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Diabetic retinopathy (DR), a leading cause of vision loss and blindness

worldwide, is caused by retinal neurovascular unit dysfunction, and its

cellular pathology involves at least nine kinds of retinal cells, including

photoreceptors, horizontal and bipolar cells, amacrine cells, retinal ganglion

cells, glial cells (Müller cells, astrocytes, and microglia), endothelial cells,

pericytes, and retinal pigment epithelial cells. Its mechanism is complicated

and involves loss of cells, inflammatory factor production, neovascularization,

and BRB impairment. However, the mechanism has not been completely

elucidated. Drug treatment for DR has been gradually advancing recently.

Research on potential drug targets relies upon clear information on

pathogenesis and effective biomarkers. Therefore, we reviewed the recent

literature on the cellular pathology and the diagnostic and prognostic

biomarkers of DR in terms of blood, protein, and clinical and preclinical drug

therapy (including synthesized molecules and natural molecules). This review

may provide a theoretical basis for further DR research.
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1 Introduction

Diabetic retinopathy (DR) is one of the most serious complications of diabetes

mellitus and the leading cause of vision loss and blindness worldwide. The annual

incidence of DR ranges from 2.2%to 12.7% due to differences in research samples across

studies, such as the number of people, geographical distribution, age, and sex (Thomas R.

L. et al., 2019). According to recent studies, DR is not only a diabetic microvascular

complication, but also a neurodegenerative disease. Therefore, DR has recently been

defined by the American Diabetes Association as a highly tissue-specific neurovascular

complication of both type 1 and type 2 diabetes (Flaxel et al., 2020). In fact, the number of

patients with type 2 diabetes is much higher than those with type 1 diabetes; thus, those

with type 2 diabetes comprise a larger proportion of patients with DR (Flaxel et al., 2020).
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However, the current measure for the stages of DR is based on

clinically visible retinal microvascular changes and does not

include neurodegenerative lesions that might occur earlier

(Abramoff et al., 2018). According to the International

Council of Ophthalmology, DR can be divided into non-

proliferative (NPDR) and proliferative DR (PDR), covering

four overlapping stages (see Table 1 for definitions) (Wong

et al., 2018; Yang et al., 2020).

In the retina, retinal neurons [photoreceptors: cones and

rods, horizontal and bipolar cells, amacrine cells, and retinal

ganglion cells (RGCs)], glial cells (Müller cells, astrocytes, and

microglia), and blood cells (endothelial cells [ECs] and pericytes,

which cooperatively form the inner BRB [iBRB]) are linked to

form a vital structure called the retinal neurovascular unit, and

ECs and retinal pigment epithelial (RPE) cells constitute the

outer blood-retina barrier (oBRB) (Yang et al., 2020; Meng et al.,

2021; Tang et al., 2022). DR is caused by retinal neurovascular

unit dysfunction, including loss of cells, inflammatory factor

production, neovascularization, and BRB impairment (Wang

and Lo, 2018), among which inflammatory process is one of

the most important features (Öhman et al., 2018). A previous

study showed that diabetes jeopardizes rat retinas mainly in the

outer layers because the energy metabolism activity in the outer

retina is vigorous and is accompanied by a large amount of

metabolic waste and mitochondrial damage (He et al., 2021). The

metabolic disturbances induced by DR are mainly related to

metabolism of glycolysis, polyols, tricarboxylic acid, amino acids,

the urea cycle, and lipids (Xuan et al., 2020). Several

observational studies have shown that dyslipidemia,

mitochondrial apoptosis, and oxidative stress may be the

predominant pathological changes of DR (Miller et al., 2020;

Fort et al., 2021; Lin et al., 2021; Rao et al., 2021). Vascular

endothelial growth factor (VEGF), HbA1c, low-density

lipoprotein cholesterol, myeloperoxidase, and advanced

glycation end products (AGEs) are pathogenic factors of DR.

The pathogenesis of DR remains unclear, and further research is

yet to be conducted.

Current therapies for DR mainly include vitreoretinal

surgery, laser photocoagulation, intraocular injections of anti-

VEGF agents, corticosteroids, and eye drops. Among these

therapies, pan-retinal photocoagulation surgery remains the

primary treatment for PDR (Flaxel et al., 2020). Additionally,

in recent years, stem cell replacement therapy has been evaluated

for DR, although it has significant limitations (Mathew et al.,

2021b). With regard to drug treatment, in the past decade, anti-

VEGF drugs have had a dramatic effect on the clinical

management of DR. However, clinical trials suggest that

anti–VEGF agents for DR are not effective in all patients and

can even bring about complications (Fu et al., 2018b). Thus,

research on novel drugs based on other targets is vital for the

prevention and treatment of DR.

Therefore, we reviewed the recent literature on the cellular

pathology of DR. We also evaluated the diagnostic and

prognostic biomarkers of DR in terms of blood, protein, and

imaging techniques. Our review also included the synthetic

molecules that have been used for clinical therapy and are

under clinical and preclinical investigation. Finally, we

reviewed the natural molecules that are under preclinical

investigation to complement the current treatment for DR.

2 Involved cells

The retina is a highly organized tissue comprising at least

10 distinct layers (Miller et al., 2020), involving photoreceptor

cells, retinal ganglion cells, bipolar cells, amacrine cells,

horizontal cells, glial cells, endothelial cells, pericytes, and RPE

cells (Figure 1). Diabetes causes chaos among cellular

interactions and loss of almost all retinal cell populations

(Szabo et al., 2017). The study of the changes of various cells

in DR and the interrelationship among them can help clarify the

pathological mechanism of DR and identify therapeutic targets.

2.1 Photoreceptor cells

Photoreceptor cells are specialized neurons in the retina that

transit light into electrical signals and rely on the cycling of 11-

cisretinal. The signals are transmitted to the brain for image

processing (Miller et al., 2020). Photoreceptor cells have four

functional regions: the outer segment, inner segment, cell body,

and synaptic terminal (Tonade and Kern, 2021). The outer

segments of photoreceptor cells are the main regions of

energy metabolism and glycolysis, whose long-term inhibition

TABLE 1 Stages of diabetic retinopathy.

Classification Description

Mild NPDR Microaneurysms or dot intraretinal haemorrhages occur at this stage of the disease

Moderate NPDR As the disease progresses, hard exudates, hemorrhage spots, or “cotton wool” appear in the retina

Severe NPDR Many more blood vessels are blocked, accompanied by the occurrence of soft exudates and hemorrhage spots

PDR At this advanced stage, growth factors secreted by the retina trigger the proliferation of new blood vessels along with vitreous
hemorrhage and fibroplasia. In addition, accompanying scar tissue can contract and cause retinal detachment

DR, diabetic retinopathy; NPDR, non-proliferative DR; PDR, proliferative DR
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leads to photoreceptor degeneration (Fu et al., 2018a; Fu Z. et al.,

2021; Yang T. T. et al., 2021). It is worth noting that VEGF

upregulation in DR is a direct contributing factor to changes in

photoreceptor function (Hu et al., 2021). The two types of

photoreceptor cells are rod cells, which contain rhodopsin

that facilitates vision at night, and cone cells, which contain a

cone pigment and are sensitive to high light. In hyperglycemia,

rhodopsin expression decreases, and rod cells are more sensitive

to hyperglycemia (Yang M. et al., 2021; Song et al., 2021).

Photoreceptor cells contain more than 75% of the

mitochondria of the retina (Miller et al., 2020). Dysfunction

in mitochondrial oxidative phosphorylation, which generates an

increase in the NADH/NAD+ redox ratio due to a decrease in

NAD+ regeneration and ATP deficiency, leads to photoreceptor

degeneration (Mekala et al., 2019). Additionally, the OS of DR

originates from the photoreceptor cells. Mitochondria are not

only producers of reactive oxygen species (ROS) but also the

targets of OS. A number of ROS may accumulate and damage

mitochondrial DNA, which consequently reduces the expression

of regulatory proteins that eliminate ROS (Bek, 2017). Sirtuin 1, a

multifunctional deacetylase that is inactivated in diabetes,

protects mitochondria from the activation of mitochondria-

damaging matrix metalloproteinase-9 (MMP-9) and the

damage of mtDNA (Mishra et al., 2018). Furthermore, active

DNAmethylation plays a critical role in cytosolic ROS regulation

(Duraisamy et al., 2018). This vicious cycle can be affected by

epigenetic machinery in the retina (Bek, 2017; Kumari et al.,

2020). Until now, current certified treatments for preventing or

reversing photoceptor degeneration induced by mitochondrial

dysfunction have not been found.

Hexokinase-2 (HK2), a first rate-limiting isozyme in

glycolysis, plays a key role in the Warburg effect exhibited by

photoreceptor cells and is required for normal rod function (Weh

et al., 2020). HK2 also has non-enzymatic roles in the regulation

of apoptosis by interacting with mitochondria via Akt signaling

(Weh et al., 2020). Therefore, it is noteworthy that the

deprivation of HK2 in rods causes inhibition of retinal

glycolysis and degeneration of age-related photoreceptor cells,

FIGURE 1
The structure of retina. The retina comprises at least 10 distinct layers, including eleven cell types involved in the progress of DR. The factors
related to these cells, described in this review are shown. (ILM, internal limiting membranes; NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner
plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; ELM, external limiting membranes; OS, outer
segments; PEL, pigment epithelium layer; iBRB, inner blood-retina barrier; oBRB, outer BRB; VEGF, vascular endothelial growth factor; VEGFR2,
VEGF receptor 2; SDF1, stromal cell-derived factor 1; CYP1B1, cytochrome P450 1B1; GSK3, glucogen synthase kinase 3; Nrf2, nuclear factor
erythroid 2-related factor; TRIB3, tribbles homolog 3; TRPC, transient receptor potential canonical; GABA, γ-aminobutyric acid; ROS, reactive
oxygen species; Glut1, glucose transporter 1; CTRP3, C1q/TNF-related protein 3).
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which leads to a progressive increase in the number and size of

mitochondria in the rods (Petit et al., 2018; Zhang R. et al., 2020).

In hyperglycemia, hexokinase is saturated and

photoreceptor-mediated glucose metabolism is decreased,

generating the accumulation of sorbitol (a kind of polyol),

which is produced from excess glucose by aldose reductase via

the polyol pathway (Holoman et al., 2021). Polyol accumulation

is one of the key pathological features of DR that aggravates

electroretinogram defects, inflammation, and OS in the retina

(Holoman et al., 2021). According to these studies, reducing

polyol accumulation via glucose transporter 1 (Glut1) in

photoreceptor cells can be used for DR therapy (Holoman

et al., 2021). Glut1 is expressed extensively in retinal cells and

is thought to be the only glucose transporter in photoreceptor

cells. Retinol binding protein 3, a retinol transport protein

secreted primarily by photoreceptor cells, can also combine

with Glut1 to restrain Müller cells and endothelial cells from

taking in glucose and inducing inflammatory cytokines (Hisashi

et al., 2019). Moreover, a study implied that inhibiting

Glut1 expression to restrict glucose transport will decrease

retinal glucose concentrations and ameliorate DR (You et al.,

2017).

Another important diabetes-associated variation in

photoreceptor cells is de novo retinol lipogenesis. The main

reason for this shift is the activation of fatty acid synthase by

hyperglycemia (Rajagopal et al., 2021). This shift coupled with

other changes in photoreceptors may make up the early

pathological mechanism of angiogenesis in early DR

(Rajagopal et al., 2021). Neurovascular coupling may directly

be impacted by diabetes-induced lipid perturbations at

photoreceptor synapses (Nippert et al., 2018). Additionally,

excess retinal saturated fatty acid can be harmful to

photoreceptor energy metabolism and consequently impacts

vascular coupling.

Because autophagy is an essential survival mechanism in

photoreceptor cells, it plays a key role in sustaining

photoreceptor function by facilitating photoreceptor outer

segment degradation and visual pigment recycling (Mathew

et al., 2021a; Villarejo-Zori et al., 2021). Although the

mechanism by which autophagy protects photoreceptors and

the relationship between DR and autophagy are ambiguous,

more recent studies have corroborated the importance of

autophagic flux. For example, impairment of autophagy

increases superoxide formation and apoptosis in 661 W cells

(a cone cell line) under hyperglycemic conditions (Taki et al.,

2020).

2.2 Bipolar cells

Bipolar cells can accept inputs from photoreceptors and

transmit signals to retinal ganglion cells (Szabo et al., 2017;

Eggers and Carreon, 2020). Endostatin, an antiangiogenic

protein that exists in bipolar cells, is a naturally cleaved

fragment of type XVIII collagen (Bonet et al., 2021). This

protein is mainly expressed in bipolar cells and photoreceptor

cells. Currently, there are few reports related to bipolar cells in

DR. One study has suggested that it is highly vulnerable to high

glucose levels (Wang Y. et al., 2017). In diabetic mice, the

appearance of intravitreal vessels was shown to be associated

with a decrease in endostatin levels in the retina (Bonet et al.,

2021). In addition, high sugar levels can induce the production of

reactive metabolites such as methylglyoxal (MG), which results

in decreased function of bipolar cells because MG is the most

reactive glycation precursor of cytotoxic end products

(Schlotterer et al., 2019).

In the degenerating retina of diabetic mice, some defense

mechanisms against diabetes exist in bipolar cells. Functional

gene networks and pathways related to inflammation (antigen

processing and presentation and/or interferon response) are

commonly upregulated (Van Hove et al., 2020). Moreover, the

functional gene networks and pathways related to the OS

response are also commonly upregulated in bipolar cells,

which is reflected in phosphorylation transcripts and an

increase in transcripts correlated to ATPase-mediated proton

transport (Van Hove et al., 2020). In addition, E2F transcription

factors play a key role in controlling cell cycle progression, and

their inactivation can rescue high glucose-induced ectopic

division and cell death of bipolar cells (Wang Y. et al., 2017).

2.3 Retinal ganglion cells

RGCs, made up of 40 subtypes, are terminally differentiated

neurons in the central nervous system(Thomas et al., 2017). As

efferent neurons, they transfer visual information to the brain.

RGCs have a limited endogenous regenerative capacity after

damage; thus, apoptosis can lead to permanent vision loss.

Sphingolipid rheostat, a dynamic equilibrium consisting of

ceramide, sphingosine, and sphingosine-1-phosphate, has a

neuroprotective effect against excitotoxic RGC death

(Nakamura et al., 2021). As the most vulnerable neurons in

the retina, RGCs are the most sensitive to diabetes-induced stress

reactions in the early stage of nerve growth. The excitatory

toxicity of glutamate increases metabolism, the caspase

cascade waterfall increases apoptosis, and other mechanisms

are closely related to the damage of RGCs (Fu et al., 2020).

The axonal degeneration of RGCs, which disturbs axonal

transport, may be the earliest event in DR pathogenesis.

Neurotrophins, including brain-derived neurotrophic factor

(BDNF), nerve growth factor (NGF), and mesencephalic

astrocyte-derived neurotrophic factor (MANF), are secreted

growth factors that control neuronal growth, differentiation

and survival and are involved in the protection against RGC

injury (Gao et al., 2017; Zhang et al., 2017). BDNF can maintain

synaptic plasticity and neuronal interconnections (Behl and
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Kotwani, 2017). However, BDNF-mediated neuroprotective

actions are downregulated during hyperglycemia. In addition,

the neuroprotective effect of endogenous NGF can be hindered

by pro-NGF, which enhances the expression of neurotrophin

receptor p75 to stimulate RGC apoptosis in DR (Elshaer and El-

Remessy, 2017; Mesentier-Louro et al., 2017; Mesentier-Louro

et al., 2019). Finally, MANF is a newly discovered secreted

neurotrophic factor that is highly expressed in RGCs and can

protect them from hypoxia-induced injury and apoptosis by

preventing endoplasmic stress-mediated apoptosis in vivo and

in vitro (Gao et al., 2017).

In high-fat diet -induced DR, tau hyperphosphorylation

causes vision deficits and synapse loss in RGCs by

destabilizing microtubule tracks, damaging microtubule-

dependent synaptic targeting of cargo such as mRNA and

mitochondria, and disrupting synaptic energy production in

mitochondria via glucogen synthase kinase 3 (GSK3)

activation (Zhu et al., 2018). In high-fat diet-induced DR

mouse models, mitochondrial degeneration occurs when

downregulation of β-catenin activation due to abnormal

activation of GSK3β causes synaptic neurodegeneration of

RGCs by suppressing ROS-scavenging enzymes, thus

triggering OS-driven mitochondrial impairment (Shu XS et al.,

2020).

OS is closely associated with RGC apoptosis. As a

neuroprotective protein, transforming growth factor-β (TGF-

β) overregulates hyperglycemia to protect RGCs from harm by

activating stress response proteins and antioxidant pathways,

such as aldehyde dehydrogenase 3A1, heme oxygenase-1 (HO-1),

hypoxia-inducible factor (HIF) -1α, and nuclear factor erythroid

2-related factor (Nrf2) (Chen et al., 2020). Among these proteins,

Nrf2 is a pivotal nuclear transcription factor that protects cells

against oxidative injury. Normally, Nrf2 combines with Kelch-

like erythroid-cell-derived protein with CNC homology-

associated protein 1 (Keap1) as a complex to be the target of

proteasomal degradation, and Nrf2 transcriptional activity is

decreased in the wake of increased Keap1 levels

(Radhakrishnan, 2020). Long non-coding RNA (lncRNA) is

important in modulating the expression of Nrf2 in DR. The

Sox2 overlapping transcript, a type of lncRNA, is a key regulator

of oxidative stress in RGC damage of patients with DR (Zhang

et al., 2017). Sox2 overlapping transcript knockdown can lead to

the accumulation of Nrf2 protein and nuclear translocalization to

combat oxidative stress by intercepting Nrf2/Keap1 contact in

RGCs and activating Nrf2 and HO-1 signaling (Li et al., 2017; Liu

X.-F. et al., 2018). Studies have shown that overexpression of

sulfiredoxin 1 and senescence marker protein 30 may protect

RGCs from high glucose (HG)-induced injury by enhancing

Nrf2 expression via regulation of the Akt/glycogen synthase

kinase-3β axis (Zhu F. et al., 2021; Zhang et al., 2021).

Sulfiredoxin 1 is a member of the endogenous antioxidant

sulfiredoxin protein family, while senescence marker protein

30 is an aging-related protein. Another important antioxidant

mechanism in RGCs is the downregulation of the pleckstrin

homology domain and leucine rich repeat protein phosphatase 1,

which activates Nrf2/antioxidant response element -mediated

transcription (Zhang X. et al., 2020). Furthermore, in high

glucose treatment, Brahma-related gene 1 expression is

significantly downregulated, also leading to a decline in Nrf2/

HO-1 signaling (Sun et al., 2020).

2.4 Amacrine cells

Amacrine cells, made up of approximately 40 different cell

types, are characterized by a wide variety of shapes, sizes, and

stratification patterns, which are still under investigation. In

diabetes, the immunoreactivity of AII amacrine cells appears

to decrease and change, and a patchy appearance of AII amacrine

cell degeneration can be observed (Szabo et al., 2017). The loss of

cholinergic amacrine cells, known as starburst amacrine cells,

may cause a serious decrease in the optokinetic response (Baya

Mdzomba et al., 2020). In addition, dopaminergic amacrine cells

degenerate in diabetic rat retinas, as revealed by transferase-

mediated dUTP nick-end labeling staining (Ma et al., 2018).

According to the electroretinography of oscillatory potentials, in

the very early changes of the diabetic retina, the relevance of the

interrelations between vascular and functional elements mainly

involves the precocious involvement of amacrine cells in diabetic

eyes, because amacrine cells specifically modulate the regulation

in the middle retina (Midena et al., 2021a).

2.5 Horizontal cells

In horizontal cells, glucose transport into photoreceptor

synapses relies on glucose transporter-2 (Yang M. et al.,

2021). In a HG environment, γ-aminobutyric acid (GABA)

immunoreactivity (IR) is increased in horizontal cells by

decreasing GABA transporter (GAT)-1-IR and increasing

GAT-3-IR to induce GABA accumulation (Carpi-Santos et al.,

2017). Normally, GABA accumulation affects cytoactivity;

however, in DR organotypic retinal models, HG did not affect

horizontal cell viability (Yang M. et al., 2021). There are few

studies on the pathological changes in horizontal cells in DR, and

further tests are needed.

2.6 Glial cells

Glial cells are supporting cells of the neural retina and play an

important role in the immune system of the retina (Rubsam et al.,

2018). Diabetes can cause homeostatic changes in the retina that

affect these glial cells; thus, glial cells promote inflammation in

the retina, which is a driving force for sustaining angiogenesis in

PDR (Rezzola et al., 2017). These cells can be divided into three
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major categories: two types of macroglia (Müller cells and

astrocytes) and microglia. Microglia and astrocytes are the

main sources of ROS in central nervous system chronic

degenerative diseases (Mendonca et al., 2020).

2.6.1 Müller cells
Müller cells, representing 90% of retinal glia, are the main

types of glial elements. They provide the structural, metabolic,

and neurotrophic support necessary for the retinal layers.

Endoplasmic reticulum (ER) stress in Müller cells is directly

linked to retinal inflammation in DR (Yang et al., 2019). X-box

binding protein 1, an effector of the unfolded protein response

activated by inositol-requiring enzyme 1α, is a major

transcription factor that regulates ER chaperones and ER-

associated degradation (Yang et al., 2019). The activation of

nucleotide-binding domain-like receptor protein-3 (NLRP3)

inflammasome-mediated inflammation in Müller cells can

result in BRB damage (Wei et al., 2021). Additionally,

overexpression of tribbles homolog 3 (TRIB3) protein, a

regulator of insulin signaling in diabetes, can reduce Müller

cell viability (Pitale et al., 2021). TRIB3 is a major regulator of

diabetic retinal pathophysiology and is upstream of HIF-1α,
epidermal growth factor receptor, and glial fibrillary acidic

protein. TRIB3 controls glucose metabolism, cytokine

expression, and gliosis in retinal cells via HIF-1α-mediated

Glut1 and epidermal growth factor receptor expression (Pitale

et al., 2021).

Circular junctions exist between photoreceptors and Müller

cells. Retinol binding protein 3, which is secreted by

photoreceptors, can inhibit glucose uptake into Müller cells,

leading to the decreased expression of VEGF and interleukin

(IL) –6 (YokomizO et al., 2019). VEGF localizes to glial cells of

the inner retina and anterior optic nerve and is expressed in the

retinas and optic nerves of diabetics before retinal

neovascularization (Mrugacz et al., 2021). In addition, Müller

glia-derived exosomes can promote angiogenesis in DR. For

example, exosome miR–9–3p promotes angiogenesis by

restricting sphingosine–1-phosphate receptor (Liu et al., 2022).

Many factors can promote the inflammatory response of

Müller cells, including hyperglycemia, elevated HIF–1, insulin-

like growth factor 1, and CD40. HIF–1 and insulin-like growth

factor 1 in the serum and vitreous body of diabetic patients

activate Müller cells to form a chronic inflammatory milieu

(Gaonkar et al., 2020). CD40 is an immune co-stimulatory

molecule that plays a key role in Müller cells. CD40 activation

can induce ATP release in Müller cells, resulting in the activation

of P2X7 purinergic receptors on retinal microglia and their

subsequent expression of inflammatory cytokines (Portillo

et al., 2017). Furthermore, Müller cells first produce an

inflammatory response in the diabetic retina andactivate

signal microglia (Abcouwer, 2017).

In a study, transient receptor potential canonical (TRPC)

channel, a cation channel of the transient receptor potential

family, was reported to have a predominant action in Müller cells

and microglia and was found to be expressed in mouse retinas in

large quantities (Sachdeva et al., 2018). TRPC-mediated

processes aggravating retinal neurodegeneration and

vasoregression may be due to a TRPC-mediated accumulation

of the reactive metabolite MG and its detoxification by

Glyoxalase 1 (Sachdeva et al., 2018). However, the exact

TRPC-dependent processes in DR need to be identified to

understand the precise causative role of TRPCs (TRPC1-

TRPC7) in DR.

2.6.2 Astrocytes
Astrocytes, which are named after their stellate shape, are

located in the innermost retinal layers, and serve as a link

between the retinal blood vessels and neurons. Astrocytes are

also crucial for maintaining the normal function of BRB (Fresta

et al., 2020b). Waves of cytosolic calcium (Ca2+) are vital for

maintaining glia–astrocyte, astrocyte–astrocyte, and

astrocyte–neuron communication (Shahulhameed et al., 2019).

In diabetes, astrocytes are upregulated at the mRNA level and

secrete various pro-inflammatory cytokines, such as IL-1β and

IL-6 to amplify the inflammatory response (Rubsam et al., 2018).

Hyperglycemia also significantly enhances the expression of pro-

oxidants (iNOS, Nox2), nuclear translocation, activation of pNF-

κB and Nrf2, and secretion of HO-1 in astrocytes (Fresta et al.,

2020b).

As a lens protein expressed in astrocytes, βA3/A1-crystallin is
an uncompetitive inhibitor of human protein tyrosine

phosphatase 1B (PTP1B) enzyme, whereas PTP1B controls

signal transducer and activator of transcription

3 phosphorylation to regulate the expression of βA3/A1-
crystallin genes in astrocytes. PTP1B4 is an enzyme that links

glucose metabolism and inflammation in diabetes and has a

positive association with vitreous humor levels of VEGF, IL-8,

and monocyte chemoattractant protein 1. Therefore, βA1-
crystallin/PTP1B signaling may regulate inflammatory

signaling in astrocytes under hyperglycemic stress. Moreover,

βA1-crystallin is the dominant isoform of glucose metabolism in

astrocytes and is essential for maintaining mitochondrial

function and oxidative stress during HG stress (Ghosh et al.,

2021).

Additionally, cytochrome P450 1B1 belongs to the family of

heme-containing terminal oxidases, CYP450s, and engages in

metabolic activation and detoxification of many compounds. The

expression and activity of cytochrome P450 1B1 play an

important role in resisting DR by modulating astrocytes

proliferation, migration, and morphogenesis, and forming a

proper fibronectin network to support retinal neurovascular

function (Falero-Perez et al., 2019).

2.6.3 Microglia
Microglial cells are mononuclear phagocytes that can be

regarded as tissue-resident macrophages in the retina.
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Microglia are also the major cell population in vitreous

fibrovascular membranes. GPNMB+ (glycoprotein

nonmetastatic melanoma protein B) microglia, a

subpopulation of vitreous fibrovascular membranes, exhibit

both profibrotic and fibrogenic properties. The profibrotic

microglia and cytokines upregulated in vitreous PDR exhibit

ligand-receptor interactions (Xiao et al., 2021). Additionally, the

microglial population and complement system form immune

defense mechanisms in the retina. During early to late changes in

DR, microglia can mediate activation of the alternative

complement pathway based on complement factor H and

CD11b (integrin αM) gene expression to resist inflammation

(Shahulhameed et al., 2020).

Microglia contact neuronal synapses and capillaries in the

inner retina. There are two distinct microglial populations in the

oxygen-induced retinopathy retina: activated-amoeboid

phenotype microglia reside on the surface of the superficial

capillary plexus of the retina, whereas resting ramified

morphology microglia reside in the deep capillary plexuses

(Uddin et al., 2020). Microglia can modulate vessel diameter

and express vasoactive genes, likely via modulation of the local

renin-angiotensin system (Mills et al., 2021). Under normal

physiological conditions, retinal cells potentially restrain

excessive microglial activation by secreting anti-inflammatory

factors, including TGF-β2 secreted by the cones (Xiao et al.,

2021). In diabetes, microglial cell morphology transitions from a

resting-ramified morphology to an activated-amoeboid

phenotype and inflammation-related cytokines are released

(Chang et al., 2019). The activation of microglia within the

PDR microenvironment involves several pathways, including

interferon gamma receptor 1, chemotactic cytokine receptor 5,

and CD44 signaling (Xiao et al., 2021). When cytokine-mediated

inflammatory responses are highly expressed in the retina, the

proliferation of microglia is increased, which shifts from an anti-

inflammatory to a pro-inflammatory state (Szabo et al., 2017). In

an experimental model of diabetes, activated microglial cells

penetrated the basement membrane of the inner BRB (iBRB)

and engulfed endothelial cells, leading to an increased number of

acellular capillaries and albumin leakage, which is a significant

factor in iBRB breakdown (Xie et al., 2021). Such damage to the

iBRB was recently found to be preventable by inhibiting colony-

stimulating factor 1-receptor (Kokona et al., 2018).

In DR, many factors are associated with the excessive

activation of microglia. Fractalkine (FKN), a chemokine

expressed constitutively by healthy neurons, signals microglia

upon interaction with the CX3CR1 receptor. The expression of

FKN declines with diabetes progression and activates microglia

in the retina, resulting in an increase in IL-1β expression in

microglia and astrocytes, fibrinogen deposition, and perivascular

clustering of microglia (Mendiola et al., 2016; Jiang et al., 2022).

Furthermore, FKN/CX3CR1 is a key signaling pathway in

inducing capillary constriction, relying on microglial contact

and FKN-CX3CR1-mediated up-regulation of angiotensinogen

(Mills et al., 2021). MG-derived AGEs play an important role in

activating microglia and accumulate in neuronal compartments

of the retina during hyperglycemia (Schlotterer et al., 2019).

Microglial activation is also mediated by autocrine pro-

inflammatory factors, such as tumor necrosis factor-α (TNF-

α) (Xiao et al., 2021). Moreover, TRIB3 mediates the increase in

retinal microglia and the expression of VEGF, NF-κB, and other

cytokines, thus modifying the early inflammatory response in

hyperglycemia (Pitale et al., 2021).

Many inflammation-associated cytokines are expressed in

microglia, including HIF-1α (Uddin et al., 2020), IL-8, TNF-α,
MMP9. Pro-inflammatory markers IL-8 and MMP9 are

primarily secreted from microglial cells, resulting in significant

upregulation of platelet-endothelial cell adhesion molecule and

VEGF-VEGF receptor 2 (VEGFR2) binding in the PDR vitreous

(Shahulhameed et al., 2020). In a diabetic mouse model, the

accumulation of aldose reductase accelerated VEGF protein

expression and amadori-glycated albumin -induced TNF-α
secretion and cell migration (Chang et al., 2019). Microglial

cells are a major source of TNF-α (Xiao et al., 2021).

Additionally, Nogo-A modulates phosphorylation signaling,

which can increase TNF-α secretion in microglia (Baya

Mdzomba et al., 2020). Nogo-A is endogenously expressed in

Müller cells and RGCs. Moreover, Nogo-A is upregulated in the

retina of patients with DR, and may be released into the vitreous

stem from RGC lysis. Finally, hyperglycemia-induced expression

of NF-κB signaling is also related to the secretion of TNF-α (Xiao
et al., 2021).

2.7 Pericytes

Pericytes are one of the types of cell that form the iBRB.

Pericytes envelop the microvasculature, adhere to the

abluminal surface of endothelial tubules, and are the first

vascular cells affected by diabetes. The key adherens junction

protein between the endothelium and pericytes is N-cadherin

(Monickaraj et al., 2018). Pericyte/endothelial cell interaction

is affected by Ephrin-B2 which is overexpressed in diabetes

(Coucha et al., 2020). Pericyte functions in the retina include

promoting endothelial sprouting, expressing VEGFR1 by

pericytes, spatially restricting VEGF signaling, and

maintaining the integrity of the BRB (Eilken et al., 2017).

Pericytes are vital to the BRB because platelet-derived growth

factor (PDGF)-B/PDGF receptor beta (PDGFRb) signaling is

significant in the formation and maturation of BRB via the

active recruitment of pericytes to growing retinal vessels (Park

et al., 2017). PDGF-B is also an indispensable factor required

for pericyte survival (Monickaraj et al., 2018). In addition,

pericyte maturation, changing from a stellate shape and high

proliferation to quiescent and elongated states, is necessary for

vessel remodeling during angiogenesis (Figueiredo et al.,

2020).
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Circular RNAs (circRNAs) such as cZNF532 and cPWWP2A

play an important role in regulating retinal pericyte degeneration

and vascular dysfunction. For example, cZNF532 is principally

produced in the cytoplasm of pericytes, and its overexpression

reduces the diabetic effect on microangiopathy by acting as an

miR-29a-3p sponge and inducing expression of NG2, LOXL2,

and CDK2. Meanwhile, cPWWP2A acts as an miR-579 sponge

that can contribute to the promotion of DR progression through

upregulation of the angiopoietin-1/Occluding/Sirtuin 1 proteins

(Liu C. et al., 2019; Jiang et al., 2020). Moreover, hypoxia-induced

circEhmt1 in the nucleus of pericytes is a kind of circRNA that

can be transferred from pericytes to endotheliocytes by

exosomes, playing an important role in regulating pericyte-

endotheliocyte crosstalk by mediating the NFIA/

NLRP3 pathway to activate HIF signaling (Ye et al., 2021).

In early diabetic models, the total number of pericytes

remained static, varying by the distribution of on-vessel versus

off-vessel pericytes to form the pericyte bridge. The combination

of pericytes and microvasculature is a dynamic process, and

pericytes clearly move off the vessel and frequently extend and

retract filopodia between vessels in time-lapse imaging of lineage-

marked pericytes (Corliss et al., 2020). Pericyte detachment is a

key mechanism underlying bridge cell and basement membrane

bridge formation and is an essential factor that accelerates DR

progression, further destabilizing retinal vascular endothelial

cells (Park et al., 2017; Corliss et al., 2020). AGEs can activate

Rho-kinase to mediate moesin phosphorylation at Thr558, and

the resulting phospho-moesin interacts with CD44 to form the

CD44 cluster, which may stimulate the migration of pericytes

and subsequent pericyte detachment in microvessels (Zhang S. S.

et al., 2020).

With the development of diabetic retinopathy, the loss of

pericytes occurs in the retina, which causes vascular leakage due

to inadequate pericyte coverage, leading to the eventual

destruction of the microvasculature, while BRB permeability

is increased facilitating low-density lipoprotein penetration

into the retina (Park et al., 2017). Various factors influence

pericyte loss through different pathways. For example,

hyperglycemia-induced ER stress may lead to apoptosis and

pericytes loss (Lai et al., 2017). High levels of thyroid

stimulating hormone may facilitate the effect of high

glucose-induced pericyte loss through thyroid stimulating

hormone -receptor -dependent mitochondrial apoptosis in

retinal pericytes (Lin et al., 2021). DNA methyltransferase-1

can prevent the overexpression of peroxisome proliferator-

activated receptor α by mediating its methylation to increase

apoptotic cells and ROS in pericytes (Zhu Y. et al., 2021).

Overexpression of soluble epoxide hydrolase can initiate the

loss of pericytes by generating diol 19,20-

dihydroxydocosapentaenoic acid (19,20-DHDP) from

docosahexaenoic acid in diabetic retina (Hu et al., 2017).

Mechanistically, 19,20-DHDP can induce VE-cadherin

internalization and the migration of vascular pericytes into

the extravascular space, decrease N-cadherin expression, and

reduce the association of cholesterol with PS1-VE-cadherin and

PS1-N-cadherin complexes (Hu et al., 2017). Increased levels of

cathepsin D, an aspartyl protease, can alter endothelial-pericyte

interactions by decreasing N-cadherin and PDGFRb, increasing

the phosphorylation of the downstream signaling protein,

protein kinase C-alpha, and Ca2+/calmodulin-dependent

protein kinase II (Monickaraj et al., 2018). Recent studies in

C57BL/6 diabetic mouse retinas have indicated that TRIB3 can

affect the formation of acellular capillaries and subsequent

pericyte loss (Pitale et al., 2021). Excessive autophagy also

causes stress and pericyte necrosis (Mao et al., 2017).

2.8 Endothelial cells

ECs are another main cell type found in the iBRB that form a

smooth internal vascular lining and control the exchange of

chemical substances between the blood and the retina.

Endothelial tip cells are specialized ECs, and their ability to

invade and migrate into tissues can influence sprouting

angiogenesis (Figueiredo et al., 2021). The invasiveness of

endothelial tip cells during angiogenesis depends on the

formation of specific actin-related protein 2/3 -dependent

dactylopodia, which are derived from filopodia. Actin-related

protein 2/3 activation can be restricted by myosin IIA by

positively regulating the maturation state of focal adhesions

and negatively regulating the β-PIX/Rac1 pathway (Figueiredo

et al., 2021).

In hyperglycemia, the endothelial markers CD31 and VE-

cadherin are decreased in ECs, and VE-cadherin disruption leads

to the loss of cell-to-cell contact in EC monolayers and mediates

Sema4D/PlexinB1 to induce EC dysfunction (Portillo et al., 2017;

Thomas A. A. et al., 2019; Wu et al., 2020). The increased

expression of the mesenchymal markers α-smooth muscle

actin, smooth muscle 22, fibroblast-specific protein 1, and

vimentin in ECs demonstrates that damaged ECs transform

into a mesenchymal phenotype, termed endothelial-

mesenchymal transition (EMT) (Thomas A. A. et al., 2019).

As pericytes are lost, tube formation by ECs increases, which

is related to endothelial angiogenesis (Ye et al., 2021). Pericyte

depletion can induce forkhead transcription factor

FOXO1 activation in unstable ECs, possibly through reduced

Tie2-mediated PI3 kinase/Akt signaling and upregulation of

angiopoietin-2, which contributes to the elevation of vascular

destabilizing factors including Ang2 and VEGFR2, leading to

vessels susceptible to leakage upon external VEGF-A stimulus

(Park et al., 2017). Notably, pericyte loss directly leads to

inflammatory responses in ECs and perivascular infiltration of

macrophages, whereby macrophage-derived VEGF and placenta

growth factor can also activate VEGFR2 in ECs (Ogura et al.,

2017). Excess adiponectin can decrease vascular barrier function

by increasing adhesion molecule-1 in ECs, enhancing VEGF-
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VEGFR2 signaling, and inducing EC migration via AdipoR1 and

AdipoR2 pathways to mediate angiogenesis (Nishinaka et al.,

2021). The hyperglycemia-mediated increase of EC-derived

adhesion molecule–1 is particularly responsive to the

downregulation of Nox1/4/5, which is the Nox isoform

present in ECs that produces excess ROS and is overexpressed

to enhance EC proliferation and tubule formation in DR

(Deliyanti et al., 2020). Because of the intimate connection

between pericytes and ECs, factors that impact the loss of

pericytes also play a role in the loss of ECs in DR, which

leads to the formation of acellular capillaries such as 19,20-

DHDP and TRIB3 (Lai et al., 2017). Then, 19,20-DHDP disrupts

VE-cadherin continuity in cultured ECs and increases EC

permeability to dextran (Hu et al., 2017). TRIB3, which is

expressed in ECs of the human diabetic retina and controls

the death of ECs, has been linked to aberrant angiogenesis. In

C57BL/6 diabetic mouse retinas, TRIB3 upregulates adhesion

molecule-1, a cell surface glycoprotein expressed in ECs (Pitale

et al., 2021).

ER stress also promotes endothelial dysfunction in DR, and

the predominant inducer is chemokine SDF1 (stromal cell-

derived factor), also known as CXCL12 (Lai et al., 2017). The

level of SDF1α, a subtype of SDF1, is positively correlated with

Nε-(carboxymethyl) lysine, a major AGE, and its expression is

significantly increased in patients with diabetes. Nε-
(carboxymethyl) lysine can cause retinal EC dysfunction and

vascular leakage through a therapeutic targeting tumor

progression locus-2/activating transcription factor-4/SDF1α-
signaling pathway in DR (Lai et al., 2017).

Recent DR research has focused on lncRNAs as key

regulators of EC function. For example, vascular endothelial-

associated lncRNA VEAL2 competitively restrains the

overactivation of protein kinase C beta 2 (PRKCB2) in ECs by

binding to the DAG-binding domain to rescue the effects of

PRKCB2-mediated turnover of endothelial junctional proteins,

thus maintaining normal endothelial permeability (Sehgal et al.,

2021). The lncRNA, MALAT1 can downregulate its expression

through siRNAs to prevent a glucose-induced increase in

Keap1 and modulate the transcriptional activity of Nrf2 to

maintain the antioxidant defense system in DR

(Radhakrishnan, 2020; Radhakrishnan and Kowluru, 2020).

Both H19 and SNHG7 can prevent EMT. Overexpression of

H19 restrains EMT via TGF-β1 and suppresses TGF-β signaling

by intercepting the MAPK–ERK1/2 pathway, whereas

SNHG7 acts via the miR-34a-5p/XBP1 axis (Thomas A. A.

et al., 2019; Cao et al., 2021). However, some lncRNAs

accelerate the progression of DR, such asTDRG1, which

promotes microvascular cell dysfunction by mediating VEGF

overexpression (Gong et al., 2019).

Additionally, circRNAs, such as circHIPK3, circCOL1A2,

and circFTO are potential targets for controlling PDR and play

an important role in retinal vascular dysfunction. For example,

circHIPK3 increases endothelial proliferation by blocking miR-

30a function (Shan et al., 2017). Moreover, circCOL1A2 and

circFTO can facilitate angiogenesis during the pathological

progression of DR, and their respective pathways are the

miR-29b/VEGF axis and the miR-128–3p/thioredoxin-

interacting protein axis (Zou et al., 2020; Guo et al., 2021).

Finally, the roles of miR-29b and miR-128–3p suggest that

microRNA is also significant for angiogenesis in DR.

2.9 Retinal pigment epithelial cells

The monolayer RPE cells constitute the oBRB and locate

between the neuroretina and choroid. The interaction between

RPE cells and microglia affects the integrity of the oBRB in DR

(Jo et al., 2019). In addition, the apical microvilli of RPE cells

wrap around OS of adjacent photoreceptors and provide

nutritional support to photoreceptors (Mekala et al., 2019;

Keeling et al., 2020).

VEGF is a vital factor for promoting angiogenesis, and its

secretion in RPE cells is regulated by L-type calcium channels

and pituitary adenylate cyclase-activating polypeptide (Fabian

et al., 2019; Vuori et al., 2019). Pituitary adenylate cyclase-

activating polypeptide is a peptide with a wide range of

functions that can attenuate the levels of VEGF, endothelin-1,

and angiogenin in RPE cells (Fabian et al., 2019).

HG levels can promote the migration and proliferation of

RPE cells, reducing the expression of epithelial markers

E-cadherin and ZO-1 and increasing the levels of

mesenchymal markers vimentin and α-SMA, indicating

EMT (Yang J. et al., 2021). A recent study showed that

knockdown of miR-195 can inhibit EMT and RPE cell

permeability (Fu S. H. et al., 2021). In addition,

hyperglycemia can stimulate the production of ROS,

increase the level of malondialdehyde, and reduce SOD

activity in RPE cells (Zhang and He, 2019). It is worth

noting that C1q/TNF-related protein 3 (CTRP3) and miR-

455–5p may be new therapeutic targets for oxidative stress and

apoptosis in RPE cells (Chen et al., 2019; Zhang and He, 2019).

The Nrf2/HO–1 pathway is a target of CTRP3, and suppressor

of cytokine signaling 3 is a direct target of miR-455–5p (Chen

et al., 2019; Zhang and He, 2019). Furthermore,

CTRP3 mediates iBRB compatibility and resists vascular

permeability induced by DR through the AMPK-dependent

occludin/claudin –5 signaling pathway (Yan et al., 2022).

Lysosome membrane permeabilization is induced in RPE

cells under diabetic conditions, which leads to massive amounts

of cathepsin B being released from the lysosomes into the cytosol

in RPE cells under HG conditions and subsequent autophagy-

lysosome pathway dysfunction (Patel et al., 2018; Feng et al.,

2021). The expression of lysosome membrane permeabilization

can be upregulated by overexpressed high mobility group box, a

nuclear DNA-binding protein with various functions, via a

cathepsin B-dependent pathway (Feng et al., 2021).
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Additionally, lysosome membrane permeabilization may initiate

mitochondrial membrane potential changes by interacting with

BCL2 family members, CYCS (cytochrome c, somatic), and ROS

release, which activates the classical mitochondria-caspase

pathway (Feng et al., 2021).

3 Biomarkers

The latest definition of biomarker is “a defined characteristic

that is measured as an indicator of normal biological processes,

pathogenic processes, or responses to an exposure or

intervention, including therapeutic interventions” according to

the FDA-NIH Joint Leadership Council. Sensitive, accurate, and

specific detection of biomarkers is important for diagnosing and

measuring the severity of DR, and provides a powerful and

dynamic approach to improve our understanding of the

mechanisms underlying DR (Tamhane et al., 2019). The

discovery of novel biomarkers for detecting DR remains vital.

3.1 Blood

Blood is the primary source of biomarkers for DR detection.

Blood metabolic biomarkers include proteins, glycoproteins,

polypeptides, and amino acids, of which proteins are the most

prevalent. Currently, HbA1C is the only validated systemic

biomarker in DR and has been used in clinical diagnosis.

Most of the research on other biomarkers is still in the

preclinical basic research stage, and the more studied

biomarkers of DR-angiogenesis (e.g., VEGF), inflammatory

factors (e.g., IL-6, IL-8, IL-1β, IL-17A, and TNF-α), oxidative
stress products (e.g., lipoperoxides and malondialdehyde),

antioxidants (e.g., glutathione, glutathione peroxidase, and

SOD), and apoptosis factors (e.g., Cytochrome-C) have been

summarized in a number of reviews. Therefore, we have listed

some of the potential biomarkers of DR that have been studied in

the last 5 years (Table 2). Furthermore, individual biomarkers as

well as panels of biomarkers can be used in clinical practice. In

fact, the sensitivity of combinatorial biomarkers is significantly

higher than that of individual biomarkers. For example, a

biomarker panel consisting of 12-hydroxyeicosatetraenoic acid

and 2-piperidone exhibited a faster and more accurate

performance than HbA1c in diagnosing DR in vitro (Xuan

et al., 2020).

The usual techniques for testing include immunoassay,

western blot analysis, enzyme-linked immunosorbent assay,

and radical absorbance capacity assay. However, the

abundance of some biomarkers is low, requiring more

sensitive techniques with lower detection limits. For example,

the newly developed optoelectrokinetic bead-based

immunosensing can detect the low-abundance biomarker of

TABLE 2 Blood metabolic biomarkers.

Variety Biomarker Role Relevance References

Protein ADAMs Angiogenesis promotion Positive Opdenakker and Abu El-Asrar,
(2019)

ANGPTL3 Enhance EC adhesion and migration Positive Yu et al. (2018)

AOC3 Induce oxidative stress, AGEs, and oxidation of low-density
lipoproteins; promote inflammation

Positive Tekus et al. (2021)

CTRP3 Mitigate retinal vascular permeability Negative Yan et al. (2022)

FABP4 Angiogenesis promotion Positive Zhang et al. (2018)

iNOS Promote inflammation Positive He et al. (2021)

Lp-PLA2 Promote inflammation Positive Siddiqui et al. (2018)

MMPs Angiogenesis promotion Positive Opdenakker and Abu El-Asrar,
(2019)

PTX3 Modulate inflammation and inhibit angiogenesis Positive Stravalaci et al. (2021)

TGF-β Promote inflammation Positive Bonfiglio et al. (2020)

TIMPs Affect angiogenesis and cell migration Positive Opdenakker and Abu El-Asrar,
(2019)

Glycoprotein PEDF Downregulate the angiogenic, fibrogenic, and proinflammatory
factors

Negative Cheung et al. (2019)

Amino acid Homocysteine Induce angiogenesis, ER stress, oxi, and epigenetic modifications Positive (Malaguarnera et al., 2014; TAWFIK
et al., 2019)

Fatty acid 17(RS)-10-epi-SC-Δ15–11-
dihomo-IsoF

Derivative from adrenic acid oxidation Positive Torres-Cuevas et al. (2021)

ADAMs, a disintegrin and metalloproteinases; ANGPTL3, angiopoietin-like 3; EC, endothelial cells; AOC3, amine oxidase copper containing 3; CTRP3, C1q/TNF-related protein 3;

FABP4, fatty acid-binding protein 4; iNOS, nitric oxide synthase; Lp-PLA2, lipoprotein-associated phospholipase A2; MMPs, matrix metalloproteinases; PTX3, long pentraxin 3; TGF-β,
transforming growth factor-β; TIMPs, tissue inhibitors of metalloproteases; AGEs, advanced glycation end products; PEDF, Pigment epithelium-derived factor; ER, endoplasmic reticulum.
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DR, lipocalin 1 (Wang J. C. et al., 2017). Additionally, to achieve

more accurate and precise plasma quantification of biomarkers

for patients with DR, high-throughput tools such as the

integrated plasma proteome sample preparation system should

be developed (Li et al., 2021).

Vitreous humor (VH), aqueous humor (AH), and tears can also

be used to detect biomarkers. Compared to other body fluids, the

collection of tears is easy and noninvasive, although there is currently

no entirely efficient and universal method for its collection. More

importantly, biomarker levels, such as those of TNF-α and VEGF in

tears are comparable to those in the blood and increase with the

severity of the disease (Nandi et al., 2021). However, tears mainly

provide exact information regarding disorders in the anterior

segment. For posterior segment disorders, AH and VH are the

most suitable matrices for evaluating relevant biomarkers but their

collection is invasive and difficult, which can cause secondary damage

in diseased eyes (Tamhane et al., 2019).

3.2 Nucleic acids

Through immunohistochemistry, PCR, western blot analysis,

high-throughput sequencing, Gene Ontology enrichment analysis,

Kyoto Encyclopedia of Genes and Genomes pathway analysis, and

other techniques, nucleic acid biomarkers related to DR can be

explored. Several epigenetic modifications have been studied in DR,

including methylation of DNA molecules, chromatin remodeling,

histone modification, and non-coding RNA (ncRNA). These

alterations can be prognostic, therapeutic, or diagnostic

biomarkers of DR (Table 3) (Lopez-Contreras et al., 2020).

Moreover, ncRNAs, including miRNAs, lncRNAs, and circRNAs,

are the most studied biomarkers of DR. NcRNAs can be secreted

into the body fluid to play a role in the pathomechanism of DR, and

its primary pathway is executed in exosomes. Recently, exosomal

nucleic acids, in particular, exosomes and their ncRNA payloads,

have attractedmuch attention, as theymay not only serve as specific

biomarkers in the diagnosis of DR but also as promising therapeutic

agents for the treatment of DR (Liu et al., 2020; Liu et al., 2022). In

addition, ncRNAs can interact to regulate the progression ofDR. For

example, SNHG4 may sponge miR-200b by upregulating oxidation

resistance 1, thus suppressing RPE cell apoptosis (Yu J. et al., 2021).

3.3 Imaging techniques

Imaging techniques are mainly used for the diagnosis of

microangiopathy in DR, which can detect and stage DR. Slit-lamp

biomicroscopy, fundus photography, optical coherence tomography

(OCT), OCT angiography (OCTA), fluorescein angiography (FA),

and B-scan ultrasonography are several clinical imaging tools used for

detecting morphological biomarkers of DR, such as vessel density

percentage, microaneurysm, and retinal venular tortuosity (Flaxel

et al., 2020; Midena et al., 2021b; Chen et al., 2021). Potential

imaging biomarkers for DR are listed in Table 4. These

computerized imaging techniques have made enormous

contributions to precision therapy. In particular, OCT examines

retinal layers in a noninvasive manner using automated retinal

layer segmentation software (Micera et al., 2020).

OCT, with two different scanning methods, time-domain OCT

and spectral domain OCT, has been used to observe structural

changes in DR and provide high-resolution imaging of the

vitreoretinal interface, neurosensory retina, and subretinal space

(Ishibazawa et al., 2015; Flaxel et al., 2020). OCTA is a functional

extension of OCT that allows a layered view of the vascular

morphology and blood flow alterations of the retina and choroid

to study retinal capillary layer lesions more thoroughly (Ishibazawa

et al., 2015). Although OCTA is approved by the FDA, the guidelines

and indications for its use in DR screening are currently being

TABLE 3 Nucleic acid biomarkers.

Profile Biomarker Role Relevance References

DNA DMSs in S100A13 Epigenetic biomarkers Positive Li et al. (2020a)

Atg16L1 Related to autophagy Positive Gao et al. (2021)

miRNA miR-1281 Microvascular promotion Positive Greco et al. (2020)

miR-431–5p Proliferation of ECs Positive Yu et al. (2021a)

miR-9-3p Angiogenesis promotion Positive Liu et al. (2022)

miR-29b Anti-apoptotic and antifibrotic effects Negative Dantas da Costa et al. (2019)

miR-200b Apoptosis promotion Positive Dantas da Costa et al., 2019; Yu et al., 2021c)

miR-146a-5p Anti-inflammatory and vascular protection Barutta et al. (2021)

lncRNA SNHG4 Inhibition of apoptosis Negative Yu et al. (2021c)

PVT1 Promote the proliferation and migration of ECs Positive Wang et al. (2022)

circRNA circ-PSNE1 Promote ferroptosis of RPE cells Positive Zhu et al. (2021c)

oxidative DNA breakdown product 8-OHdG Related to oxidative stress Positive Hainsworth et al. (2020)

SNHG4, small nucleolar RNA, host gene 4; 8-OHdG, 8-hydroxy-2 -deoxyguanosine; RPE, retinal pigment epithelial.
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developed. Therefore, many studies have evaluated novel imaging

biomarkers based on OCTA. For example, geometric perfusion

deficits are a novel OCTA biomarker based on oxygen diffusion.

Compared with the vessel density percentage, geometric perfusion

deficits detection ismore sensitive, making analysis easier (Chen et al.,

2021). Solitary, small (<30 µm) and medium level hyperreflective

retinal foci, which are similar to the retinal fiber layer, may represent

aggregates of activated microglial cells and serve as a biomarker of

inflammation in the retina (Vujosevic et al., 2017; Midena et al.,

2021b). In addition, swept-source OCTA is an improved version of

OCTA that improves visualization of the vitreous and vitreoretinal

interfaces, whereas technological improvements in widefield swept-

source OCTA increase the field of view from 20°C to 50°C (Akiyama

et al., 2018; Cui et al., 2021)

As another important diagnostic tool of DR, FA can detect

primary vascular lesions (e.g., microaneurysms) and advanced

vascular abnormalities (e.g., venous beading and intraretinal

microvascular abnormalities) (Ishibazawa et al., 2015).

However, compared to noninvasive imaging techniques, FA

requires intravenous dye injection and can cause serious

discomfort and stress during detection (Vujosevic et al.,

2017). Furthermore, FA images are limited to two

dimensions; therefore, they cannot clearly visualize the

structures of layered capillary networks (Ishibazawa et al.,

2015). Ultra-wide field (UWF) FA was developed based on

UWF scanning laser ophthalmoscopy, which allows for the

imaging of a larger area of the retina not otherwise captured (Yu

et al., 2020).

4 Treatments

Compared to vitreoretinal surgery and laser

photocoagulation, drug treatment is an emerging

treatment for DR and has received increased attention in

recent years.

4.1 Synthetic molecules

Currently, the drugs which are used in the clinical treatment

of DR are all synthesized molecules. Although they cannot

reverse the damage to vision caused by hyperglycemia-

induced dysfunction of the retina, they do slow down the

progression of DR.

In the past 10 years, anti-VEGF drugs have been used as the

leading drug treatment in patients with DR. Clinical anti-VEGF

drugs include ranibizumab, bevacizumab, and aflibercept (Flaxel

et al., 2020; Yu H. J. et al., 2021). Ranibizumab and bevacizumab

are micromolecular antibody-based drugs with a single target,

whereas aflibercept is a macromolecular recombinant fusion

protein that recognizes ligands of VEGF receptors 1 and 2

(Rojo Arias et al., 2020). In a recent study, aflibercept reduced

the severity of retinal microvascular aberrations and significantly

improved neuroretinal function (Rojo Arias et al., 2020; Yu H.

J. et al., 2021). However, anti-VEGF therapy may be

unsatisfactory, with some complications. First, the most

serious complication of anti-VEGF injections is infectious

endophthalmitis (Fu et al., 2018b). Second, long-lasting VEGF

antagonism may be detrimental to the health of neurons and

vascular cells because VEGF is an important

neurovasculotrophic factor (Usui-Ouchi and Friedlander,

2019). Third, it may potentially increase the development of

age-related macular degeneration-associated geographic atrophy

which is characterized by progressive and irreversible loss of

photoreceptors, RPE cells, and choriocapillaris (Usui-Ouchi and

Friedlander, 2019). In addition, retinal detachment, cataract

formation, and sustained elevated intraocular pressure

occasionally result from VEGF therapy.

Because lipid-lowering agents have protective effects against

DR progression, intravitreal corticosteroids including

triamcinolone acetonide, dexamethasone, fenofibrate, omega-3

fatty acids, and statins are another important clinical drug

treatment for DR (Flaxel et al., 2020; Busik, 2021). Despite

TABLE 4 Biomarkers in imaging tools.

Biomarkers Imaging tool Relevance References

Vessel density percentage OCTA Positive Chen et al. (2021)

Retinal venular tortuosity Fundus photography Positive Forster et al. (2021)

Fractal dimension Fundus photography Negative Forster et al. (2021)

GPD OCTA Negative Chen et al. (2021)

HRF OCTA Positive Midena et al. (2021b)

BG-PVS severity OCT Positive Choi et al. (2021)

GCL thickness OCT Negative Choi et al. (2021)

FAZ FA, OCTA Positive Inanc et al. (2019)

NP UWF FA Positive Yu et al. (2020)

NV UWF EA Positive Yu et al. (2020)

OCT, optical coherence tomography; OCTA, OCT angiography; GPD, geometric perfusion deficit; HRF, hyperreflective retinal foci; BG, basal ganglia; PVS, perivascular space; GCL,

ganglion cell layer; FAZ, foveal avascular zone; FA, fluorescein angiography; NP, nonperfusion; NV, neovascularization; UWF, Ultra-wide field.
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their side effects of cataract progression and elevated intraocular

pressure (IOP), they can be used as second-line agents for DR.

However, most of the IOP caused by dexamethasone can be

successfully managed using IOP-lowering medication, and no

patients would require a surgery for IOP reduction (Bucolo et al.,

2018). In two large randomized placebo-controlled clinical trials,

TABLE 5 Synthetic molecules in preclinical studies.

Role Medicine Administraion Mechanism References

Anti-angiogenesis YK-4–279 Intravitreal injection Reduces neovascular tufts Schafer et al. (2020)

BT2 Intravitreal injection Inhibitor of angiogenesis and vascular permeability by suppressing
pERK-FosB/△FosB–VCAM-1 axis

Li et al. (2020b)

UBX1967 Intravitreal injection Targets elimination of senescent cells by inhibition of BCL-xL Crespo-Garcia et al.
(2021)

NYY01 Intravitreal injection Suppresses pathologic retinal neovascularization, microglial activation,
and inflammatory cytokines; promotes reparative angiogenesis

Zhou et al. (2021)

Boc-FLFLF Subcutaneous injection Inhibits neovessel formation Rezzola et al. (2017)

Linagliptin Subcutaneous injection Mediates GLP-1R-independent anti-angiogenic effects by inhibiting
VEGFR downstream signaling

Kolibabka et al. (2018)

Prevent vascular
leakage

CD5-2 Intravenous injection Prevents vascular leakage by increasing expression of VE-cadherin,
SMAD2/3 activity, and PDGF-B and reduces the activation of microglial
cells

Ting et al. (2019)

Ac-RLYE Intravitreal injection Prevents BRB breakdown and vascular leakage by antagonizing VEGFR-2 Park et al. (2021)

BIRKI Intravitreal injection Restores RPE cell morphology and distribution, favors retinal capillary
dilation, and reduces hypoxia and iBRB leakage

Lebon et al. (2021)

β-agonists Intraperitoneal injection Activates PI3K/Akt signaling pathways in pericytes and attenuates
pericyte loss and vascular leakage

Yun et al. (2018)

Primaquine
diphosphate

Oral Prevents vascular leakage by maintaining endothelial integrity via
ubiquitin specific protease 1 inhibition

Noh et al. (2021)

Anti-inflammatory Semaglutide Eye drops Reduces glial activation, NF-κB, proinflammatory cytokines, and
adhesion molecule-1; prevents RGC cell apoptosis; attenuates vascular
leakage

Simo et al. (2021)

BNN27 Intraperitoneal injection Activates TrkA receptor and inhibits the diabetes-induced increase in
p75NTR expression; decreases the activation of caspase-3, TNFa, and IL-
1b; increases IL-10 and IL-4

Iban-Arias et al. (2018)

Nimbolide Intraperitoneal injection Inhibits inflammation through the inhibition of the TLR4/NF-jB
signaling pathway

Shu et al. (2021)

Melatonin Intraperitoneal injection Inhibits inflammation and OS by enhancing the expression and activity of
Sirt1

Tu et al. (2021b)

SZV 1287 Subcutaneous injection Inhibits AOC3; dual TRPA1/TRPV1 antagonistic activities; reduces the
GFAP immunoreactivity of Müller cell processes

Tekus et al. (2021)

Verapamil Oral Inhibits TLR4, TXNIP, and NLRP3-inflammasomes Eissa et al. (2021)

Tonabersat Oral Regulates assembly of NLRP3 via Connexin43 hemichannel block to
reduce inflammation

Mat Nor et al. (2020)

AMG487 Subcutaneous injection Alleviates PDGFR-β and occludin loss and decreases the residual content
of retinal albumin via the inhibition of OS and ER stress and activation
of p38

Wang et al. (2019)

Neuroprotection PF-05231023 Intraperitoneal injection Reduces inflammatory marker IL1b mRNA levels; activates the Akt-Nrf2
pathway in photoreceptors

Fu et al. (2018b)

rhNGF Intravitreal injection/eye
drop

Recovers optic nerve crush-induced RGC degeneration by reversing the
proNGF/p75NTR increase and TrkA receptors activation

Mesentier-Louro et al.
(2019)

Liraglutide Intravitreal injection Arrests hyperphosphorylated tau-triggered retinal neurodegeneration via
activation of GLP-1R/Akt/GSK3β signaling

Shu et al. (2019)

Rapamycin Intraperitoneal injection Prolongs autophagy activation and improves RGC survival Russo et al. (2018)

hydroxytyrosol Oral Decreases peroxynitrite production; antiplatelet effect; protects
endothelial prostacyclin production

Gonzalez-Correa et al.
(2018)

BCL-xL, B cell lymphoma-xL; Boc-FLFLF, Boc-Phe-Leu-Phe-Leu-Phe; GLP-1R, glucagon-like peptide 1 receptor; VEGFR, vascular endothelial growth factor receptor; PDGF, platelet-

derived growth factor; Ac-RLYE, N-acetylated Arg-Leu-Tyr-Glu; PI3K, phosphoinositide 3-kinase; TLR4, toll-like-receptor-4; TXNIP, thioredoxin-interacting protein; NLRP3, nucleotide-

binding domain-like receptor protein-3; p75NTR, neurotrophin receptor p75; TrkA, tropomyosin-related kinase A; IL, interleukin; TRPA1/TRPV1, transient receptor potential ankyrin

1 and vanilloid 1; GFAP, glial fibrillary acidic protein; Keap1, Kelch-like erythroid-cell-derived protein with CNC homology-associated protein 1; BIRKI, Boehringer Ingelheim Rho kinase

inhibitor; UPARANT, Ac-L-Arg-Aib-L-Arg-L-Cα(Me)Phe-NH2 tetrapeptide; Sirt1, silent information regulator factor 2-related enzyme 1; rhNGF, recombinant human nerve growth

factor; GSK3β, glucogen synthase kinase 3
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fenofibrate, which is commonly used to reduce serum

triacylglycerols, slowed the rate of DR progression possibly by

increasing circulating hematopoietic stem/progenitor cell levels

in patients with DR (Bonora et al., 2021). Furthermore, in a

preclinical study, fenofibrate attenuated OS and

neuroinflammation, possibly by modulating Nrf2 expression

and NLRP3 inflammasome activation (Liu Q. et al., 2018).

Calcium dobesilate is the only antioxidant that is used in the

clinical treatment of DR, although it is not included in clinical

guidelines by the American Academy of Ophthalmology It can

improve microcirculation and exert vascular-protective effects.

The clinical efficacy of calcium dobesilate for DR is achieved by

alleviating the high permeability of retinal vessels, which has a

beneficial effect on the permeability of the BRB (Liu J. et al.,

2019).

Additionally, some drugs for DR are undergoing clinical

trials, such as fasudil, which is a clinically approved Rho-

associated kinase inhibitor. However, owing to its short half-

life, frequent repetition of intraocular injections is required,

which limits further clinical development (Lebon et al., 2021).

Meanwhile, we collated information on certain drugs being

investigated for the treatment of DR, including anti-

angiogenic, anti-vascular leakage, anti-inflammatory, anti-

oxidative damage, and neuroprotective agents (Table 5). Some

of these drugs play multiple roles in the treatment of DR. For

example, melatonin and SZV1287 have both anti-inflammatory

and antioxidant effects (Tu et al., 2021b; Tekus et al., 2021). The

pathogenesis of DR is complex, therefore, multi-targeted drugs

may be more effective.

4.2 Natural molecules

It is well known that natural materials have a long history

with rich clinical experience in preventing and treating diseases,

and these materials include plants, animals, microbes, and

minerals. Natural molecules extracted from natural materials

are important sources of drugs, and plants are the most

commonly used natural materials. Additionally, with the

development in society, people are increasingly becoming

concerned about their health, and returning back to nature

has become a trendy idea. Therefore, natural molecules have a

great potential value. Recently, an increasing number of

experimental studies have been conducted on the mechanism

TABLE 6 Natural molecules.

Medicine Major source Mechanism References

Asiatic acid Centella asiatica (L.)
Urban

Ameliorates early DR by regulating microglia polarization by the TLR4/MyD88/
NF-κB p65 pathway

Fang et al. (2021)

Berberine Coptis chinensis Franch Suppresses AGE formation through TLR4/STAT3/VEGF signaling pathway
in ECs

Wang et al. (2021)

Caffeine Coffea arabica L Counteracts inflammation Conti et al. (2021)

Chlorogenic acid Lonicera japonica
Thunb

Alleviates BRB injury by reducing microglia-initiated inflammation; prevents
TNF-α-induced EMT and oxidative injury by inducing activation of Nrf2

Mei et al. (2018)

Curcumin Curcuma longa L Suppresses oxidative stress to protect ECs via regulation of ROS/NF-κB pathway;
Protect RPEs via ERK1/2-mediated activation of the Nrf2/HO-1 pathway

(Platania et al., 2018; Bucolo et al., 2019;
Huang et al., 2021)

Dihydrotanshinone Salvia miltiorrhiza
Bunge

Preserves BRB integrity from high glucose/BzATP damage; inhibits
inflammation by acting on TLR-4

Fresta et al. (2020a)

Ginsenoside Rg1 Panax ginseng C.
A. Mey

Prevents hyperphosphorylated tau-induced synaptic neurodegeneration of RGCs
by activating IRS-1/Akt/GSK3β signaling

Ying et al. (2019)

Gypenoside XVII Panax poseudogindeng
Wall

Decreases apoptosis and increases autophagy in Müller cells Luo et al. (2021)

Geniposide Gardenia jasminoides
Ellis

Alleviates oxidative stress and inflammation through the Nrf2 signaling pathway
via GLP-1R

Tu et al. (2021a)

Lutein Widely found in plants Inhibits the growth of RPE cells and protect them against oxidative stress-
induced cell loss

Gong et al. (2017)

Lycopene Lycopersicon
esculentum Mill

Inhibits the growth of RPE cells and protects them against oxidative stress-
induced cell loss

Gong et al. (2017)

Kaempferol Kaempferia galanga L Protects RPE cells against oxidative stress damage and apoptosis Du et al. (2018)

Quercetin Pinaceace Induces HO-1 expression Chai et al. (2021)

Resveratrol Veratrum album Counteracts NOX-mediated EMT in ECs via inhibition of PKC Giordo et al. (2021)

Sulforaphane Cruciferae May delay photoreceptor degeneration may via inhibition of ER stress,
inflammation, and Txnip expression through the activation of the AMPK
pathway

Lv et al. (2020)

STAT3, signal transducer and activator of transcription 3; TNF-α, tumor necrosis factor-α; EMT, endothelial-mesenchymal transition; ERK1/2, extracellular signal regulated kinases 1 and

2; HO-1, heme oxygenase-1; BzATP, 2’(3’)-O-(4-Benzoylbenzoyl)adenosine-5’-triphosphate; IRS-1, insulin receptor substrates 1; PKC, protein kinase C.
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of natural molecules in the prevention and treatment of DR. We

have compiled certain natural molecules (in preclinical studies)

used for the treatment of DR in recent years (Table 6). Moreover,

marine organisms serve as an emerging source of novel bioactive

compounds and can be developed for the treatment of DR. For

example, fucoxanthin extracted from seaweed has a protective

effect on the retina by increasing catalase and reducing OS

(Chiang et al., 2020).

4.3 Administration

The administration routes for synthesized molecules in

preclinical studies include injection, oral, and eye drops (see

Table 5). Among the injectable routes, intravitreal injection is the

most commonly used clinical method for the treatment of DR.

However, compared to intravitreal injection, subcutaneous

injection, intraperitoneal injection, and intravenous injection

are more suitable as they are noninvasive to the eyes,

although they are usually only used in animal models of DR

at present. Additionally, pharmacokinetic and

pharmacodynamics changes with aging also represent

an important aspect that needs to be considered (Leley et al.,

2021).

5 Perspective

In recent years, the definition of DR has transformed from

microangiopathy to highly tissue-specific neurovascular

complication, and neurodegeneration in DR has become a hot

research topic. However, the pathological mechanisms of DR are

complex and diverse, and several potential mechanisms require

further in-depth research and investigation. The spatiotemporal

correlations between the currently known pathological

mechanisms have not been integrally studied. Therefore, this

could be a potentially important research direction for future

studies. A clear sequence of DR pathogenesis in time and space

could facilitate the identification of the progress and the

therapeutic targets of DR.

Understanding the pathological mechanism of DR is the

basis for the development of new biomarkers of this disease. The

lack of effective diagnostic biomarkers for DR can lead to

unsatisfactory curative treatments, and the identification of

biomarkers is crucial for uncovering the underlying

mechanisms of DR and making a clear classification in

clinical diagnosis. More importantly, research on potential

drug targets is based on clear pathogenesis and effective

biomarkers. Currently, the search for biomarkers and

therapeutic interventions for DR is focused on the treatment

of late phases of the disease. Therefore, biomarkers and drugs for

early DR (including neuropathy and NPDR) will be the key for

future research. In addition, combinatorial biomarkers are worth

considering, as their sensitivity is significantly higher than that of

individual biomarkers.

Currently, although there are drugs already approved for DR

treatment, they are not completely effective in curing DR, and

most of them only decelerate disease progress. Thus, the

development of new drugs remains crucial. However,

pathological mechanisms of DR are complicated, and

combination drug therapy with versatile targets is perhaps

more effective for DR treatment.
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