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Abstract: Pain perception in individuals with prolonged disorders of consciousness (PDOC) is
still a matter of debate. Advanced neuroimaging studies suggest some cortical activations even
in patients with unresponsive wakefulness syndrome (UWS) compared to those with a minimally
conscious state (MCS). Therefore, pain perception has to be considered even in individuals with
UWS. However, advanced neuroimaging assessment can be challenging to conduct, and its findings
are sometimes difficult to be interpreted. Conversely, multichannel electroencephalography (EEG)
and laser-evoked potentials (LEPs) can be carried out quickly and are more adaptable to the clinical
needs. In this scoping review, we dealt with the neurophysiological basis underpinning pain in
PDOC, pointing out how pain perception assessment in these individuals might help in reducing the
misdiagnosis rate. The available literature data suggest that patients with UWS show a more severe
functional connectivity breakdown among the pain-related brain areas compared to individuals
in MCS, pointing out that pain perception increases with the level of consciousness. However,
there are noteworthy exceptions, because some UWS patients show pain-related cortical activations
that partially overlap those observed in MCS individuals. This suggests that some patients with
UWS may have residual brain functional connectivity supporting the somatosensory, affective, and
cognitive aspects of pain processing (i.e., a conscious experience of the unpleasantness of pain), rather
than only being able to show autonomic responses to potentially harmful stimuli. Therefore, the
significance of the neurophysiological approach to pain perception in PDOC seems to be clear, and
despite some methodological caveats (including intensity of stimulation, multimodal paradigms,
and active vs. passive stimulation protocols), remain to be solved. To summarize, an accurate clinical
and neurophysiological assessment should always be performed for a better understanding of pain
perception neurophysiological underpinnings, a more precise differential diagnosis at the level of
individual cases as well as group comparisons, and patient-tailored management.

Keywords: prolonged disorders of consciousness (PDOC); unresponsive wakefulness syndrome
(UWS); minimally conscious state (MCS); pain; nociception; functional connectivity; neurophysiology

1. Introduction

Prolonged disorders of consciousness (i.e., more than 28 days) (PDOC) represent a
possible evolution of coma, a condition following severe brain injury, characterized by a
loss of wakefulness and awareness (mainly owing to a lesion in the ascending reticular
system or diffuse (bi)hemispheric damage) [1,2]. PDOC mainly comprises unresponsive
wakefulness syndrome (UWS, namely, vegetative state) and the minimally conscious state
(MCS) [3,4]. The former entity is characterized by three (all necessary) clinical criteria:
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(i) no evidence of awareness of self or environment at any time; (ii) no response to any
stimuli suggesting purposeful behavior; and (iii) no evidence of language comprehension
or expression. Additionally, cycles of eye closure and eye-opening are preserved, giving
the appearance of a sleep–wake cycle. Lastly, hypothalamic and brainstem function are
preserved [2–4]. The absence of response to commands or voluntary oriented movements in
the presence of wakefulness is thus the main feature of UWS. The latter entity is a condition
of severely altered consciousness in which minimal but definite behavioral evidence of self
or environmental awareness is appreciable. Therefore, MCS patients show inconsistent but
reproducible or sustained and cognitively mediated behaviors associated with conscious
awareness, differently from reflexive behavior as compared to UWS patients [5].

Consistently with this premise, UWS patients should not perceive anything, including
pain, even if they can show reflexive response to stimuli, including the nociceptive, but
without any stimulus-related differentiation (i.e., purely reflexive behaviors). The discovery
of residual traces of awareness, covert awareness, and brain activity modulation in re-
sponse to command and stimuli in some patients clinically labeled as UWS using advanced
neuroimaging or electrophysiological techniques put in crisis the former assumption that
patients with UWS are unable to perceive anything, including pain. Some individuals
may have a dissociation of motor and cognitive function [6], i.e., they may retain some
focal brain activations somehow sustaining conscious perception, despite the absence of
integrated large-network processes known to sustain consciousness [7–16]. This points
to a somehow preserved awareness in the presence of reflexive motor output [5,17–20].
Behavioral responsiveness in PDOC patients appears to be mediated by three-order net-
work interactions [9,10,15,16]: (i) disconnection between lower-level cortices (preserved
activation) and higher-order associative cortices (impaired activation) [21]; (ii) preserved
activation of higher-order associative cortices [22–24]; and (iii) consciousness recovery
related to the restoration of thalamo–cortical connectivity [25,26].

It remains, therefore, unclear whether and how UWS patients can show signs of possi-
ble covert capacity for subjective pain perception, potentially indicating that some patients
behaviorally diagnosed as with UWS may have a residual capacity of pain perception (and
are thus in MCS). Nonetheless, we may argue that there are good reasons to think that
these patients could experience pain. This argument stems from three main issues.

Firstly, the efficacy of clinical assessments on detecting aware pain responses is limited.
Pain assessment in PDOC individuals is limited to the clinical appreciation of responses
to nociceptive stimuli using, e.g., the Coma Recovery Scale-Revised (CRS-R) [27] or the
Nociception Coma Scale-Revised (NCS-R) [28–31]. The responses to nociceptive stimuli
include stereotyped responses (i.e., slow generalized flexion or extension of the upper and
lower extremities), flexion withdrawal (i.e., withdrawal of the limb away from the point
of the stimulation), and localization responses (i.e., the non-stimulated limb locates and
makes contact with the stimulated body part at the point of stimulation), all of which are
linked to brainstem, subcortical, or cortical activity, respectively (nociceptive network or
pain matrix) [32–35]. However, the magnitude, consistency, and repeatability of behavioral
responses to nociceptive stimuli are limited by many factors, including paralysis and
spasticity. Furthermore, retrospective reports suggest that patients with PDOC may exhibit
some form of appraisal of noxious stimuli. Once recovered awareness, some individuals
reported vivid memories of pain and other unpleasant/uncomfortable situations (e.g.,
noise and sleep deprivation) [35].

Secondly, the evidence of brain activations within some brain areas concerning no-
ciceptive stimulation in a way resemble those detectable in aware individuals [33,36,37].
More in-depth, several studies propose that brain mechanisms underlying affective con-
sciousness can survive despite very severe lesions that make higher conscious functions
such as attention, working memory, or language comprehension impossible [19,36–39].
Regardless of whether this is due to misdiagnosis or technical limitations, these data con-
travene the tenet that patients with UWS cannot experience pain. They may not be capable
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of exhibiting a detectable reaction to painful stimuli, albeit being capable of perceiving
them [40].

Thirdly, if a patient is aware, they are presumably able to feel pain, because if aware-
ness does not imply sentience, the absence of awareness excludes any sentience. Some
works showed isolated cortical activations that document retained modular function with-
out the integrative processes necessary for consciousness [11,36,38,39,41–43]. Notably,
patients in MCS showed a broad network activation similar to normal controls [36] follow-
ing nociceptive stimulation. Instead, individuals in UWS also showed some activation in
those similar networks, although it was much less prominent and more focal than MCS
and control individuals did [36,38]. These observations are consistent with the issue of
a brain damage-induced, large-scale connectivity breakdown among the higher-order
association cortices and the primary cortical areas [44,45]. However, they challenge the
assumption that patients in a UWS cannot experience and report a painful experience,
given that some cortical activations are appreciable. In this regard, neurophysiological and
neuroimaging studies showed brain activations following nociceptive stimulation within
the brain structure primarily involved in affective–cognitive pain processing (including
the anterior insula, the ACC, and the prefrontal cortex), sometimes occurring at multiple
levels, even in patients with UWS [46–49]. These activations go beyond those involved
in encoding the sensory-discriminative information (including primary and secondary
somatosensory cortices, the lateral thalamus, and the posterior insula) [46–49] (Figure 1).
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Figure 1. Illustration of the key brain areas related to pain processing and perception. They comprise
densely interconnected sensory or discriminative (yellow tags), affective (blue tags), and associative
areas (red tags). Brainstem and diencephalic areas are embedded within the autonomic nervous sys-
tem (ANS) and can be evaluated using specific measures (including hearth rate variability). Sensory
and/or nociceptive evoked potentials (EPs) and gamma-band oscillations (GBO) recorded using
EEG can follow nociceptive stimulation (blue shock) combined or not with cortical stimulation using,
e.g., transcranial magnetic stimulation (yellow shock). These represent the main neurophysiological
paradigms available in the literature to gain objective measures of pain processing in PDOC patients.
Legend: PFC, prefrontal cortex; ACC, anterior cingulate cortex; In, insula; Bg, basal ganglia; Am,
amygdala; Hi, hippocampus; Th, thalamus; bs, brainstem; SC, spinal cord; SSC, somatosensory
cortex; PPC, posterior parietal cortex.

These data could suggest that brain activations, when complex, are a marker of
ongoing conscious perception or pain awareness [50]. Furthermore, these data could imply
that the identification of potential neurophysiological markers of conscious pain perception
in PDOC patients may contribute to differentiating between UWS and MCS. Nonetheless,
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growing evidence suggests that false positive and false negative findings may result from
applying different statistical methods to patient data [51]. This statistical bias may challenge
the use of these paradigms in the clinical setting, with particular regard to three common
clinical scenarios where the risk of diagnostic error may be most pronounced in this patient
group, i.e., disclosure of results to patients’ families, withdrawal of life-sustaining therapies,
and equitable distribution of medical resources [51,52]. However, contradictory findings
may also stem from other issues [53]. Indeed, various sources can explain the wide variety
with regard to sensitivity and specificity of electrophysiological techniques in detecting
consciousness in patients with DoC. These include task robustness of active paradigms
(including personally relevant stimuli, salient self-referential stimuli, the instruction to
count relevant stimuli), patient’s features potentially preventing them from responding
in active tasks despite being conscious (including perceptual and cognitive impairment,
arousal fluctuations, cognitive fatigue), small sample sizes, and methodological issues
(including equipment, paradigms, blinding, and artifacts) [53].

Consistently with these issues, studies showing neurophysiological pain signatures
in patients with PDOC at an individual level are not conclusive. Therefore, to implement
clinical use of neurophysiological techniques in combination with behavioral assessment of
pain, one needs to know the sensitivity and specificity of these methods, and which stimuli
are the most potent in detecting pain responses.

Another essential issue to consider is that pain may represent a chronic, lasting
condition in patients with PDOC, as a sort of inner nature of PDOC itself owing to central
sensitization mechanisms leading to pain hypersensitivity [54]. In this regard, it is helpful
to remember the distinction between nociception and pain. The former refers to the
neural mechanisms of encoding and processing an actually or potentially tissue-damaging
event [54]. The latter is “an unpleasant sensory and emotional experience associated
with actual or potential tissue damage, or described in terms of such damage”, as per
the International Association for the Study of Pain (IASP) definition [55]. Therefore,
nociception and pain can occur each without the other (e.g., pain in amputated limbs,
fibromyalgia), depending on several biological, cognitive, emotional, social, and behavioral
factors. Therefore, more profound knowledge of the effects of patients’ clinical features and
comorbidity profile on pain processing is necessary to better understand pain perception.

Objective

The functional neuroimaging devices used to estimate pain perception in PDOC
patients are limitedly available in rehabilitation and neurologic centers, and not all of the
patients with PDOC can be subjected to such devices. Conversely, neurophysiological
paradigms are more accessible and adaptable to clinical needs. In this scoping review,
we sought to investigate the neurophysiological basis underpinning pain perception in
PDOC, suggesting that its assessment might help in reducing the PDOC misdiagnosis rate.
We adopted a scoping review to describe the landscape of available evidence, identify
gaps in the existing literature, and illuminate areas for further research. A scoping review
methodology was also selected because of the relatively circumscribed nature of the field.

2. Methods
2.1. Eligibility Criteria

To be included in the present scoping review, papers needed to deal with or focus
on neurophysiologic evaluations of pain perception in PDOC individuals. Peer-reviewed
journal papers were included without time restrictions if they described a measure for
pain in relation to awareness, involved adult human participants, and were written in
English. Studies such as randomized clinical trials, case-studies, and reviews (system-
atic reviews and meta-analyses) were included in order to consider different aspects of
assessing pain in relation to awareness. Papers were excluded if they did not fit into the
conceptual framework of the study, focused on a non-PDOC condition (i.e., lasting less than
28 days), or belonged to gray literature, including letters, commentaries, textbook chapters,
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technical or theoretical descriptions, abstracts, and conference proceedings. Furthermore,
it was ascertained that the study patients were provided with a behavioral assessment
tool for assessing the level of consciousness, i.e., the CRS-R, which has acceptable stan-
dardized administration and scoring procedures, excellent content validity, substantial
evidence of good interrater reliability, and it is the only scale to address all Aspen Work-
group criteria [56]. In addition, it was ascertained that pain-related behavioral assessment
was conducted using tools with suitable psychometric properties for the assessment and
detection of pain in non-communicative severely brain-injured patients, including the
NCS-R [28–33,42,47,57,58].

2.2. Information Sources and Search

We searched the following bibliographic databases to identify the potentially relevant
documents: PubMed, MEDLINE, Google Scholar, and Cochrane Database. The search
strategies were drafted by L.P. and A.N. and further refined by C.M.E., who also settled all
disagreements regarding article inclusion at each review phase. The final search strategy
included the keywords vegetative state/UWS OR minimally conscious state AND pain.

2.3. Selection of Sources of Evidence

The research returned 261 papers (pruned from duplicates, which were removed by
A.N.). The authors L.P., A.N., and R.S.C. discussed the titles and the abstracts, and amended
the screening and data extraction manual before beginning screening for this review, to
increase data consistency. Thus, 59 full-text articles were identified to be retrieved and
assessed for eligibility by using the abovementioned keywords, main judgment criteria,
and publication types. Both L.P. and A.N. independently reviewed all articles, sequentially
evaluating the titles, abstracts and then the full text of all publications identified by our
searches for potentially relevant publications. The author C.M.E. settled all disagreements
regarding article inclusion at each review phase discussion with other reviewers if needed.

Of the identified 59 full-text articles, 43 were excluded because they did not directly
quantify pain in relation to awareness (n = 31), or were not original quantitative research
(n = 12). The remaining 16 studies were considered eligible for this review (see [59–85],
including reviews). Figure 2 illustrates the search strategy we used to select pain assessment
studies in patients with PDOC. All the reviewed studies are summarized in Table 1.
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Table 1. Main neurophysiological studies investigating pain perception in patients with disorders of consciousness.

Authors Sample Methods Findings Conclusions

Autonomic Nervous System

Leo et al., 2016 [59] 12 MCS
10 UWS

GBO of C-LEPs and SR
ANS parameters either during a 24-P or

following RLS

Only MCS and 2 UWS individuals showed
physiological modification of O2 saturation,
GBO of C-LEPs and SR either during a 24-P

or following RLS

Large-scale ANS parameters and cortical
features of advanced pain processing support

DOC differential diagnosis and allow
identifying residual aware ANS-related

cognitive processes

Devalle et al., 2018 [69] 14 UWS
6 MCS

Short-term (<20 s) and long-term (between
20 s and 50 s from noxious stimulus) HRV

Short-term responses in both groups
Long-term responses only in MCS

HRV responsiveness differentiates between
MCS and UWS

Riganello et al., 2019 [70]
11 MCS
11 UWS
14 HC

HRV assessment using short-term CI

Higher CI in HC compared to DOC at
baseline and after noxious stimulation

Higher values in MCS versus UWS after
noxious stimulation

Lower values in noxious versus non-noxious
condition in UWS group

UWS have a less complex ANS response to
noxious stimuli

Luauté et al., 2018 [72]
7 UWS
6 MCS
7 HC

SCL with stimulations in auditory and
olfactory modalities No different responses in DOC No DOC distinction

Riganello et al., 2015 [16] 8 UWS HRV spectrum Significant correlation between HRV spectral
features and CRS-R

The timely variability of ANS tone serves as
an indicator for diagnosis and prognosis

Venturella et al., 2019 [79] 21 UWS ANS responsiveness to touch- and
pain-related stimuli

Fronto-parietal activation in both modalities.
Increase in delta oscillations, electrodermal
activity, and HRV following painful stimuli

Stimuli can capture basic attention
orientation and perceptual processes. Only
nociceptive stimulation seems entraining

cognitive processes at an aware level

Laser-Evoked Potentials and Advanced EEG Signal Analyses

De Tommaso et al., 2013 [75]
3 UWS
4 MCS
11HC

LEP
SEPs
AMN

LEPs in all patients
Significant N2 and P2 latency increase
No SEPs in all patients but one MCS

AMN in all patients

Possible pain processing preservation despite
sensory impairment
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Table 1. Cont.

Authors Sample Methods Findings Conclusions

De Tommaso et al., 2015 [76]
5 UWS
4 MCS
11 HC

LEP
multimodal EP

Constant preservation of LEP despite a
variable degree of preservation of the

other EPs

Possible pain processing preservation despite
sensory impairment

De Salvo et al., 2015 [78] 13 UWS
10 MCS LEP Lower amplitudes and more delayed in UWS

than MCS
LEP features can discriminate between MCS

and UWS

Naro et al., 2015 [79]
23 UWS
15 MCS
15 HC

Aδ-LEP
C-LEP

Higher amplitudes and less delayed latencies
in HC than DOC

Higher amplitudes and less delayed latencies
in MCS than UWS

Some UWS showed only C-LEP

The residual presence of C-LEP should be
assessed when Aδ-LEP are missing, because a

potential pain experience should be still
present in some patients

Naro et al., 2015 [80] 10 UWS
10 HC

MEP
LEP
PMI

PMI deterioration in DOC, more in UWS
than MCS

PMI preserved in some UWS

Residual plasticity properties at large-scale
cortical level suggesting residual

pain awareness

Naro et al., 2016 [81] 18 UWS
15 MCS GBO following RLS Increase in GBO power and NCS-R score in

HC, MCS and 5 UWS
Presence of aware pain processing as per

GBO modulation

Aricò et al., 2016 [82] 8 UWS
6 MCS

LEP
24 h polysomnography

Higher LEP latencies and lower amplitudes
in UWS than MCS

Spared sleep structure in MCS compared to
UWS in correlation with LEP findings

Preserved sleep structure and pain processing
require a spared global brain connectivity,

which expresses thalamo–cortical
functionality supporting consciousness

Naro et al., 2017 [83]
10 UWS
10 MCS
10 HC

IPI variability of LEP components Correlation between IPI and NCS-R IPI variability might represent an objective
measure of pain processing

Calabrò et al., 2017 [84] 11 UWS
10 MCS

γ-band LORETA activations, GBO, and HRV
following RLS

Spared γ-band LORETA activations, GBO,
and HRV in MCS and two UWS (with brain

activation limited to limbic areas)

Nearly physiologic pain processing in MCS;
connectivity breakdown in UWS, which
limits aware pain perception to residual

Naro et al., 2015 [85]
10 UWS
10 MCS
10 HC

1 Hz rTMS over ACC affecting frontal GBO
and EEP

Increase in GBO and decrease in EPP in MCS
and two UWS subjects

Decreased pain rating in HC (as per VAS) and
MCS (as per NCS-R)

ACC rTMS aftereffects suggest aware
pain processing
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3. Results

Generally, objective measures of pain processing in individuals with PDOC consist of
the evaluation of spontaneous responses or behaviors concerning pain (such as eye-opening,
variations in breathing, heart rate, and blood pressure, and occasionally grimace-like or
crying-like behavior) [50], are elicited using nociceptive stimuli (aimed at highlighting large-
scale brain activations potentially related to awareness), or are elicited by active stimulation
paradigms (aimed at representing functional communication and willful modulation of
brain activity related to aware pain processing) [40,42,46,47,57,58]. In the present review,
we grouped the studies by the types of measure they analyzed, and summarized the type
of settings, populations, and study designs for each group, along with the measures used
and broad findings. The reviewed evidence is presented in a narrative format and with a
summary table containing reference, sample, methods, findings, and conclusions (Table 1).

3.1. Autonomic Nervous System

These measures include heart rate variability (HRV) and blood pressure, which qualify
as independent indicators of the interactions between the central nervous system (CNS)
and the autonomic nervous system (ANS) [33,59,60]. The assessment of such two-way
interaction is proposed as necessary for PDOC assessment, because it reflects the continu-
ous modulation of homeostatic processes and allostatic adaptation to internal or external
necessities [61–63]. Notably, an integer CNS–ANS interaction is necessary to modulate
the autonomic output in response to pain and emotional, behavioral, or cognitive stim-
uli [61,64–68]. Therefore, a preserved ANS responsiveness to purposeful stimuli might
suggest residual awareness [60,69]. One could concern that these measures are of sub-
cortical origin; thus, they do not necessarily reflect conscious pain perception. However,
advanced quantitative assessments of the measures, including circadian regulation of
HRV and its correlation with other more complex neurophysiological measures, e.g., laser-
evoked potential (LEP) power spectra and EEG connectivity measures [52], highlighted
a fine cortico–subcortical regulation of such measures in some patients. This fine cortico–
subcortical regulation presupposes partial integrity of distinct thalamo–cortical loops,
which are well-known prerequisites for awareness to emerge, even covertly. To support
this issue, it has recently been proposed that quantitative features of HRV in response to
potentially noxious and non-noxious stimuli were significantly correlated with the CRS-R
scoring, despite a reduced ANS tuning in response to noxious and non-noxious stimuli. A
less complex ANS response to noxious stimuli characterizes UWS patients and correlates
with a behaviorally estimated awareness preservation [70]. Similarly, short- and long-term
ANS responsiveness to noxious and non-noxious stimuli may also correlate with behavioral
responsiveness and, thus, awareness degree [69].

Another work focused on PDOC patients’ electrodermal activity. The authors found
that cutaneous responses were preserved only in the UWS patients who regained con-
sciousness [71,72]. Similarly, some studies identified skin conductance responses (SCRs)
of different magnitude in response to varying auditory (including white noise, music,
relatives’ voice, and patients’ name) and somatosensory (tactile) stimuli, thus suggesting a
preserved ability to discern between stimuli, which presupposes awareness [16,73,74].

3.2. Laser-Evoked Potentials and Advanced EEG Signal Analyses

LEPs were identified in all the patients with a significant N2 and P2 latency increase,
despite the absence of late somatosensory potentials showing a significant N2 and P2
latency increase, and the presence of auditory mismatch negativity in all the patients [75].
Later, the same group showed that UWS patients presented with a variable degree of
preservation of multisensory EPs compared to healthy subjects except for LEPs, which
were recognized in all the patients [76]. Differential preservation of EPs has recently been
confirmed by recording ANS and LEPs while receiving touch- and pain-related stimulations
in PDOC individuals. The authors found significant frontal and parietal activations in
response to pain stimuli in the delta frequency range, which mirror the basic attention
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orientation and perceptual processes. Furthermore, the nociceptive stimulation yielded a
more consistent and informative pattern of covert response [77].

Further confirmation and deepening of the matter came from some studies illustrating
that LEPs were with lower amplitudes and more delayed latencies in UWS individuals
than in MCS persons [78]. This discrepancy suggests the possibility to differentiate between
UWS and MCS, but it does not infer awareness preservation. To this end, it was attempted
to discern between Aδ-LEP and C-LEP in PDOC patients [79]. Given that some patients in
UWS showed only the C-LEP, it was hypothesized that the cortical generators of these com-
ponents are more likely to survive a severe brain injury and may represent a valuable tool
for instrumental pain assessment in the most damaged patients. However, these data do
not add to awareness preservation. Conversely, a combination of motor-evoked potentials
(MEPs) and LEPs to investigate pain–motor integration (PMI) in post-anoxic UWS patients
outlined no significant differences in the resting motor threshold between UWS patients
and healthy subjects, and a significantly compromised PMI in UWS patients as compared
to healthy subjects with some patients showing signs of partially restored PMI [80]. Thus,
PMI was considered as a marker of covert awareness because its sensitivity to non-invasive
neuromodulation was differently preserved in behavioral and non-behavioral individuals.

Additional data on residual awareness preservation came from studies that deeply
analyzed LEP features. In one study, the effects of repetitive laser stimulation on gamma-
band oscillation (GBO) power were evaluated [81]. An increase in GBO power and NCS-R
score in MCS patients was observed, whereas there was not a significant increase in
GBO power and NCS-R score in the UWS group except for in five patients. In line with
these data [82], it was estimated that there was a correlation between LEP and 24 h
polysomnography data in PDOC individuals. The authors found that higher LEP latencies
and lower LEP amplitudes were appreciable in patients with UWS compared to those with
MCS and that this difference was correlated with a more preserved sleep–wake cycle and
sleep structure in patients with MCS as compared to those with UWS.

Subsequent studies analyzed the spectral features of C-LEP and confirmed that a
fine cortico–subcortical regulation of such measures exists in some UWS patients. This
presupposes partial integrity of distinct thalamo–cortical loops, which are a well-known
prerequisite for awareness to emerge, even covertly. Furthermore, when investigating the
inter-peak interval (IPI) between the N2 and P2 components of LEP, a correlation between
IPI and the NCS-R was found, suggesting that IPI could represent an objective marker
of behavioral responsiveness to nociceptive stimulation independent from the sensory
part of pain processing, which is critically influenced by the stimulation intensity [83]. In
this regard, partially preserved γ-band LORETA activation and ERP γ-power magnitude
induced by laser stimulation was found in MCS and some UWS individuals. Notably,
two individuals showed strong limbic activation, signifying that some UWS patients
may somehow perceive the affective components of nociceptive stimulation beyond pain
sensory processing preservation [84]. The preservation of large-scale networks related
to cognitive pain processing in some UWS individuals has also been suggested using
non-invasive brain stimulation. This approach was applied to the anterior cingulate cortex
to modulate the GBO in the centroparietal areas (considered as a marker of either subjective
pain perception processes or pain-related motor behavior preparation) and the latency and
amplitude of cortical nociceptive potentials. A significant modulation was appreciable
in two UWS individuals, suggestive of a conscious pain processing even in patients with
severe PDOC [85].

Distinguishing between studies that showed neurophysiological pain signatures in
patients with PDOC on an individual-level beyond a group level is crucial if one aims to
reason for clinical utility of these methods. Actually, in a clinical setting, one needs to know
the sensitivity and specificity of these techniques in detecting subjective pain perception
(i.e., at an individual level). We did not systematically investigate these aspects, but the
studies we reviewed did not identify significant within-group differences concerning the
neurophysiological pain signature, with very few exceptions concerning a few patients
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that were tested using different, advanced methodological approaches (including GBO,
C-LEP spectra, and pain–motor integration) [16,73,74].

Furthermore, neurophysiological pain evaluation may play a role in the prognosis of
awareness recovery. In this regard, a 68-year-old woman with a five-year UWS secondary
to a severe brain hemorrhage was prognosticated as likely suffering from a cognitive–motor
dissociation syndrome three years before using a neurophysiological protocol based on
a PMI assessment. This protocol shows extensive nociceptive processing within large
frontoparietal networks. In fact, after three years, the subject emerged from UWS and then
from MCS (as being able to communicate appropriately) [86].

4. Discussion

Pain diagnosis and management in PDOC is still a thorny issue. The potential to
experience pain and suffering is frequently raised concerning treatment, ethical, and legal
questions in individuals with PDOC. To date, the international practice guidelines for
DPC [87] recommend (no. 13) that “Clinicians should assess individuals with a PDOC for
evidence of pain or suffering and should treat when there is reasonable cause to suspect
that the patient is experiencing pain (Level B), regardless of the level of consciousness.
Clinicians should counsel families that there is uncertainty regarding the degree of pain and
suffering that may be experienced by patients with PDOC (Level B)”. This recommendation
stems from conflicting reports in the literature that do not suggest or do not clearly point
out pain perception in PDOC [12,88–95], in contrast to the studies that pointed out a
conscious pain perception in PDOC [11,36,96]. Consequently, the instrumental assessment
of awareness in patients with PDOC is mandatory, because the decisions concerning
patients’ preserved level of consciousness in current clinical practice are based principally
on clinical observations, which may be fallacious in about 40% of cases [97].

The studies we reviewed suggest that some electrophysiological tools (including LEP,
EEG, and ANS functioning) (Figure 1) [98–103] may be relevant for pain assessment in
PDOC owing also to their remarkable easiness and minimally invasive recording. The
available studies lead to two main findings: firstly, all PDOC individuals should be able
to perceive primary pain aspects even if only unconsciously; secondly, the presence of
complex stimuli elaboration in a way resembling the control subjects and even in the
absence of behavioral evidence points out covert awareness in some PDOC individuals,
particularly regarding those who have been labeled as with UWS. In this regard, there could
be signs of possible covert capacity for subjective pain perception in such patients. These
findings might indicate that some patients behaviorally diagnosed as with UWS actually
may have a residual capacity of pain perception and are thus in MCS, in line with the
theoretical model of cognitive–motor dissociation syndrome [7]. Such complex processing
may reflect thalamic and limbic circuits preservation [11,36,101], which are fundamental to
awareness recovery following severe brain injury. In addition, the suitability of ANS–CNS
functional interaction as possible independent indicators for clinical assessment, diagnosis,
and prognosis, and in detecting residual (covert) brain function in PDOC has been docu-
mented [65,89,102–106]. Lastly, the electrophysiological measures at rest and in response
to stimuli have higher time resolution than functional neuroimaging, can detect rapid
changes with variability which is more significant during the day, and are thus proposed
as better suitable to capture the complexity of brain dynamics interactions [15,16,105–110].

However, the potential of these electrophysiological techniques in detecting pain
perception is limited because no established veridical benchmark of level of consciousness
or pain perception exists concerning patients with PDOC [51,111,112]. The striking problem
is that the assessment of sensitivity and specificity of such approaches regarding residual
pain perception evaluation in severely brain-injured patients lacks a checked, clear-cut
correspondence between the obtained results and the subjective pain experience [113–117].
There is indeed no established gold standard measure of consciousness and subjective pain
perception, beyond the clinical assessment [27,45,51]. Therefore, one paradigm may detect
awareness in patients labeled with UWS [118], while another may fail to identify it [119].
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This limited sensitivity may depend on specific methodological and analytical aspects of the
experimental procedure (including sensitivity and specificity) [51] and by the possibility
of deviation of a patient from standard diagnostic categories [17,120,121], particularly
regarding pain management [11,33,36,55–57,97,122–125]. Consequently, we will need to
know the estimated sensitivity and specificity of these methods, and which stimuli are the
most potent in detecting pain responses to implement clinical use of neurophysiological
techniques in combination with behavioral assessment of pain.

Furthermore, the evidence regarding the spectral and oscillatory components of the
EEG measures and CNS–ANS interactions to detect residual pain awareness is still not
consistent, owing to non-homogeneous samples, methodological differences, and data pro-
cessing [37]. Additionally, the use of such measures to specifically explore pain perception
of PDOC patients appears non-systematic. For instance, the intensity and relevance of
noxious stimuli may not be sufficient for a patient to detect. Therefore, negative findings
must be interpreted with extreme caution; in other words, pain perception can be confirmed
empirically, whereas its absence cannot be necessarily demonstrated. Furthermore, CNS
and ANS activity can vary over time spontaneously or due to homeostatic or allostatic
requirements with different timing and latencies, thus challenging online and single assess-
ments. In addition, the possibility of referencing PDOC data to those coming from healthy
controls [126–129] may not be sufficient, because there could be macroscopic differences
in the magnitude of the orienting response (i.e., the automatic reactions to environmental
modification and stimuli) [71,130], habituation with repeated stimulations [131,132], and
fluctuation in attention and implicit memory [71,133].

One could concern that the detection of purposefully cognitive responses using active
paradigms [118,134–137] is undoubtedly a pillar of PDOC diagnosis [138]. However, there
is also some evidence that passive paradigms may be useful for PDOC diagnosis. An
in-sequence evaluation of patients using passive stimulation paradigms (e.g., acoustic)
may help track awareness recovery [139–141]. Therefore, a retrospective analysis of the
acquired data may also help prognosticate awareness recovery, but this issue deserves
further confirmation. Additionally, assessing the functional integrity of large-scale brain
networks may be crucial, because it represents a fundamental prerequisite for awareness
to emerge.

Finally, the instrumental assessment can only offer a quantitative assessment of
whether a patient may experience pain. Indeed, qualitative assessment is not achievable.
Further research should investigate autonomic and cortical activations expressing covert
measures of somatosensory and nociceptive information processing in PDOC patients,
preferably using a standardized multi-methods approach.

4.1. Management Perspective

The need for a more objective assessment of PDOC patients goes far beyond the
differential diagnosis and prognosis because it has relevant consequences on personalizing
the rehabilitation approach. In this regard, distinguishing between studies that show
neurophysiological pain signatures in patients with PDOC at the individual level beyond
a group level is crucial if one aims for the clinical utility of these methods. The studies
we reviewed did not identify significant within-group differences concerning neurophys-
iological pain signatures, with very few exceptions concerning the same patients tested
using different, advanced methodological approaches (including GBO, C-LEP spectra,
and pain-motor integration) [73–75]. Therefore, the electrophysiological test’s diagnostic
accuracy, i.e., its clinical utility, derived from calculating the test’s sensitivity and specificity
of electrophysiological techniques, is still far from being achieved. This depends on the
fact that a correspondence between the test results and the true state-of-affairs is missing
because independent methods (i.e., a veridical benchmark of the state-of-affairs or gold
standard) checking such correspondence are lacking.

Consequently, even a methodologically accurate electrophysiological paradigm may
still be clinically inaccurate, because there are no independent methods for confirmation.
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However, the clinical utility of electrophysiological assessment benefits from comparing
findings in PDOC with the performance of healthy controls under identical experimental
conditions (with the abovementioned precautions) [126–133] to increase test sensitivity,
thus allowing the use of group-level data in classification models tailored for individual-
level analysis, and to enhance specificity (i.e., to obtain as few false-positives as pos-
sible) by checking statistical thresholding, and performing multiple independent tests.
Further expanding these lines of work, neurophysiological assessment could provide
clinicians with useful information concerning conventional (including pharmacological
agents and intrathecal baclofen) [142–146] and advanced therapies, such as deep brain
stimulation [147,148] and non-invasive neuromodulation (including transcranial current
stimulation and rTMS) [149,150]. In this regard, neurophysiological approaches can iden-
tify the brain pathways that could be harnessed to foster awareness recovery. However,
it is still difficult to differentiate between nociceptive responses and authentic subjective
pain experience in understanding pain perception in patients with PDOC. We can only
admit that neurophysiological techniques may complement the understanding of pain
responses by investigating pain signatures through neurophysiological methods. Indeed,
it is surely debated that detecting nociceptive responses implies consciousness, because
it does not necessarily verify subjective perceptions of pain, consistently with the limi-
tations as mentioned above on the sensitivity and specificity of the currently available
electrophysiological tests.

Furthermore, as research develops, it will be possible to benefit from neurophys-
iological data concerning the effectiveness of a treatment strategy [45,151,152]. Lastly,
neurophysiological strategies can be implemented to allow patients to communicate (as a
brain–computer interface).

4.2. Future Research

Solving the bias results toward false positives or false negatives between analysis meth-
ods remains a highly challenging obstacle in the research setting. Overcoming the obstacle
of false positives or false negatives may consist of reanalyzing previous neuroimaging
findings with alternative statistical methods [120,153], analyses [154], comparing different
approaches [118,155,156], and studying the robustness of different stimuli [53]. Assuming
that negative results during active paradigms do not necessarily imply the absence of
cognitive processes, another approach may suggest that a patient with PDOC may process
nociceptive stimuli in a way resembling control individuals, thus proposing that they may
perceive pain. Alternatively, it is plausible that this patient is misdiagnosed due to the
technical constraints of bedside evaluations.

Of note, research should be oriented at a single-level rather than only at a group-
level, if the neurophysiological data have to be adopted as a tool for patient-tailored
care plans. The development of technology and methods should aim to increase the
availability of objective electrophysiological assessments of functional connectivity and
analysis at the level of individual cases and group comparisons [45]. In this regard, a
systematic review should deepen the scientific question of the estimated sensitivity and
specificity of neurophysiological methods in detecting pain perception in patients with
PDOC, particularly the individual-level assessment.

Additionally, larger sample studies are also necessary to enable comparisons among
different groups of patients. Lastly, a serial and multimodal neurophysiological assessment
may provide us with more profound knowledge of the effects of patients’ clinical features
and comorbidity profiles on pain processing to understand better pain perception.

4.3. Conclusions

Consistently with the limitations of the clinical assessment, clinicians should be cau-
tious in making definitive conclusions about pain and suffering in individuals with PDOC.
The available data suggest that neurophysiology may contribute significantly and ac-
tively to clarify the neural correlates of pain perception in patients with PDOCs. Indeed,
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large-scale brain activations in response to nociceptive stimuli may suggest a conscious
perception of pain despite behavioral unresponsiveness. On the other hand, it should be at
least assumed that negative results during active paradigms do not necessarily imply the
absence of cognitive processes, in keeping with the diagnostic limitations of the electrophys-
iological paradigms we reviewed. In such cases, further clinical and multiple instrumental
evaluations are necessary to prove pain (non)perception [113–115,118,155–158]. In this
regard, an accurate clinical and multiple instrumental pain assessment of individuals with
PDOC using repeated evaluation through ad hoc clinical scales and neurophysiological
approaches may represent the most methodologically sound and ethically responsible
approach to avoid misinterpretations and misdiagnoses.
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