-
branes. Thus, E protein is the main target of neutralizing
antibodies [5-10]. The crystal structure analysis of this
protein revealed that it includes three domains (I, II, and
III) that exhibit significant structural conservation when
compared to other flaviviruses [11]. For flaviviruses, most
of amino acid residues related to host range determinant,
tropism and virulence are located in domain III [12,13].

Similar to other RNA viruses, DENV exhibit a high degree
of genetic variation due to the non-proofreading activity
of the viral RNA polymerase, rapid rates of replication,
immense population size, and immunological pressure
[14]. Historically, variants within each DENV serotype
have been classified in different ways, accompanying tech-
nological progress. Studies from the seventies showed the
existence of antigenic variants within DENV-3 showing
that DENV-3 strains from Puerto Rico and Tahiti were
antigenically and biologically different from those of Asia
[15]. In the eighties, the term "topotype", based on RNA
fingerprinting, was used to define five genetic variants
within DENV-2 [16,17]. Other molecular methods such
as cDNA-RNA hybridization, hybridization using syn-
thetic oligonucleotides, and restriction endonuclease
analysis of RT-PCR products were also used to demon-
strate the existence of genetic variability within each sero-
type [18-22]. In the nineties, the use of nucleic acid
sequencing methods and phylogenetic analysis allowed
the identification of different genomic groups, called
"genotypes" or "subtypes", within each DENV serotype
[23-25]. Today, several geographically distinct genotypes
are described within each serotype. Thus, DENV-1
includes five genotypes: genotype I contains viruses from
the Americas, Africa, and Southeast Asia; genotype II
includes a single isolate from Sri Lanka; genotype III
includes a strain from Japan isolated in 1943; genotype IV
includes strains from Southeast Asia, the South Pacific,
Australia, and Mexico; and genotype V group contains
viruses from Taiwan and Thailand [23,26,27]. DENV-2
encompasses six genotypes denominated Asian I, Asian II,
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American, American/Asian, Cosmopolitan and Sylvatic
[23,24,28]. DENV-3 was classified into four genotypes:
genotype 1 comprises viruses from Indonesia, Malaysia,
Philippines and the South Pacific islands; genotype 11
comprises viruses from Thailand; genotype III is repre-
sented by viruses from Sri Lanka, India, Africa and Amer-
ica; genotype IV comprises Puerto Rican viruses. Recently,
it has been suggested that exist an additional group that
was named genotype V [25,29]. DENV-4 was classified
into two genetically distinct genotypes. Genotype I
includes viruses from the Philippines, Thailand and Sri
Lanka; genotype II includes viruses from Indonesia,
Tahiti, Caribbean Islands (Puerto Rico, Dominica) and
Central and South America [30]. A third genotype of
DENV-4 was identified which includes sylvatic isolates
that formed a distinct genotype [27].

Increased numbers of DENV sequences in the GenBank
has given a better picture of the genetic diversity of these
viruses, suggesting the existence of intragenotipic groups
within each genotype. Identification of these groups will
lead to a better understanding of the migration pattern of
the viruses, as well as the detection of emergent viruses
with altered antigenicity, virulence, or tissue tropism. In
this study, we have analyzed the variability of the E pro-
tein gene of DENV-3 by comparison of new and GenBank
deposited sequences and found several lineage and sub-
lineages within the different genotypes.

Results

Nucleotide sequences of the E protein gene (1479 bp) of
20 DENV-3 strains isolated in Ribeirao Preto and 427
sequences retrieved from the GenBank were included in
this study. These sequences represent viruses isolated
between 1956 and 2007. After an initial analysis, 75 iden-
tical sequences, three recombinant strains, two mutants,
one rare, and five sequences corresponding to the same
five strains deposited with different access codes were
excluded from the study (Additional file 1) [29,31]. Thus,
361 sequences were used to analyze the E protein diversity
and the phylogenetic relationship of the viruses.

To analyze the diversity of the E protein, nucleotide
sequences were aligned and compared. Any of the 1479
sites in the alignment were considered a variable site when
at least one virus showed a nucleotide substitution at that
site. By this criteria, 634 variable sites were found to be
evenly distributed in the E protein gene; 157 of these
showed non-synonymous substitutions (substitutions in
the codon that induce amino acid changes) (Additional
file 2). Seventy non-synonymous substitutions sites were
observed only in one virus, 28 sites in two viruses and 59
sites in three or more viruses.
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Based on the aligned nucleotide sequences, several phylo-
genetic analysis including maximum parsimony and dis-
tance methods were performed and all approaches
yielded identical or nearly identical topologies. The phyl-
ogenetic tree showed four genetic groups within the
DENV-3 (Figure 1) where genotype 1 was represented by
strains from Indonesia, Malaysia, Philippines and the
South Pacific islands; genotype Il included mainly isolates
from Thailand; genotype III was represented mainly by
viruses from Sri Lanka and Latin America and genotype IV
comprised Puerto Rican viruses.

For a better characterization of the genetic groups, E pro-
tein gene sequences of all viruses were compared manu-
ally. As mentioned above, 634 variable sites were
observed within the 1479 nucleotides of the E protein
gene (Additional file 2). Variable sites with nucleotide
substitutions in at least 90% of the members of any geno-
type were considered informative sites. Thus, 95 of the
634 were considered informative sites. Among these 95,
18 sites were in the domain I of E protein, 28 in domain
II, 27 in domain III, and 22 in the transmembrane
domain (Additional file 3). Each genotype showed a char-
acteristic nucleotide sequence when the informative sites
were analyzed. Nucleotide substitution in the informative
sites was mostly due to transitions (80 sites, 81%) rather
than transversions (21 sites, 19%). Nucleotide substitu-
tion were more frequent in the 3rd position (74 sites,
78%) of the codon, followed by the first position (15
sites, 16%) and finally, the second position (6 sites, 6%).
Non-synonymous substitutions were observed in 14
(15%) of the 95 informative sites (residues 22, 81, 132,
154, 160, 270, 301, 302, 380, 383, 386, 430, 452 and
459). Three non-synonymous substitutions were identi-
fied in domain I, three in domain II, five in domain I,
and three in the transmembrane domain (Additional file
3). Based on the tertiary structure of the E protein of
DENV-3 (36), it was observed that amino acid residues
81, 132,154,270, 301, 302, 380, and 383 were located in
solvent-exposed loops. Residues 22 and 386 were located
in B-strands exposed on the viral surface. The residue 160
was located in a hydrophobic region. Residues 430, 452
and 459 were located in the transmembrane region (Addi-
tional file 4A).

Intragenotipic groups

Careful analysis of the topology of the phylogenetic tree
suggests the existence of intragenotipic groups (Figure 1).
To better characterize these internal groups, protein E
gene sequences of members of each genotype were inde-
pendently analyzed.

Genotype |
A phylogenetic tree was constructed using 76 protein E
gene sequences of genotype I viruses (Figure 2). The tree
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showed that these viruses form two different clades that
were denominated lineage I and II. The nucleotide
sequence comparison showed the presence of 348 varia-
ble sites in the 1479 nucleotides of the E protein gene with
40 of them considered informative sites. Non-synony-
mous substitutions were observed in seven informative
sites (Table 1). Amino acid residues 231, 303 and 391
were found to be located in solvent-exposed loops, resi-
dues 68 and 169 in hydrophobic regions (Additional file
4B). Residues 479 and 489 were located in the transmem-
brane region.

The phylogenetic tree showed that lineage II included two
sub-lineages (Figure 2). The comparison of nucleotide
sequences (n = 68) showed the presence of 318 variable
sites within members of this lineage, six of them being
informative sites with synonymous substitutions (Table

1).

Genotype Il

Genotype II included 144 viruses that were grouped into
two lineages (Figure 3). Comparison of these sequences
showed 392 variable sites; four of them being informative
sites with synonymous substitutions (Table 2). Lineage I
included 62 sequences that form two sub-lineages with
255 variable sites; 17 of them were considered informa-
tive sites and three had non-synonymous substitutions
(Table 3). The amino acid residue 140 was located in a -
strand exposed in the surface of the protein; residues 447
and 489 were in the transmembrane domain (Additional
file 4C). Lineage II included 83 viruses distributed in two
sub-lineages. The comparison of these sequences showed
275 variable sites with only two informative sites, which
showed synonymous substitutions (Table 2).

Genotype Il

Genotype III was composed of 138 sequences grouped in
two lineages (Figure 4). Sequences comparison showed
321 variable sites with 11 informative sites, all of them
with synonymous substitutions. Lineage I included 29
sequences grouped into sub-lineage I and II with 123 var-
iable sites with only one of them considered as informa-
tive site, which showed a synonymous substitution (Table
3). The lineage II included 108 sequences forming two
groups, sub-lineage I and II; these sequences showed 250
variable sites and only seven of them were considered as
informative sites, all of them were synonymous substitu-
tions (Table 3). The sub-lineage II of lineage II included
the 20 viruses isolated in Ribeirao Preto, SP, Brazil,
between 2006-2007. These viruses were more closely
related to those isolated in other regions of Brazil than to
viruses that circulated in Ribeirao Preto, in 2003 (D3BR/
RP1/2003 and D3BR/RP2/2003). They formed two
groups, one more closely related to the strain D3BR/CUG6/
2002 isolated in Cuiaba close to the border with Bolivia
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DENV-3 phylogenetic tree based on the E gene sequences. The three was constructed using the method of Neighbor-
joining with 1000 bootstrap replications. The genotypes are labeled according to the scheme of Lanciotti (1994) and the amino
acid changes distinguishing each genotype are shown on the tree. Protein E gene sequences of DENV-I, DENV-2 and DENV-4
were used as outgroup. Branch lengths are proportional to percentage of divergence. Tamura Nei (TrN+I+G) nucleotide sub-
stitution model was used with a proportion of invariable sites (I) of 0.3305 and gamma distribution (G) of 0.991 |. Bootstrap
support values are shown for key nodes only.
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Figure 2

Lineage I

Lineage |

Puerto Rico 1963 Genotype |

Genotype | phylogenetic tree constructed using the method of Neighbor-joining with 1000 bootstrap replica-
tions. Sequences of each genotype Il lll and IV were used as outgroup. Branch lengths are proportional to percentage diver-
gence. Tamura Nei (TrN+I+G) nucleotide substitution model was used with a proportion of invariable sites (I) of 0.5420 and
gamma distribution (G) of 2.6122. The lineage and sub-lineages are marked. Amino acids changes are indicated on the tree.

Bootstrap support values are shown for key nodes only.
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Table I: Nucleotide and amino acid substitutions in the informative sites of genotype I.

Nucleotide Protein Domains
Genotype |
Position Lineage Lineage Il Position Lineagen Type of amino acid Changes
Sub-Lineage
Gene Codon | 1l | Il Protein | 1l |
48 3 G A
135 3 T C
174 3 G A I
202 | A G 68 \ Conservative
219 3 A G
222 3 T C
282 3 T C
342 3 G A
366 3 A G
393 3 A G
441 3 T C |
474 3 T C
506 2 C T 169 A \'% Conservative
516 3 T C
537 3 C T
588 3 A G I
633 3 C T
640 | T C
645 3 C T
663 3 A G
684 3 T C
692 2 G A 231 R K Conservative
714 3 T C
735 3 G A
759 3 A G
777 3 T C
849 3 T C |
909 | A G 303 T A Nonconservative i
912 3 C T
1101 3 T A
1153 | C T
1172 2 G A 391 R K Conservative
1269 3 G A ™
1281 3 G A
1302 3 C G
1317 3 G A
1329 3 A G
1380 3 C T
1436 2 C T 479 A \ Conservative
1466 2 T C 489 \% A Conservative
Domain I: [-156nt (1-5222); 397-573nt (133—19 |22); 835-882nt (279-29422)
Domain II: 157-396nt (53—13222); 574-834nt (192-278%%)
Domain Ill: 883—1176nt (295-39222)
Domain TM: | 177-1479t (393—49322)
nt:are indicated the nucleotide positions
aa:are indicated the amino acid positions
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(Group A) and another more closely related to the strain
D3BR/BR8/2004 isolated in northern Brazil (Group B).
Only the strain D3BR/RPAAF/2007 isolated in 2007 was
more closely related to D3BR/RP1/2003 strain.

Discussion

The comparison of E protein gene sequences of DENV-3
revealed many variable sites; however, only 47 of them
showed nucleotide substitutions that induced amino acid
changes in a significant number of viruses (Additional file
5). Therefore, the E protein of DENV-3 showed 47 sites
with variable amino acid residues, which were located
mainly on the viral surface. Our molecular modeling anal-
ysis showed that all the amino acid substitutions do not
interfere with the conformational structure of the E pro-
tein. These polymorphic amino acid residues could be
involved in cell attachment, viral pathogenesis, and recog-
nition by neutralizing antibodies [12,13,32]. Recently, it
was shown that a panel of sera collected from DF and
DHEF patients 16-18 month after illness had different lev-
els of neutralizing antibodies to different DENV-3 strains
[33]. Those authors used in the neutralization tests iso-
lates from Cuba and Puerto Rico, which showed amino
acid substitutions at several of the 47 variable sites (Addi-
tional file 6). This suggests that those residues may be
involved in neutralization differences, but further studies
are necessary to confirm this hypothesis.

The phylogenetic analysis, based on E protein gene
sequences, presented in this study showed that DENV-3
are distributed into four genotypes which is supported by
complete mapping of this gene, and is in agreement with
previous studies [25,34]. In addition, internal groups (lin-
eages and sub-lineages) were observed within genotypes I,
II and III. It was not possible to confirm internal sub-
grouping within the genotype IV due to the low number
of sequences available in the GenBank. All amino acids
that characterize a group (genotype, lineage, or sub-line-
age) are located in the 47 variable sites of the E protein.
Characteristic amino acid residues corresponding to the
different DENV-3 genotypes, lineages, and sub-lineages
are evenly distributed in the E protein, and most of them
are exposed on the viral surface.

Recently, it has been reported the existence of a group of
virus forming another genotype (genotype V) within
DENV-3 [29]. However, our phylogenetic and nucleotide/
amino acid substitution analysis suggest that those viruses
of genotype V form a sub-group within the clade of geno-
type I and for this reason we have name this subgroup as
lineage I. The phylogenetic trees generated in other studies
using maximum likelihood and bayesian methods
showed that the so-called genotype V is in the same clade
of genotype I [35,36]. Therefore, we propose the mainte-
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nance of the classification of DENV-3 into four genotypes
as previously suggested [25,34].

Other authors have also observed the existence of some of
the intragenotypic groups described in this study. It has
been observed that genotype I includes three groups of
viruses: South Pacific, Philippines, and East Timor viruses
[37]. South Pacific viruses are included in the sub-lineage
I, while Philippines and East Timor are internal groups
within our sub-lineage II of genotype I. It has also been
suggested that genotype II includes two groups of viruses
called: pre- and post-1992 [29]. These groups correspond
to our lineages I and II of genotype II, respectively. The
post-1992 viruses include groups A and B, which corre-
spond to our sub-lineages I and II of lineage II. In addi-
tion, it has been suggested that isolates from Bangladesh
form a distinct group within genotype II [38]. This group
corresponds to our sub-lineage II of lineage 1. Another
study has also found three internal groups within geno-
type II: Malaysia, Bangladesh and Vietnam viruses [37].
These groups correspond to our sub-lineage I of lineage I,
sub-lineage II of lineage I, and sub-lineage II of lineage I,
respectively. The genotype III viruses have been classified
into four groups: Latin America, East Africa and groups A
and B from Sri Lanka viruses [39]. Our analysis showed a
similar distribution of genotype III viruses; however, we
found that Latin America viruses (lineage II) form two
groups that we called sub-lineages I and II. These sub-lin-
eages showed also internal monophyletic groups, which
were omitted to simplify the classification. However,
other authors have identified these internal groups within
sub-lineages I and II [37,40-42].

All the DENV-3 isolated in Ribeirao Preto between 2006~
2007 were grouped within the sub-lineage II/lineage II of
genotype III. They were more closely related to viruses iso-
lated in other cities than to those that were previously
reported at Ribeirao Preto in 2003, suggesting that DENV-
3 is constantly moving within the country [43]. Brazil is a
large tropical country with optimal conditions for the
spread of dengue virus making difficult the control of the
disease.

In summary, our results provide information about the
most frequent amino acid changes in the E protein of
DENV-3. These amino acids could be involved in cell
attachment, virus pathogenesis, and recognition by neu-
tralizing antibodies. However, further studies are needed
to confirm these hypotheses. The phylogenetic relation-
ship suggested the existence of only four genotypes of
DENV-3. In addition, we observed internal groups within
genotypes I, I and III.
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Genotype Il phylogenetic tree constructed using the method of Neighbor-joining with 1000 bootstrap replica-
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Bootstrap support values are shown for key nodes only.
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Table 2: Nucleotide and amino acid substitutions in the informative sites of genotype Il.

Nucleotide Protein Domains
Genotype Il
Lineage | Lineage 1l Position Lineage |
Position Lineage Sub-Lineage Sub-Lineage Sub-Lineage  Type of amino acid Changes
Gene Codon | I | 1l | Il Protein | ]
54 3 T A |
90 3 Cc T
96 3 T C
273 3 A G Il
351 3 G A
419 2 T C 140 | T Nonconservative
549 3 C T
525 3 A G
558 3 G C
609 3 A C Il
708 3 G A
747 3 T C
834 3 T C
963 3 G A n
1002 3 T Cc
1134 3 G C
1176 3 T A
1188 3 Cc C ™
1233 3 A T
1339 | T G 447 S G Nonconservative
1436 2 G C
1465 | A A
1467 3 T T 489 A T Nonconservative

Domain I: [—-156nt (1-5222); 397-573nt (133—19 |22); 835-882n (279-2942)

Domain II: 157-396nt (53—13222); 574-834n (192-278%)
Domain Ill: 883—1176" (295-3922)

Domain TM: | 177-1479" (393—4932)

nt:are indicated the nucleotide positions

aa:are indicated the amino acid positions

Methods

Virus and RNA purification

Twenty DENV-3 strains isolated in C6/36 cells (passage
number 2) from DF and DHF/DSS patients, between
2006-2007, in Ribeirao Preto city, Brazil, were included
in this study. Viral RNA was purified from 140 pl of cul-
ture fluid with the QIAamp Viral RNA kit (Qiagen, Ger-
many), following manufacturer's recommendations.

RT-PCR and sequencing
The E protein gene of the samples were reverse-transcribed
and amplified by polymerase chain reaction (RT-PCR),

using consensus primers, as previously described [43].
The amplicons were purified from agarose gel using the
QIAquick Gel Extraction Kit (Qiagen, USA), and directly
sequenced in an ABI PRISM®3100 Genetic Analyzer
(Applied Biosystems, USA). The sequences obtained in
this study were submitted to the GenBank and registered
with the following accession numbers: D3_BR/RP/1573/
2006 (EU617019), D3_BR/RP/1604/2006 (EU617020),
D3_BR/RP/1625/2006 (EU617021), D3_BR/RP/1651/
2006 (EUG617022), D3_BR/RP/2065/2006 (EU617023),
D3_BR/RP/2131/2006 (EU617024), D3_BR/RP/2170/
2006 (EUG617025), D3_BR/RP/2198/2006 (EU617026),

Page 9 of 13

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU617019
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU617020
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU617021
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU617022
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU617023
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU617024
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU617025
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU617026

Virology Journal 2009, 6:113

http://www.virologyj.com/content/6/1/113

Table 3: Nucleotide and amino acid substitutions in the informative sites of genotype Ill.

Nucleotide

Domains

Genotype Il

Lineage |

Lineage Il

Position Lineage

Sub-Lineage

Sub-Lineage

Gene Codon 1 ] 1

96

117
121
157

312
423

w w—_——_—w w
0
-

588
633
672
784
825

w—_—w ww

1050 3 C T
1131 3
1170 3

1185
1314
1356
1374
1473

wwwww
>0+
Q> >0

Domain I: [—-156n (1-5222); 397-573n¢ (133—19122); 835-882n (279-294%?)
Domain Il: 157-396 (53—13222); 574-834nt (192-278%2)

Domain Ill: 883—1176" (295-39222)

Domain TM: |177-1479¢ (393—4932)

nt:are indicated the nucleotide positions

aa::are indicated the amino acid positions

D3_BR/RP/2404/2006 (EU617027), D3_BR/RP/2591/
2006 (EU617028), D3_BR/RP/2604/2006 (EU617029),
D3_BR/RP/554/2006 (EU617030), D3_BR/RP/590/2006
(EU617031), D3_BR/RP/597/2006 (EU617032), D3_BR/
RP/AAF/2007  (EU617033),  D3_BR/RP/Val/2006
(EU617034), D3BR/RP/549/2006 (EU617035), D3BR/
RP/1690/2006  (EUG617036), D3BR/RP/2121/2006
(EU617037), D3BR/RP/2167/2006 (EU617038).

Phylogenetic analysis of sequences

The E protein gene sequences (1479 bp) obtained in this
study were analyzed using the Vector NTI software (Infor-
matix, USA) and then aligned with 427 sequences of
DENV-3 retrieved from GenBank (Additional file 1) using
the program CLUSTAL W software [44]. The alignment
was edited with the BioEdit software v7.0.0 and MEGA 3.1
[45,46]. Aligned sequences were analyzed in the Model-

test program to identify the best fit-model of nucleotide
substitution for phylogenetic reconstruction; in all the
analysis the Tamura and Nei (TrN+I+G) was the best
model [47]. The best fit-model was selected under the
hierarchical likelihood ratio test (hLTR). The phylogenetic
relationships among strains were reconstructed by the
neighbor-joining (NJ) and maximum parsimony (MP)
methods using the PAUP 4.0B10 program [48].

Structural analysis and comparisons

In order to identify location of the amino acid residues in
the E protein the putative E protein structure of different
isolates were compared with the E protein structure of
DENV-3 deposited in the Protein Data Bank (PDB) under
the access code 1UZG[32]. Analysis of the structures and
construction of the illustrations were done using the
graphical program Pymol [49].
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