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The organization of the Alzheimer’s disease (AD) connectome has been studied using graph theory using single neuroimaging
modalities such as positron emission tomography (PET) or structural magnetic resonance imaging (MRI). Although these modalities
measure distinct pathological processes that occur in different stages in AD, there is evidence that they are not independent from
each other. Therefore, to capture their interaction, in this study we integrated amyloid PET and gray matter MRI data into a multiplex
connectome and assessed the changes across different AD stages. We included 135 cognitively normal (CN) individuals without
amyloid-β pathology (Aβ−) in addition to 67 CN, 179 patients with mild cognitive impairment (MCI) and 132 patients with AD
dementia who all had Aβ pathology (Aβ+) from the Alzheimer’s Disease Neuroimaging Initiative. We found widespread changes in the
overlapping connectivity strength and the overlapping connections across Aβ-positive groups. Moreover, there was a reorganization
of the multiplex communities in MCI Aβ + patients and changes in multiplex brain hubs in both MCI Aβ + and AD Aβ + groups. These
findings offer a new insight into the interplay between amyloid-β pathology and brain atrophy over the course of AD that moves
beyond traditional graph theory analyses based on single brain networks.
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Introduction
Alzheimer’s disease (AD) is a slowly evolving neurode-
generative disorder that usually begins with an inability
to form new memories and progresses to a wide range of
cognitive deficits (Winblad et al. 2016). The underlying
pathological processes of AD are characterized by the
abnormal accumulation of amyloid-β (Aβ) into plaques
and the aggregation of tau into neurofibrillary tangles
(Braak and Braak 1991). These processes are normally
followed by neurodegeneration, suggesting that AD is a
complex and multifactorial disease (Grothe et al. 2016).

With the development of advanced neuroimaging
techniques, it is now possible to assess these diverse
aspects of AD pathology in vivo. For instance, with
positron emission tomography (PET), we can quantify the
regional deposition of Aβ in the brain, whereas structural
magnetic resonance imaging (MRI) allows measuring
regional gray matter atrophy. Several studies have shown
that these imaging modalities detect abnormalities in

different brain areas during the course of AD (Jack
et al. 2010). In addition, they have also shown that
these modalities can be used to represent the brain as
a complex network, formed by brain regions and their
connections, known as the brain connectome (Bullmore
and Bassett 2011). For instance, using structural MRI
and Aβ PET, several studies have shown changes in
the connectome of AD patients (Tijms et al. 2013;
Pereira et al. 2016, 2018). The connectome estimated
with structural MRI relies on the assessment of the
regional co-variation of the mean values of cortical
thickness or gray matter volumes across subjects.
The assumption behind this approach is that cortical
morphologic characteristics (e.g., neuronal and synaptic
density, myelination level, and spatial arrangement)
display similarities between connected regions (Griffa
et al. 2013). Similarly, the amyloid PET connectome
relies on the assessment of the regional co-variation of
the mean values of PET tracer uptake across subjects
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(Sala and Perani 2019). In this case, increased connectiv-
ity between two regions would mean they are affected to
a similar extent by amyloid pathology across different
subjects. For both the structural MRI and amyloid-
PET connectomes in the context of AD, the increased
connectivity between brain regions is expected to be
associated with the spread of gray matter atrophy and
amyloid pathology, respectively.

To our knowledge, no studies have combined struc-
tural MRI and Aβ PET data within a multiplex con-
nectome to study the interaction between gray matter
atrophy and amyloid pathology in AD. A multiplex
connectome is a type of multilayer network where
only interlayer edges are allowed between homologous
nodes (Guillon et al. 2019), which means that a region
is only connected to its replicas in the different layers.
The novelty of this approach is that it allows assessing
the relationship between networks built using multiple
neuroimaging modalities, being relevant for a disorder
such as AD, which is characterized by abnormalities
in multiple pathological processes (Jack et al. 2010,
2013). To our knowledge, the only studies that have
assessed the multiplex connectome in AD have used
functional data derived from magnetoencephalography,
electroencephalography, or functional MRI (Guillon et
al. 2017; Yu et al. 2017; Guillon et al. 2019; Cai et al.
2020). Combining Aβ PET and structural MRI data within
a multiplex connectome in AD is important because,
although both amyloid deposition and brain atrophy
occur in the course of the disease (Jack et al. 2010),
their relationship is not well understood, partly because
these two pathological events take place at distinct
points in time during the disease progression, with
amyloid changes occurring first, being followed much
later by brain atrophy (Bateman et al. 2012). Moreover,
although the spatial topographies of amyloid deposition
and brain atrophy do not overlap, there is increasing
evidence showing they correlate with each other since
early disease stages, including in individuals without
cognitive symptoms (Harrison et al. 2021). Altogether,
these lines of evidence suggest that the relationship
between amyloid and atrophy in AD warrants further
investigation. There are currently different multiplex
network measures that can be applied to improve our
understanding of this relationship. The most basic ones
are the overlapping strength and the degree overlap.
The overlapping strength is the sum of the connectivity
strength between brain regions in the gray matter and
amyloid layers and reflects how strongly the regions
are connected to each other when the two layers are
combined together, which is useful to understand the
additive effects of amyloid and gray matter pathology
in AD. The degree overlap shows which brain areas
in the two layers have the exact same connections,
which allows identifying regions that play a similar role
across layers due to their common connectivity profile.
Finally, more complex measures such as the multiplex
communities identify the brain modules across the two

layers, whereas the multiplex participation coefficient
shows how evenly a brain region is connected in the
two layers. The multiplex communities are important to
understand the similarity in the brain modules present
in the two layers. In contrast, the multiplex participation
assesses the balance of connectivity that a brain region
shows in the amyloid and gray matter layers: if there is
an imbalance it means that the region is more important
in one layer compared to the other; if there is a balance it
means that the region can be considered as a multiplex
brain hub. Finally, the multiplex clustering calculates
the number of triangles formed by connections between
three brain regions located in different layers, providing
information about the existence of clusters that may play
a role in specialized information across the two layers.

The aim of our study, which was explorative in
nature, was to assess whether these different multiplex
network measures could provide new insights into
the interaction between amyloid pathology and gray
matter atrophy across different stages of AD including
cognitively normal (CN) individuals with (Aβ+) and
without (Aβ−) Aβ pathology as well as cognitively
impaired individuals with Aβ pathology (Aβ+) who were
diagnosed with mild cognitive impairment (MCI) and
AD dementia. We hypothesized that in early stages of
AD (CN Aβ+), these changes would be more focalized
and restricted to medial temporal regions, whereas
in later disease stages these changes would be more
widespread and affect areas from the parietal, occipital
and frontal lobes. The novelty of our study was to move
beyond traditional graph theory approaches that analyze
brain networks using single imaging modalities to a
more complex approach that integrates T1-weighted
and 18F-Florbetapir PET networks within a multiplex
connectome. This approach allows assessing gray matter
and amyloid data together, showing whether they
display a similar connectivity profile (degree overlap)
and revealing their combined connectivity strengths and
communities (overlapping strength, multiplex modules)
as well as potential imbalances in the regional connec-
tions between the two layers (multiplex participation)
or the presence of clusters of connections across layers
(multiplex clustering). Importantly, this approach has
only been applied in AD in a few studies but never
using 18F-Florbetapir PET and T1-weighted data, which
are interesting to analyze in this context given that,
although these imaging modalities capture earlier and
later changes in AD (Jack et al. 2010, 2013), respectively,
they correlate with each other since very early disease
stages indicating they are not independent from each
other (Harrison et al. 2021).

Materials and Methods
Subjects
The data used in this study were obtained from
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI2/GO), which was downloaded in 06/03/2020
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(http: //adni.loni.usc.edu). Only subjects with T1-weighted
and 18F-Florbetapir PET data that passed quality control
were included. In addition, all included subjects had
demographic and clinical data as well as cerebrospinal
fluid levels of Aβ42, a well-established marker of AD
pathology (Fagan and Perrin 2012).

The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to
test whether serial MRI, PET, other biological markers,
and clinical and neuropsychological assessment can
be combined to measure the progression of MCI and
early AD. The inclusion/exclusion criteria from ADNI are
described in detail at http://www.adni-info.org/. In brief,
all subjects were between the ages of 55 and 90 years,
had completed at least 6 years of education and were
fluent in Spanish or English. The inclusion criteria for CN
subjects were Mini-Mental State Examination (MMSE)
scores between 24 and 30, a Clinical Dementia Rating-
Sum of Boxes (CDR-SB) score of 0, and lack of depression,
MCI, or dementia. Inclusion criteria for the MCI group
followed the Peterson criteria (Petersen et al. 1999) for
amnestic MCI. AD participants met the National Institute
for Neurological and Communicative Disorders and
Stroke-Alzheimer’s Disease and Related Disorder Asso-
ciation (NINDS/ADRDA) criteria for probable AD, had an
MMSE score between 18 and 26, and a CDR-SB of 0.5–1.0.
Exclusion criteria for all participants comprised history
of structural brain lesions or head trauma, significant
neurological disease other than incipient AD, and the use
of psychotropic medications that could affect memory.

The ADNI is conducted in accordance with the ethi-
cal standards of the institutional research committees
and with the 1975 Helsinki declaration and its later
amendments. Written informed consent, obtained from
all subjects and/or authorized representatives and study
partners, and ethical permits have been obtained at each
participating site of ADNI and we have signed the data
user agreements to analyze the data.

Cerebrospinal Fluid Analysis
Lumbar puncture was performed to measure cere-
brospinal fluid (CSF) Aβ42 levels using the fully auto-
mated Roche Elecsys-amyloid (1–42) CSF immunoassay
(Bittner et al. 2016; Shaw et al. 2016). This assay is
currently under development and used for research
purposes only. In addition, the performance of the
assay has not yet been formally established for Aβ42
concentrations <200 pg/ml or > 1700 pg/ml. None of
the subjects of this study had Aβ42 concentrations
<200 pg/ml and the concentrations of Aβ42 > 1700 pg/ml
were replaced by 1700 pg/ml. Abnormalities in CSF Aβ42
levels were established using a previously established
cut-off of CSF Aβ42 < 976.6 pg/ml (Hansson et al. 2018).

Group Classification
Subjects were classified into 4 groups according to CSF
Aβ42 biomarker levels and clinical diagnosis based on
previous evidence showing that Aβ pathology is one of

the earliest events in AD and is followed by cognitive
decline and dementia (Jack et al. 2013). The groups
consisted of 135 Aβ-negative CN, 67 Aβ-positive CN, 179
Aβ-positive MCI patients and 132 Aβ-positive AD
patients. Patients with MCI and AD without Aβ pathology
were excluded since they are not part of the AD
continuum and may potentially have a non-AD disorder
(Jack et al. 2018). In this study, we used CSF Aβ42 instead
of 18F-Florbetapir PET levels to define Aβ status due to
previous evidence showing that CSF Aβ42 detects earlier
signs of amyloid pathology compared to amyloid-PET
(Mattsson et al. 2015; Palmqvist et al. 2016; Guo et al.
2020) as well as to avoid any circularity in our analyses by
not using the same variable for both group stratification
and the network analyses. The total number of cases
in our study with a discordant Aβ status based on
CSF Aβ42 and 18F-Florbetapir PET values was 67, which
corresponds to 13% of the total sample.

Image Acquisition and Preprocessing
T1-Weighted MRI

All participants underwent 3 T MRI scanning using a
Magnetization Prepared RApid Gradient Echo (MPRAGE)
T1-weighted sequence. The T1-weighted images were
preprocessed using FreeSurfer version 5.3 (https://
surfer.nmr.mgh.harvard.edu). Briefly, after motion cor-
rection, removal of non-brain tissue using a hybrid
watershed/surface deformation procedure (Ségonne
et al. 2004) was performed, followed by automated
Talairach transformation. Then, the segmentation of
the subcortical white matter and deep gray matter
volumetric structures was carried out (Fischl et al.
2004), followed by intensity normalization (Sled et al.
1998), tessellation of the gray matter white matter
boundary, automated topology correction (Fischl et al.
2001; Ségonne et al. 2007), and surface deformation (Dale
and Sereno 1993; Dale et al. 1999; Fischl and Dale 2000).
The output of these preprocessing steps was visually
inspected to ensure that the analyses had been carried
out correctly. Thirteen subjects underwent corrections
due to errors in white matter segmentation before
being included in the analyses. The mean thickness of
the 68 cortical regions included in the Desikan atlas
(Desikan et al. 2006) in addition to the volumes of the
hippocampus and amygdala (Fischl et al. 2002) were
included in our analyses (Supplementary Figure 1A),
similarly to a previous study (Pereira et al. 2018). To
account for the influence of head size on volumetric
measures, the subcortical volumes were corrected by the
total intracranial volume using the following approach
(Jack et al. 1989): Adjusted Volumei = Observed Volumei

−β· (TIVi − TIV) where TIVi is the i-th subject’s Total
Intracranial Volume (TIV), TIV is the overall average TIV,
and the β is the slope of the regional volume regressed
on the TIV.

Amyloid PET
18F-Florbetapir PET images acquired within 6 months
from the T1-weighted images were also downloaded

http
//adni.loni.usc.edu
http://www.adni-info.org/
https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab429#supplementary-data


3504 | Cerebral Cortex, 2022, Vol. 32, No. 16

from the ADNI database. These images were acquired
in four 5-min frames, 50–70 min after injection of
approximately 10 mCi. Then, the 4 frames were coreg-
istered, averaged and interpolated to a uniform image
and voxel size (160 × 106 × 96 voxels, 1.5 mm3). The
preprocessed PET images were then coregistered to the
structural MRI scan and submitted to partial volume cor-
rections using the PETSurfer pipeline (Greve et al. 2014,
2016) (FreeSurfer version 6.0.0, https://surfer.nmr.mgh.
harvard.edu/fswiki/PetSurfer) in which the point-spread
function (PSF) of 8 mm was used (Gonzalez-Escamilla
et al. 2017). Mean 18F-Florbetapir standard uptake
value ratio (SUVR) values (Supplementary Figure 1B)
from the same brain regions included in T1-weighted
analyses were calculated using the whole cerebellum as
a reference region.

Multiplex Network Construction
For each group, we constructed a multiplex network
with two layers: one with the gray matter network and
the other with the amyloid network. Each network was
built as a collection of nodes representing brain regions
connected by edges. In the gray matter network, the
nodes were defined using the mean cortical thickness
or subcortical volumes of 72 brain regions, whereas in
the amyloid network the nodes were defined using the
mean SUVR values of the same brain regions (Figure 1A).
For each network, the edges were calculated as the par-
tial correlation coefficients between every pair of brain
regions using Pearson’s R (Figure 1B), while controlling
for the effects of age and sex. All self-connections were
ignored. Then the gray matter layer and the amyloid layer
were integrated into a multiplex network (Figure 1C).
This multiplex network can be represented in a weighted
supra-adjacency matrix W (Figure 1B.1), which is given
by the intra-layer adjacency matrices on the main diag-

onal W =
{
w[α]

ij

}
, where w[α]

ij is the weight of the edge

between nodes i and j in layer α = 1, 2. Layer 1 corresponds
to the gray matter layer and layer 2 to the amyloid
layer. Both layers have N = 72 nodes. Since most graph
theory measures are influenced by the number of con-
nections (Fornito et al. 2013), in addition to conducting
the network analyses on weighted connectivity matrices,
we also performed the analyses on matrices that were
binarized using a range of densities to ensure that the
two layers and all groups had the same number of con-
nections (represented in Figure 1B.2).

Multiplex Network Analysis
Weighted Analysis

We calculated the overlapping strength (Figure 1D)
and the multiplex communities (Figure 1E) using the
weighted supra-adjacency matrix W. The overlapping
strength is the sum of the connectivity strength of a
node in both layers (Figure 1D), defined as:

si = s[1]
i + s[2]

i (1)

where s[1]
i and s[2]

i are the strength of node i in layer 1 and
layer 2, respectively.

In order to calculate the multiplex communities, we
used a multilayer version of the modularity quality func-
tion (Mucha et al. 2010), which can be calculated for two
layers as:

Q = 1
μ

N∑
i,j=1

[(
w[1]

ij + w[2]
ij

)
− γ

(
w[1]

0,ij + w[2]
0,ij

)
+ 2ωδij

]

× δ
(
g[1]

i + g[1]
j

)
δ
(
g[2]

i + g[2]
j

)
(2)

where μ is the total weights of the edges, γ is the resolu-
tion parameter, w[1]

0,ij and w[2]
0,ij are the weights of the asso-

ciated null matrices for layer 1 and layer 2, respectively,
ω is the inter-layer coupling parameter, δij= 1 if i = j and 0

otherwise, g[1]
i and g[2]

i are the community assignment of

node i at layer 1 and layer 2, respectively, g[1]
j and g[2]

j are
the community assignment of node j at layer 1 and layer

2, respectively, and δ
(
g[1]

i + g[1]
j

)
= 1 and δ

(
g[2]

i + g[2]
j

)
= 1 if

the community assignments g[1]
i , g[1]

j and g[2]
i , g[2]

j of nodes
i and j are the same and 0 otherwise.

The null models W[1]
0 =

{
w[1]

0,ij

}
and W[2]

0 =
{
w[2]

0,ij

}
are obtained by randomizing the edges of each layer,
while maintaining the layer node’s strength (Newman
and Girvan 2004; Newman 2006). By varying the resolu-
tion parameter γ , we can control the size and number
of the detected communities (or modules). Low values
of γ produce fewer but larger communities, while high
values of γ produce many smaller communities. The
parameter ω controls the weights of the edges between
layers. Small values of ω will highlight the unique mod-
ular structure of each layer, while larger values highlight
the shared modular structure across layers. We com-
puted the multiplex communities using different combi-
nations of resolution parameters {0.5, 0.8, 0.9, 1, 1.1, 1.2,
2} and inter-layer parameters {0.25, 0.5, 0.75, 1}. Then,
we calculated the normalized Variation of Information
(VI) (Meilă 2007), which is a measure of distance between
two community partitions, to identify the most optimal
parameters (Supplementary Figure 2). We used the code
of partition_distance from BCT (Rubinov and Sporns 2010)
to calculate the normalized VI matrix. Based on this
matrix, the most optimal parameters in our study were a
resolution parameter γ = 1 and an inter-layer parameter
ω = 1, which also led to a coherent number of mod-
ules. To optimize the multilayer modularity, we used the
code of the generalized version of the Louvain algorithm
implemented in MATLAB provided by the genlouvain
package (Jeub et al. 2011-2019). Using this algorithm, the
multilayer communities are obtained by maximizing the
multilayer modularity through several iterations until
the most optimal and stable module partition is found.
The result of this measure is a number for each node
that indicates the community assignment in the gray
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Fig. 1. Overview of the methodology. For each group of individuals, gray matter-amyloid multiplex networks were built as a set of nodes connected by
edges. The nodes were defined as the mean gray matter values for the first layer and as the mean amyloid SUVR values for the second layer of the
multiplex network of 72 cortical and subcortical brain regions (A). The edges in both layers correspond to the partial correlation coefficients between
every pair of brain regions, while adjusting for age and sex (B). These weighted matrices (B.1) were also binarized (B.2) using a range of densities to
ensure the two layers had the same number of connections. The weighted and binary multiplex connectomes can be represented by a weighted supra-
adjacency matrix (B.1) and binary supra-adjacency matrix (B.2), where the off-diagonal matrices are the connections between layers (inter-layer) and the
diagonal matrices are the intra-layer matrices containing the structural and the amyloid edges, respectively. The intra-layer adjacency matrices were
then integrated into a multiplex network (C). The nodal overlapping strength (D) and the multiplex brain modules (E) were calculated in the weighted
multiplex networks, whereas the nodal degree overlap (F), the multiplex participation coefficient (G), and the multiplex clustering coefficient (H) were
calculated in the binary multiplex networks.

matter layer and another number that indicates the
community assignment in the amyloid layer. In that way,
the communities of each layer are comparable, because
they come from the same modularity optimization.

Finally, we also computed the persistence of the mul-
tilayer communities obtained for each group as the nor-
malized sum of the number of nodes that belong to the
same community in the two layers (Jeub et al. 2011-2019).
The persistence varies between 0 (no persistence) and 1
(high persistence).

Binary Analysis

To compare topological measures in the multiplex
connectome between groups we used the binary supra-

adjacency matrix A =
{
A[1], A[2]

}
. The adjacency

matrices A[1] and A[2] were obtained from the weighted

supra-adjacency matrix W =
{
W[1], W[2]

}
by binarization

(Figure 1B.2, binary matrix) using a range of network
densities D to ensure all groups had the same number
of edges in both layers: Dmin = 2% to Dmax = 30%, in steps
of 1%. The minimum density (2%) was chosen to ensure
that the number of edges was higher than the number
of nodes and therefore avoid widely disconnected layers.
The maximum density (30%) was selected to ensure a
small-world index >1 (Supplementary Table 1), which
is typical of networks with a biologically meaningful

organization (Bullmore and Sporns 2012; Muldoon et al.
2016).

The network topology can be assessed using a variety
of measures that characterize the centrality, the integra-
tion, and the segregation of a network.

In this study, we calculated the degree overlap
(Figure 1F) as a measure of multiplex centrality. This
measure provides the overlapping connections of the
multiplex network, which are the number of edges
connected to a node i in both layers. It is defined as:

di =
N∑

j=1

a[1]
ij a[2]

ij (3)

where a[1]
ij is the link between node i and j in layer 1 and

a[2]
ij is the link between node i and j in layer 2.

We also evaluated the integration between layers by
calculating the nodal multiplex participation coefficient
(Figure 1G). The nodal multiplex participation coefficient
pi measures how evenly a node i is connected to the
different layers of the multiplex network: higher values
of pi can be found in a node that has a similar participa-
tion coefficient in the different layers of the multiplex
network. Moreover, nodes with high pi are considered
central or multiplex hubs as they would allow for a better
exchange of information between different layers. The
multiplex participation coefficient of node i is defined as

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab429#supplementary-data
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(Battiston et al. 2014):

pi = M
M − 1

⎡
⎣1 −

M∑
α=1

(
k[α]

i

oi

)2
⎤
⎦ (4)

where M is the number of layers, k[α]
i is the degree of node

i at the α-th layer and oi = ∑
αk[α]

i is the overlapping
degree of node i. If the node i has the same degree in
all layers, pi is equal to 1. In contrast, if the degree of
node i is different from zero in only one layer, pi is equal
to 0.

Finally, we evaluated the segregation between layers
by calculating the multiplex clustering coefficient
(Figure 1H), a measure that reflects the presence of
triangles (number of neighbors of a node that are also
neighbors of each other) between the different layers. In
multiplex networks, an α-triad (α-triangle) is defined as a
triad (triangle), which uses edges from α different layers.
For each node i, the multiplex clustering coefficient ci is
defined as the ratio between the number of 2-triangles
with a vertex in i and the number of 1-triads centered in
i (Battiston et al. 2014):

ci =
∑

α

∑
β �=α

∑
i �=m,j

(
a[α]

ij a[β]
jm a[α]

mi

)1/
3

(M − 1)
∑

αk[α]
i

(
k[α]

i − 1
) (5)

where a[α]
ij is the link between node i and j in layer α.

Thus, ci quantifies the fraction of triangles where edge
jm belongs to layer β, while the other two edges ij and im
belong to layer α.

The construction of multiplex brain networks and
graph theory analysis were performed using an adapted
version of Brain Analysis using Graph Theory (BRAPH
(Mijalkov et al. 2017), http://braph.org/).

Statistical Analysis
To assess differences between groups in demographic,
clinical and genetic variables, the Kruskal–Wallis rank
sum test was applied due to the non-normal distribution
of the data using R Studio (version 4.0.3).

To assess the statistical significance of the differences
in the network measures between groups, we carried out
nonparametric permutation tests with 10 000 replicates
(Bassett et al. 2008; He et al. 2008). First, we calculated
the difference of the network measures values between
every pair of groups. In the binary analyses, this was done
at each network density (2%–30%). Then, we obtained
an empirical distribution of the difference by randomly
reallocating all the values into 2 groups and recalculating
the mean differences between the 2 randomized groups.
This randomization procedure was repeated 10 000 times
and the 95th confidence intervals of the resulting dis-
tribution were used as the critical values for a 2-tailed
test at P < 0.05. The P-values of the 72 brain regions

obtained from the group comparisons in the binary anal-
yses were averaged across densities. Finally, false dis-
covery rate (FDR) corrections (Benjamini and Hochberg
1995) were applied across the 72 brain regions to con-
trol for multiple comparisons (q < 0.05). The multiplex
analyses results were visualized with ggseg, a Visual-
ization for Brain Statistics R-package (Mowinckel and
Vidal-Piñeiro 2019), using the two available atlases, the
Desikan-Killany atlas (aparc) and the automatic subcor-
tical segmentation atlas (aseg).

Data Availability
All the data used in the current study were obtained from
ADNI, an open-access multicenter cohort that anyone
can apply for. The code that was used in this study will be
made available through our freeware graph theory soft-
ware BRAPH, and can be downloaded from the following
website: http://braph.org/.

Results
The characteristics of the sample can be found in
Table 1. Age, sex, education, MMSE, APOE ε4, CSF Aβ42,
and the percentage of amyloid-PET-positive cases were
compared between all groups with the Kruskal–Wallis
rank sum test.

As expected, the MCI and AD patients had worse MMSE
scores and the prevalence of the APOE ε4 allele was
higher in the Aβ-positive compared to the Aβ-negative
groups.

Multiplex Weighted Analysis
Nodal Overlapping Connectivity Strength

We observed higher overlapping connectivity strength
in CN Aβ + (Figure 2A) and MCI Aβ + groups (Figure 2B)
compared to the CN Aβ− group in widespread brain
areas, with the greatest differences being found in the
parahippocampal gyri and temporal poles. In contrast,
AD Aβ + patients showed less widespread increases in
this measure compared to the CN Aβ− group, with the
main changes being observed in left temporal areas but
also a few parietal and frontal regions (Figure 2C). MCI
Aβ+ patients also showed a higher overlapping strength
in the hippocampi and left amygdala compared to AD
Aβ+ patients (Figure 2D).

Overall, these results showing greater overlapping
strength changes in the CN Aβ+ and MCI Aβ+
individuals compared to the other groups were due
to the overall greater connectivity strength between
brain areas in their amyloid connectivity matrices
(Supplementary Figure 3), which when summed to
the connectivity strength in the gray matter matrices
gave place to higher multiplex overlapping strength in
these two groups. There were no significant differences
between AD Aβ+ and CN Aβ+ or between MCI Aβ+ and
CN Aβ+.

http://braph.org/
http://braph.org/
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab429#supplementary-data
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Table 1. Characteristics of the sample and values represent medians followed by the interquartile range for each group, unless
otherwise specified

CN Aβ− (n = 135) CN Aβ + (n = 67) MCI Aβ + (n = 179) AD Aβ + (n = 132) P-value

Age (years) 73 (9.55) 72.9 (8.1) 74.2 (9) 74.6 (11.18) 0.720
Sex (f/m) 73/62 40/27 76/103 55/77 0.019
Education (years) 17 (3) 17 (2) 16 (4) 16 (4) 0.008
MMSE 29 (2) 29 (1) 28 (3) 23 (4) <0.001
APOE ε4 (%) 20 44.8 62 72 <0.001
CSF Aβ42 (pg/ml) 1587 (399.5) 752.9 (322.95) 686.1 (283.4) 585.2 (233.7) <0.001
Amyloid-positive PET (%) 12.59 74.63 83.24 97.73 <0.001

Fig. 2. Significant differences between groups in the nodal overlapping strength. There were significant overlapping strength increases in CN
Aβ + compared to the CN Aβ− group (A), in MCI Aβ + compared to the CN Aβ− group (B), in AD Aβ + compared to the CN Aβ− group (C) and in
MCI Aβ + compared to the AD Aβ + group (D). Lighter orange indicates larger increases. All results were adjusted for multiple comparisons using FDR
corrections at q < 0.05.

Multiplex Brain Modules

We identified 2 modules in the AD Aβ+, CN Aβ+ and
CN Aβ− groups, whereas the MCI Aβ + group presented
3 modules (Figure 3).

In the CN Aβ− group (Figure 3A), module I was the
largest and included frontal, parietal, occipital and lat-
eral temporal regions, whereas module II included areas
of the limbic system such as the cingulate gyrus, insula,
medial temporal areas, amygdala, and hippocampus. Dif-
ferences in the modules between the two layers were
observed only in a few regions, with module II includ-
ing more temporal areas in the gray matter layer. The
persistence of the multiplex modules in this group was
0.88.

In the CN Aβ+ group (Figure 3B), the modules showed
a similar pattern. For instance, module I included frontal,
parietal, occipital and left lateral temporal regions
whereas, module II included limbic regions in both
layers. Differences in the modules between the two
layers were observed only in a few regions, with module
II including more parietal areas in the amyloid layer.

The persistence of the multiplex modules in CN Aβ+
was 0.85.

In the MCI Aβ+ group (Figure 3C), there were three
clearly defined modules. Module I included anterior
frontal, medial frontal and medial parietal regions,
whereas module II included sensorimotor, parietal and
occipital areas and module III included temporal regions.
The only difference between the modules in the two
layers was found in the precuneus, which belonged to
the amyloid but not the gray matter layer in module I.
The persistence in this group was the highest and equal
to 0.97.

Finally, in the AD Aβ+ group (Figure 3D), module I
included anterior frontal, medial parietal, and areas of
the limbic system, whereas module II comprised senso-
rimotor, parietal, middle temporal, and inferior temporal
regions. There were differences in modules composition
in the frontal pole, belonging to module I in the gray
matter layer and to module II in the amyloid layer. Sim-
ilar to the MCI Aβ + group, the persistence of the AD
Aβ + modules was equal to 0.97.
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Fig. 3. Multiplex brain modules for each group. We found 2 modules in the CN Aβ− group (A), 2 modules in the CN Aβ + group (B), 3 modules in the MCI
Aβ + group (C), and 2 modules in the AD Aβ + group (D).

Multiplex Binary Analysis
Nodal Degree Overlap

The CN Aβ + group showed a lower nodal degree overlap
compared to CN Aβ− subjects in the bilateral entorhinal
cortex, the right transverse temporal, and the bilateral
amygdala (Figure 4A). These results were driven by a loss
of connectivity between the left side of these regions and
the right side in the two layers in CN Aβ + subjects, as can
be observed in the connectogram.

In addition, we found significant degree overlap
decreases in the bilateral entorhinal cortex, bilateral
parahippocampal gyri, bilateral lateral occipital gyri, and
bilateral cuneus in the MCI Aβ + compared to the CN
Aβ− group (Figure 4B). These decreases were due to a
loss of connections between the left and right entorhinal
cortex, the left and right parahippocampal gyrus, and
several connections between occipital, parietal, and
temporal areas.
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Fig. 4. Significant differences between groups in the nodal degree overlap. Significant differences between CN Aβ− and CN Aβ + (A), CN Aβ− and MCI
Aβ + (B), CN Aβ− and AD Aβ + (C), and between MCI Aβ + and AD Aβ + (D). Differences in (A) were due to a loss of connections in the entorhinal cortex,
the amygdala and the right transverse temporal; differences in (B) were due to a loss of connections in the entorhinal cortex and the parahippocampal
gyri in addition to several connections between occipital, parietal, and temporal areas; differences in (C) were due to a loss of connections between
temporal areas and frontal areas and increase of connectivity between occipital areas; and differences in (D) were due to the increased connectivity
between occipital, temporal and parietal areas in addition to the loss of connectivity between the caudal anterior cingulate, the right posterior cingulate,
and the left rostral anterior cingulate. These changes in the connections can be observed in the respective connectograms on the right. Lighter blue
indicates larger decreases in the Aβ + groups compared to the CN Aβ− group, and lighter red-orange indicates increases in the AD Aβ + compared to
the CN Aβ− and compared to the MCI Aβ+. All results were adjusted for multiple comparisons using false discovery rate (FDR) corrections at q < 0.05.

Similarly to MCI Aβ+, AD Aβ + patients also showed
degree overlap decreases (Figure 4C) in the bilateral
entorhinal cortex, parahippocampal gyrus, anterior
cingulate, amygdala, and hippocampus in addition to
increases in the bilateral cuneus compared to the CN
Aβ− group. These results were driven by a loss of
connectivity between temporal areas and frontal areas
and increases of connectivity between occipital areas.

Finally, AD Aβ + patients showed degree overlap
decreases in the bilateral caudal anterior cingulate
(Figure 4D) as well as increases in the bilateral lateral
occipital gyri, the bilateral parahippocampal gyri, and
the right cuneus compared to MCI Aβ+. The decreases
in the bilateral caudal anterior cingulate were driven
by the loss of connections between this region, the right
posterior cingulate, and the left rostral anterior cingulate,
whereas the increases were due to higher connectivity
between occipital, temporal, and parietal areas.

There were no significant differences between AD
Aβ + and CN Aβ + or between MCI Aβ + and CN Aβ+.
The regional values of the degree overlap in each group
can be found in Supplementary Figure 4.

Nodal Multiplex Participation Coefficient

We found that the MCI Aβ + group showed a lower nodal
multiplex participation coefficient (Figure 5A) in the
bilateral cuneus, parahippocampal, and entorhinal areas
as well as the left lateral occipital gyrus compared to CN
Aβ− subjects. These results were driven by an imbalance
of connectivity in the two layers. Specifically, there
was a higher connectivity in the entorhinal cortex and
parahippocampal gyri in addition to lower connectivity
in the cuneus and left lateral occipital gyri in the gray
matter layer with respect to the amyloid layer in MCI
Aβ +.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab429#supplementary-data
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Fig. 5. Significant differences between groups in the nodal multiplex participation coefficient. Significant differences between CN Aβ− and MCI Aβ + (A),
and between CN Aβ− and AD Aβ + (B), which were mainly due to an imbalance of connectivity in the two layers as can be seen on the right plots. Lighter
blue indicates larger decreases in MCI and AD groups, while lighter red indicates increases in AD. All results were adjusted for multiple comparisons
using false discovery rate (FDR) corrections at q < 0.05.

The AD Aβ + group also showed a lower nodal multi-
plex participation coefficient (Figure 5B) in the entorhi-
nal cortex, parahippocampal gyrus, hippocampus, amyg-
dala and the caudal anterior cingulate, and higher in the
cuneus. These results were due to the temporal regions
being more connected in the gray matter layer, whereas
the anterior cingulate and cuneus regions were more
connected in the amyloid layer in AD Aβ + patients.

There were no significant differences between AD
Aβ + and MCI Aβ+, AD Aβ + and CN Aβ+, MCI Aβ + and
CN Aβ + as well as CN Aβ + and CN Aβ− groups.

Nodal Multiplex Clustering Coefficient

No significant differences were found in the multiplex
clustering coefficient between any of the groups.

Secondary Analyses Using Cortical Volume
Measures in the Multiplex Network
Analyses
We also conducted additional analyses using cortical
volumes instead of cortical thickness to build the
multiplex networks and compared them between groups

(Supplementary Figure 5). These analyses showed simi-
lar, albeit less widespread results, compared to the ones
with cortical thickness, in line with previous evidence
showing that thickness measures are more sensitive
to gray matter changes occurring in AD compared to
volume measures (Dickerson et al. 2009). Moreover,
although the multiplex communities using volume
data were less well defined compared to the ones with
thickness, there was still a bilateral temporal module
in the MCI Aβ + group in the volume-amyloid multiplex
networks.

Discussion
In this study, we examined the relationship between gray
matter atrophy and amyloid deposition across different
stages of AD using a multiplex network approach. Our
findings revealed widespread increases in the overlap-
ping strength and decreases in the degree overlap in all
Aβ-positive individuals. In addition, there was a reorga-
nization of the brain communities in the MCI Aβ + group
and an imbalance in the number of connections between
the gray matter and amyloid layers in both MCI Aβ + and
AD Aβ + patients. These findings indicate that multiplex

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab429#supplementary-data
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networks can be used to characterize different stages of
AD and provide information on how amyloid pathology
and gray matter interact as the disease progresses. Below
we discuss these findings in detail.

There is increasing evidence showing that the pro-
gression of amyloid Aβ pathology and gray matter atro-
phy in AD follows a characteristic spatial pattern (Braak
and Braak 1991; Thal et al. 2002; Thompson et al. 2003;
Singh et al. 2006; Sepulcre et al. 2013; Grothe et al. 2016;
Sepulcre et al. 2016). In the case of amyloid pathology, it
usually appears in neocortical regions and then spreads
to the entorhinal cortex and other limbic areas (Braak
and Braak 1991; Thal et al. 2002). In contrast, gray matter
atrophy usually appears in the entorhinal cortex and
hippocampus in early AD, being followed by atrophy in
medial and lateral parietal areas, frontal brain regions,
and the sensorimotor cortex as the disease progresses
(Thompson et al. 2003; Singh et al. 2006). In this study,
we analyzed the relationship between these two patho-
logical events using multiplex brain networks. We used
a group of control subjects that are amyloid-negative
as a reference group for the comparisons of the groups
with amyloid-β pathology. Although in this group there
was no substantial gray matter atrophy and amyloid
deposition, there was sufficient variability in the amyloid
and gray matter signals to conduct a network analysis
(Supplementary Figure 1). Furthermore, our study is not
the first one to measure network topology in amyloid-
negative individuals (Pereira et al. 2018; Kim et al. 2019)
and there are a lot of studies studying gray matter covari-
ance networks in older healthy subjects (Montembeault
et al. 2012), even without amyloid pathology (Tijms et al.
2016; Voevodskaya et al. 2018; Dicks et al. 2020).

In this study, we found widespread increases in the
overlapping strength in CN Aβ + and MCI Aβ + subjects,
whereas in AD Aβ + patients, these changes were mainly
confined to the temporal lobes. The overlapping strength
is the sum of the connectivity strengths of the two layers,
and it was higher in CN Aβ + and MCI Aβ + subjects due
to their amyloid layers being more strongly connected
than the other groups. In addition, AD Aβ + patients
showed a lower overlapping strength in the hippocampi
and left amygdala compared to the MCI Aβ + subjects.
This finding is most likely due to the fact that amyloid
deposition rises rapidly in early and mild stages of the
disease in CN and MCI subjects with amyloid pathology,
before reaching more stable levels in late disease stages
in patients with AD dementia (Jack et al. 2010, 2013).

In contrast to the overlapping strength, we found
that the multiplex communities identified changes
mainly in MCI Aβ + individuals. In fact, this measure,
which reflects the communities or subnetworks in the
amyloid and gray matter layers, showed an interesting
re-organization in this group who had three modules
instead of two compared to the other groups. This third
module was composed by temporal brain regions, which
is in line with previous studies showing a correlation
between amyloid deposition and gray matter loss in

temporal areas, which might also be important points
of interaction between amyloid pathology and tau
pathology, which is known to be one of the drivers of
gray matter atrophy in AD (Sepulcre et al. 2016). Thus,
the emergence of a temporal community in the amyloid
and gray matter layers might signal the transition from
MCI to AD dementia.

We also assessed topological measures associated
with centrality, integration, and segregation. The degree
overlap is a centrality measure that increases when
a brain region has the same number of connections
in the two layers. We found significant decreases in
the degree overlap mainly in temporal regions such
the entorhinal cortex, hippocampus and transverse
temporal gyri in CN Aβ + subjects, which was due to
a loss of connections between the left and the right
side of these regions. Moreover, similar results were also
found in the MCI Aβ + group, which showed additional
decreases in occipital regions due to a widespread loss
of connections between these areas and the rest of
the network, in line with the more advanced disease
stage of this group. Finally, in AD Aβ + patients, we
found decreases in the anterior cingulate and parahip-
pocampus, which were mainly driven by a loss of
connections between bilateral frontal and limbic areas.
However, interestingly, AD Aβ + patients also showed
increases in the degree overlap in the cuneus, which
became more connected to other occipital areas. These
increases in occipital brain connectivity could still be
observed when the AD Aβ + patients were compared
to MCI Aβ + subjects and could potentially reflect the
more prominent role occipital regions play in later
disease stages by being connected to the same brain
areas in different layers. The biological interpretation
behind increased connectivity in gray matter covariance
networks in AD is usually attributed to the fact that if two
regions get atrophied at the same rate across different
individuals, the correlation coefficients between those
regions will increase due to shared mechanisms in
neurodegeneration. Similarly, increases of connectivity
in amyloid covariance networks are usually attributed
to the fact that if two regions are similarly affected by
amyloid pathology, their connectivity will also increase.
Thus, altogether these results indicate there is a general
decrease in the overlap of connections between the
amyloid and gray matter layers in the amyloid-positive
groups. The observed loss of connections might be due
to a disconnection process occurring in one or both
the gray matter and amyloid layers. For instance, in
the case of medial brain areas, we observed a lower
number of connections in the gray matter layer in MCI
Aβ + and AD Aβ + groups compared to the amyloid
layer. These results are in line with the hypothesis
that AD is a disconnection syndrome (Delbeuck et al.
2003). However, here we show that this disconnection
can also be captured using measures of covariance in
gray matter and amyloid, which show that in early
disease stages (CN Aβ + subjects) this is due to a loss of

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab429#supplementary-data
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connections between the same brain regions in the left
and right hemispheres, whereas in later disease stages
(MCI Aβ + and AD Aβ+), this is due to a decrease as well
as increase of several connections between widespread
brain areas. These findings illustrate the complexity of
later disease stages, which are characterized by changes
of connectivity in both directions, when both gray matter
atrophy and amyloid deposition are affecting widespread
areas. The multiplex participation coefficient is an
integration measure that increases with the number
of direct paths in the two layers. It can be used to
detect highly central regions such as the multiplex hubs,
which have a high number of direct connections in
both layers. In this study, we found a loss of multiplex
brain hubs in later stages of AD. Specifically, we found
that the MCI Aβ + patients had a lower nodal multiplex
participation coefficient in lateral occipital, entorhinal
and parahippocampal areas, whereas AD Aβ + patients
showed lower multiplex participation coefficients in
the anterior cingulate, temporal pole, entorhinal cortex,
hippocampus and amygdala in addition to increases in
the cuneus in comparison with the CN Aβ− group. In
general, the differences between these groups occurred
due to an imbalance in the number of connections
between layers. In the MCI Aβ + group, this imbalance
was driven by a higher connectivity in temporal regions
and lower connectivity in occipital regions in the gray
matter layer with respect to the amyloid layer. A similar
scenario was observed in the AD Aβ + group, in which
temporal regions were more connected in the gray matter
layer, whereas the cuneus and left anterior cingulate
regions were more connected in the amyloid layer. These
differences might be due to the more prominent role that
temporal regions play in brain atrophy in the course of
AD (Thompson et al. 2003; Singh et al. 2006; Sepulcre
et al. 2016), whereas neocortical regions such as the
anterior cingulate play a more important role in amyloid
pathology progression (Braak and Braak 1991; Thal et al.
2002; Sepulcre et al. 2013).

Finally, in this study we also analyzed segregation with
the multiplex clustering coefficient, a measure that cal-
culates the number of triangles between the two layers.
Although this measure has been shown to be useful to
identify properties of local information processing across
time and across frequencies using EEG data (Cai et al.
2020), in our case, no significant differences were found
between any of the groups. Thus, it is possible that this
measure might be better suited to assess segregation
changes within the same imaging modality. An alter-
native explanation for the lack of multiplex clustering
results would be that segregation measures are less sen-
sitive to changes occurring in amyloid and gray matter
covariance networks in AD, which would be in line with
the results of previous studies showing that measures
of centrality are more useful to characterize the amy-
loid network (Pereira et al. 2018), and the fact that gray
matter covariance networks have shown contradictory
clustering results, showing both clustering decreases and

increases in AD with respect to controls (Tijms et al.
2013).

Despite the value of our study in characterizing
different stages of AD using a novel multiplex network
approach, some limitations should be recognized. First of
all, we used cross-sectional imaging data to perform the
multiplex analyses, which did not permit us to assess
how amyloid accumulation and gray matter atrophy
change over time in each group. Another limitation is
the fact that only two imaging modalities were included,
amyloid PET and structural MRI, because we were
interested in assessing how the network topologies of
two biological processes that become altered in earlier
and later AD stages were related in the highest possible
number of brain images acquired within 6 months from
each other. Future studies should include additional
imaging modalities such as FDG-PET in the multiplex
analyses to understand the interplay between amyloid
pathology and brain atrophy with other pathological
processes occurring in AD. It would also be interesting
to assess the relationship between our multiplex layers
with tau pathology since tau has been shown to be
closely associated both with amyloid pathology and
gray matter atrophy. An additional limitation is the
fact that structural covariance networks do not allow
calculating multiplex measures for each subject but only
per group, and therefore it is not possible to correlate
the multiplex results with the cognitive and clinical
measures of single individuals or to perform statistical
comparisons with the multiplex communities, which
would have been very interesting. Moreover, like in all
graph theory studies using structural MRI or static PET
data, the underlying mechanisms for correlations in
gray matter or amyloid pathology is not entirely clear,
although increasing evidence suggests that they reflect
shared neurodegeneration or pathological mechanisms
between brain areas (Lerch et al. 2006; Zhu et al. 2012;
Alexander-Bloch et al. 2013). Finally, we also did not
compare our results with other available methods that
integrate multimodal imaging data such as sparse
inverse covariance estimation. Using this method, Li
et al. (2018) previously fused T1-weighted, amyloid PET,
and FDG-PET data into group covariance matrices in CN,
MCI, and AD patients and found significant decreases
in connectivity within the temporal lobe as well as
decreases of connectivity between the parietal and
occipital lobes, the occipital and temporal lobes, and
the parietal and temporal lobes across different groups.
The novelty of our study with respect to Li et al. (2018) is
that we did not fuse different imaging modalities into
the same connectivity matrix but instead integrated
them as two separate layers in the same network. Our
approach therefore assesses how amyloid and gray
matter interact as independent processes instead of
merging the information provided by each of them into
the same connectivity matrix, allowing to compute a
range of multiplex network measures. Despite all these
limitations, our study also has some methodological
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strengths such as the fact that we applied partial volume
corrections to the amyloid PET data in order to avoid
confounding effects associated with brain atrophy in AD
(Thomas et al. 2011). This approach has been recently
shown to be particularly useful in the assessment of
amyloid PET covariance networks using graph theory,
improving the interpretability of the results and being
more sensitive to differences between diagnostic groups
due to an optimized characterization of network effi-
ciency and modularization (Gonzalez-Escamilla et al.
2021).

To conclude, in this study, we show that multiplex
network analyses are useful to detect differences across
different stages of AD, with the overlapping connec-
tivity strength being sensitive to changes occurring
in CN Aβ + and MCI Aβ + subjects due to the more
dynamic changes their amyloid covariance networks
are undergoing, whereas the multiplex communities
revealed the emergence of a third temporal module
in MCI Aβ + subjects, likely reflecting the transition to
AD dementia. We also found decreases in the overlap
of gray matter and amyloid connections mainly in
medial temporal regions in CN Aβ+, which became
more widespread in later disease stages in MCI Aβ + and
AD Aβ + patients. Finally, our results pointed to a
decrease of the multiplex brain hubs in MCI Aβ + and
AD Aβ + patients, which were due to an imbalance in the
number of connections in the two layers: specifically
the gray matter layer showed lower connectivity in
temporal regions and the amyloid layer showed higher
connectivity in the anterior cingulate and cuneus in
the Aβ + groups compared to CN Aβ−. Although these
results may appear complex given that multiplex
analyses have only been applied in a few studies
in AD (Guillon et al. 2017; Yu et al. 2017; Guillon
et al. 2019; Cai et al. 2020), they can be summarized
into the following points: the overlapping connectivity
strength and degree overlap detect changes across all
stages of AD, whereas the other measures are sensitive
to changes occurring in different disease stages such
as the multiplex communities in MCI Aβ+ and the
multiplex participation coefficient in MCI Aβ + and
AD Aβ+. Our findings indicate that the interaction of
amyloid deposition and gray matter atrophy within
a multiplex approach across different disease stages
shows information not provided by traditional graph
theory approaches based on networks derived from
single imaging modalities. Although we provided an
interpretation to these different findings above, more
studies are needed to understand better their biological
meaning, which will become clearer when applied to
larger and longitudinal samples in combination with
other imaging modalities.

Supplementary Material
Supplementary material can be found at Cerebral Cortex
online.
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