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Abstract: Remarkable progress in the development of modeling methods for indoor spaces has
been made in recent years with a focus on the reconstruction of complex environments, such as
multi-room and multi-level buildings. Existing methods represent indoor structure models as a
combination of several sub-spaces, which are constructed by room segmentation or horizontal slicing
approach that divide the multi-room or multi-level building environments into several segments.
In this study, we propose an automatic reconstruction method of multi-level indoor spaces with
unique models, including inter-room and inter-floor connections from point cloud and trajectory.
We construct structural points from registered point cloud and extract piece-wise planar segments
from the structural points. Then, a three-dimensional space decomposition is conducted and water-
tight meshes are generated with energy minimization using graph cut algorithm. The data term of
the energy function is expressed as a difference in visibility between each decomposed space and
trajectory. The proposed method allows modeling of indoor spaces in complex environments, such
as multi-room, room-less, and multi-level buildings. The performance of the proposed approach is
evaluated for seven indoor space datasets.

Keywords: automatic 3D modeling; structured 3D reconstruction; multi-level building reconstruc-
tion; point cloud processing

1. Introduction

Three-dimensional (3D) models of indoor spaces are widely used in the field of virtual
reality (VR), augmented reality (AR), indoor localization, and indoor navigation. Modeling
methods of the indoor structure are important topics of study in various fields, such
as computer vision, computer graphics, civil engineering, and robotics. Nevertheless,
the reconstruction of indoor structures that include inter-room connections and inter-floor
connections is a challenge. A recent survey and tutorial indicated that modeling with inter-
room and inter-floor connections approach is reserved for future work. Pintore et al. [1]
presented the modeling of an entire building; however, the connections between rooms
and levels is still a complex problem. Hence, a global solution is required to reconstruct
complex environments [2].

Previous works address this problem based on divide-and-conquer techniques. Floor
segmentation of buildings and room segmentation are traditional approaches that convert
the difficult problem into simpler individual sub-problems for modeling of indoor spaces.
The floor segmentation approach divides multi-level buildings into several single-level
spaces, whereas the room segmentation approach divides single-level multi-room spaces
into several rooms. Models of single-level indoor spaces are represented by a combination
of models in individual room and that of multi-level buildings are represented by a
combination of such single-level models.

Oesau et al. [3] introduced a reconstruction method for separating multi-level build-
ings into individual single-level spaces using horizontal slicing approach. The horizontal
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slicing algorithm was used to cut the target space using peaks in vertical histogram of
point cloud distributions. However, this approach cannot be used to separate each level of
complex multi-level buildings depicted in Figure 1, because the indoor space, which is C2
in our datasets, comprises multiple levels of varying height.

(a) (b) (c)
Figure 1. Registered point cloud of an indoor space with complex multiple floors environment (C2
in our dataset). (a) The bird’s-eye view, (b) top view, and (c) side view of the indoor space. The
combination of first and 0.5 floors is denoted by red, first floor is denoted by green, second floor is
denoted by blue, and a combination of first and second floors is denoted by yellow. The conventional
horizontal slicing approach is not suitable for complex multi-level building environments.

Some studies conducted room segmentation using Markov clustering [4–6] or space
over-segmentation and merging [7–9]. These approaches may be suitable for modeling of
multi-room environments but not for room-less environments.

Furthermore, certain existing approaches still use the room segmentation for modeling
multi-room environments, modelling methods for inter-room connections have not been
addressed [10,11]. The inter-room and inter-floor connections can be modeled as doors
(or openings) and stairs, respectively, as depicted in Figure 2. The figure illustrates the
reconstructed model of the dataset C2 using the proposed method.

Figure 2. Mesh model built using our proposed method of indoor structure modeling includes
inter-room (doors or openings) and inter-floor connections (stairs), denoted by the red and yellow
boxes, respectively.

Previtali et al. [12] detected inter-room connections using lay-tracing algorithm,
whereas Wang et al. [13] and Yang et al. [14] used specific parameters, such as upper
and lower bound of doors or width of doors. Oesau et al. [3] dealt with the modeling of
multi-level buildings but did not model inter-floor connections. This approach generated
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multi-level building models by stacking multiple single-level spaces. Nikoohemat et al. [15]
divided the target multi-level building into floor and stair parts and constructed the multi-
level building model as a combination of multiple single-level spaces and stair models.

In this paper, we propose an automatic reconstruction method for multi-level indoor
spaces with complex environments. The proposed method can generate indoor space
models that include inter-room and inter-floor connections from point cloud and trajectory.
The continuous trajectory through multiple rooms and multiple floors within a building is
used to reconstruct an indoor space as a unique model. Furthermore, the proposed method
does not segment structural points into specific components such as walls, floors, ceilings,
doors, or stairs, and does not segment indoor spaces into sub-spaces such as individual
rooms or single-level floors. The proposed method provides a general approach to indoor
space modeling that reconstructs indoor structures into piece-wise planar segments and
builds the target indoor space to a unique model, even if the target indoor space consists of
multiple rooms or multiple floors. In addition, the proposed method conducts energy min-
imization using graph cut, which enables automatic reconstruction of indoor space models.
We validated the performance of the proposed approach by evaluating the error in the
distance between point cloud and generated mesh for seven datasets. Furthermore, by con-
sidering datasets from various environments, this approach validates the wide applicability
of the proposed method in multi-room, room-less, and multi-level building environments.

The proposed method is improved over our previous work [16]. Our previous work
used random sample consensus (RANSAC) based plane extraction and constructed an
adjacency graph to reconstruct indoor spaces, but this approach requires manual work
when generating the adjacency graph. However, in this paper, the proposed method
uses region-growing based plane extraction to detect small plane patches such as stairs,
doors, or openings and automatically reconstructs indoor space models with 3D space
decomposition and energy minimization using graph cut. Furthermore, the proposed
method uses both point cloud and trajectory to build the indoor space of multi-level
building as a unique model that includes inter-room and inter-floor connections. In
particular, the data term of the energy function is expressed as a difference in visibility
between each decomposed space and trajectory.

The remainder of this paper is organized as follows. Section 2 presents an overview
of the existing literature. Section 3 describes the proposed method and discusses the
construction of indoor space models, including inter-room and inter-floor connections from
point cloud and trajectory. Section 4 presents the experimental results and performance
evaluation of the proposed method for seven datasets. Section 5 presents the conclusion.

2. Related Work

Methods for modeling of indoor spaces are still actively studied in various fields, such
as computer vision, computer graphics, civil engineering, and robotics. Existing methods
build indoor space models using geometric information, images, or a combination of both.
The modeling of indoor spaces from point cloud is the most traditional approach. However,
it is optional to use a trajectory, the location of LiDAR scan raw data, in existing methods
that use point cloud. Moreover, some studies use only point cloud [5,6], whereas some use
both point cloud and information of scan position [4,17].

Many existing approaches use geometric assumptions to model 3D indoor spaces,
such as the Manhattan world assumption or two-and-a-half-dimensional (2.5D) approaches.
Ikehata et al. [18], Murali et al. [19], and Xie et al. [20] built models under the Manhattan
world assumptions. Mura et al. [21], Ochmann et al. [17], and Wang et al. [13] introduced
methods using 2.5D approaches that construct the models by vertical extension of two-
dimensional (2D) floor plans. In the 2.5D environments, the walls are orthogonal to a single
floor and ceiling. These previous works with 2.5D approaches first detected a floor and
ceiling, then projected wall points onto the floor to generate floor plans in 2D.

Recently, 3D approaches have been introduced because the methods using geomet-
ric assumptions (i.e., the Manhattan world assumptions and 2.5D approaches) cannot
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reconstruct indoor spaces with complex environments. Some of the studies address fully
3D modeling approaches that can model more complex environments [4,6,10]. These
approaches conduct 3D space decomposition using 3D planar segments extracted from
the point cloud. Mura et al. [4] used binary space partitioning (BSP) to decompose 3D
spaces. Ochmann et al. [6] and Nikoohemat et al. [10] reconstructed 3D models with
volumetric walls.

An extraction of structural components is conducted to model real-world indoor
spaces, which are cluttered environments. The geometric information (i.e., point cloud)
of the target indoor space can be segmented into structural and object (non-structural)
parts. The structural parts are architectural components of the indoor spaces, such as
floors, ceilings, walls, and stairs. However, previous methods extracted structural parts
without segmenting into structural and non-structural parts or used assumptions to extract
structural parts. Previtali et al. [12] detected wall components under the Manhattan world
assumption. Macher et al. [22] assumed that wall points are located in the boundary
of the rooms to detect walls. Mura et al. [4] detected the permanent components using
structural patterns. They assumed that the permanent components are rectangles so that
the holes caused due to occlusion by objects can be neglected. Nikoohemat et al. [10]
presented an adjacency graph based permanent structures detection method. Lim et al. [16]
not only segmented structural and object points but also filled in the holes that are used
to construct architectural points by projecting object points onto the structural surfaces.
Coudron et al. [23] used deep learning to extract permanent structures.

Structural primitives (e.g., 2D lines or 3D piece-wise planar segments) can be extracted
from the structural components using various plane detection algorithms. Xiong et al. [24]
detected structural patches by region-growing algorithm based on plane detection using
total least squares. Xiao et al. [25] used Hough transform to detect wall components in
2D. Turner et al. [26] segmented planar segments using principal component analysis.
Tran et al. [11] and Ochmann et al. [6] used the RANSAC based plane-fitting algorithm [27]
for extracting structural surfaces.

In indoor spaces with multi-room environments, the room segmentation approaches
divide the modeling problems to several simpler sub-problems and are conducted using the
Markov clustering algorithm [4–6] or space over-segmentation and merging approach [7–9].
The models of indoor spaces represent a combination of individual rooms divided by room
segmentation. Yang et al. [14] and Mura et al. [4] conducted room segmentation in 2D and
3D models, respectively. Mura et al. [4] conducted the procedure by allocating separate
rooms using the Markov clustering algorithm and built models through a multi-label en-
ergy minimization approach [28], but the modeling method of inter-room connections was
not described. Yang et al. [14] detected inter-room connections using specific parameters,
such as upper and lower bound of doors. Previtali et al. [12] and Wang et al. [13] introduced
a modeling method through a two-label (interior and exterior) energy minimization ap-
proach under the Manhattan world assumption and 2.5D approaches, respectively. These
approaches detected the inter-room connections using lay-tracing or reasonable parameters
(i.e., width of doors).

Oesau et al. [3] introduced the horizontal slicing approach that separated multi-level
buildings through the peak of horizontal (z-axis) histogram of the distribution of point
cloud. Then, the models of multi-level buildings were represented as a combination of
models for a single-level space. Additionally, this approach can reconstruct the room-
less environments by implementing the 2.5D approaches. However, it cannot model the
complex multi-level environments as depicted in Figure 1. Nikoohemat et al. [15] used a
trajectory to segment the point cloud of a multi-level building. The segments of horizontal
trajectory and sloped trajectory divided the indoor space into floor and stair parts. Then,
the generated models were represented as a combination of floor and stair models.

In this paper, we propose the modeling method that does not use geometric assump-
tions (i.e., the Manhattan world assumption and 2.5D approach) and convert difficult
modeling problems into several simpler sub-problems (i.e., horizontal slicing and room
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segmentation). Furthermore, the proposed method uses a trajectory through multiple
rooms and multiple floors in a building to reconstruct indoor space model that include
inter-room and inter-floor connections.

3. Methods

This section describes the method to generate indoor structure mesh models that
include inter-room and inter-floor connections from the point cloud and trajectory as
depicted in Figure 3. First, we construct the structural points, which represents the archi-
tectural components of indoor spaces, from the registered point cloud and trajectory in
the pre-processing step. Next, the proposed method extracts piece-wise planar segments
to decomposes the indoor space into the 3D cell complex. Finally, water-tight meshes
are generated through energy minimization using the graph cut algorithm. We use the
trajectory to compute the difference in visibility in the energy function minimization.

Data Acquisition & SLAM

Structural Points Extraction

Piece-wise Planar Segments Extraction

3D Space Decomposition

Energy Minimization

Water-tight Mesh Generation

Output: Water-tight Mesh

Registered Point Cloud Trajectory

Structural Points

Piece-wise Planar Segments

3D Cell Complex

Figure 3. Flowchart of the proposed method.

3.1. Pre-Processing

We acquire the registered point cloud and trajectory, which are the optimized poses of
raw LiDAR measurements, using the LiDAR-IMU based simultaneous localization and
mapping (SLAM) [29,30]. The structural points are constructed using the architectural
point cloud construction described in our previous work [16]. First, the registered point
cloud is segmented into structural and non-structural components. Then, the structural
points are constructed by projecting non-structural points onto adjacent piece-wise planar
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structural segments extracted from the structural components. Figure 4 demonstrates the
constructed structural points (grey) and segmented object points (red) of our dataset A1.

Figure 4. Structural points (grey) and the object points (red) that are segmented from the registered
point cloud of our dataset A1.

3.2. Piece-Wise Planar Segments Extraction

This study is aimed at reconstructing indoor spaces including inter-room and inter-
floor connections; hence, detailed planar segments are extracted using plane extraction
algorithms. We conduct the region-growing based plane detection algorithm [31] in the
computational geometry algorithms library (CGAL) [32]. This approach is suitable for
extracting piece-wise planar segments in complex environments.

The piece-wise planar segments P are extracted in two steps. Large piece-wise planar
segments are first extracted and small surfaces are detected from the remaining points not
included in the pre-extracted piece-wise planar segments. The parameters for piece-wise
planar segments extraction can be modified by varying noise or density of the structural
points. Table 1 records the parameters usually used in our tests for piece-wise planar
segments extraction. k denotes the number of nearest neighbors used to calculate the
normal vector of the target points. distmax denotes the maximum distance from the plane
to the points that consist the plane. anglemax denotes the maximum angle between the two
regions for merging. Nmin denotes the minimum number of points that consist piece-wise
planar segments.

Table 1. Parameters for piece-wise planar segments extraction. We extract the planar surfaces
iteratively to extract more smaller and detailed planar surfaces. At the first iteration large planar
surfaces are extracted, whereas at the second iteration small planar surfaces are extracted.

First Extraction Second Extraction

k 50 20
distmax 2 cm 2 cm

anglemax 10◦ 10◦

Nmin 200 50

3.3. 3D Space Decomposition

The 3D cell complex C (Algorithm 1.) is constructed by decomposing the indoor space
into polyhedral cells using piece-wise planar segments. For efficient space decomposition,
the cell c (c ∈ C) is divided into two cells by piece-wise plane segment p (p ∈ P) when the
points of the piece-wise planar surface Xp are inside the cell c. Figure 5 illustrates extracted
piece-wise planar segments and 3D cell complex of our dataset A1.
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(a) (b)
Figure 5. Top view of (a) piece-wise planar segments and (b) 3D cell complex of our dataset A1.

Algorithm 1 3D cell complex construction

1: C ← Initialization(P)
2: for i = 1 : n do
3: for j = 1 : m do
4: if Xpi is inside cj then
5: C ← Decomposition(C, cj, pi)
6: end if
7: end for
8: end for

A visibility Visc denotes the score that represents the visibility of piece-wise planar
segments in the cell c, and adjacency Adj is the set of pairs of adjacent cells.

Adj = {(c, c′)|c, c′ ∈ C ∩ c, c′are adjacent.} (1)

Visc is represented by the distribution of visible region of each piece-wise planar
segments. Specifically, visAreap

c denotes the visible area of the piece-wise planar segment
p in the cell c. As the structural points are sparse, simple ray-tracing based visible points
detection algorithms can detect false points. Therefore, we propose visible points detection
algorithm that is robust for a varied density of points, as shown in Algorithm 2. First,
the structural points Xstr are transformed into spherical coordinate with the center of the
cell as the origin. Next, the shortest distance from the origin to the transformed structural
point is used to calculate the angle deviation (δψ) of the latitude and longitude to divide
the space. Finally, the point closest to the origin is selected as a visible point in each region
divided by the angle deviation. Because we conduct a 1 cm grid sampling on the point
cloud of the experiments, we set the reference angle deviation to tan−1(0.01) to detect the
points sampled at 1 cm grid. The parameter k is set to 2 in our tests.

Algorithm 2 Visible points detection in the cell

1: map(r, θ, φ)← ConvertCoordinate(Xstr, center)
2: δψ = k tan−1(0.01/min(r))
3: for i = 1 : δψ : 2π do
4: for j = 1 : δψ : π do
5: Xvis(i, j)← f (map, center, i, j, δψ)
6: end for
7: end for
8: Xvis =

⋃
Xvis(i, j)
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The visible points are segmented according to piece-wise planar segments, and the
visible area of each piece-wise planar segments is calculated from the segmented visi-
ble points.

3.4. Water-Tight Model Reconstruction

We implement energy minimization using graph cut algorithm [28] with two labels,
namely interior Lint and exterior Lext, to reconstruct the indoor spaces. The energy function
to be minimized consisted of the data and smoothness terms expressed as:

E(l) = ∑
c∈C

Dc(lc) + λ ∑
{c,c′}∈Adj

Vc,c′(lc, lc′) (2)

where ∑c∈C Dc(lc) and ∑{c,c′}∈Adj Vc,c′(lc, lc′) represent the data and smoothness terms,
respectively. lc is a label of the cell c ∈ C, and parameter λ is the ratio of weight of the data
and smoothness terms. We used λ as a value of 0.1∼0.2 in our experiments.

3.4.1. Data Term

The data term is constrained using difference in visibility between the 3D cell complex
C and trajectory T:

Dc(lc) =

{
mint∈T visDi f f (c, t), if lc ∈ Lint

1−mint∈T visDi f f (c, t), if lc ∈ Lext
(3)

visDi f f (c, t) =
( 1

n ∑n
p=1(visAreap

c − visAreap
t )

2)
1
2

( 1
n ∑n

p=1(max(visAreap
c , visAreap

t )
2))

1
2

(4)

Specifically, visDi f f (c, t) is the difference in visibility between a cell c (c ∈ C) and a
trajectory point t (t ∈ T). The visAreap

c and the visAreap
t are visible areas of a piece-wise

planar segment p ∈ P from a cell c ∈ C and a trajectory point t ∈ T, respectively, using
Algorithm 2 and 3. We calculate the difference in visibility for all trajectory points in
each cell and select the trajectory point with the smallest value of visDi f f (c, t). Figure 6
illustrates selected trajectory points in each cells. Cells inside the indoor spaces can select
the trajectory points with smallest difference in visibility, whereas cells outside the indoor
spaces have large differences in visibility for all trajectory points. The selected trajectory
points are not the closest points from the corresponding center of cells because they are
determined by the difference in visibility. In addition, cells located in regions of inter-room
and inter-floor connections can be labeled interior because the trajectory is continuous
through multiple rooms or multiple levels in buildings.

Algorithm 3 Visible area detection in the cell

1: for i = 1 : n do
2: Xvis,ci ← VisiblePointsDetection(Xstr, centerci )
3: for j = 1 : m do
4: X

pj
vis,ci
← Segmentation(Xvis,ci ,pj)

5: visArea
pj
ci ← VisibleAreaDetection(X

pj
vis,ci

)
6: end for
7: end for
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(a) (b)
Figure 6. Illustration of an indoor space consisting of three rooms and two inter-room connections
expressed in 2D for visualization. The (a) structural points (black lines) and trajectory points (black
dots) and (b) decomposed 3D spaces. (b) illustrates centers of the cells (colored crosses), visible points
in the cells (colored dots), and trajectory points with the smallest difference in visibility (colored
circles) for each cell (colored boxes). The cells marked in red, green, and blue select the trajectory
point with the smallest difference in visibility but a cell marked in purple, which is outside the indoor
space, has large differences in visibility for all trajectory points.

3.4.2. Smoothness Term

The smoothness term is defined as the ratio of the area occupied by the structural
points located on the adjacent face between two adjacent cells:

Vc,c′(lc, lc′) = [1− wc,c′ ] · g(lc, lc′) (5)

wc,c′ =
occupiedAreac,c′

f aceAreac,c′
(6)

g(lc, lc′) =

{
1, if lc 6= lc′
0, if lc = lc′

(7)

The occupiedAreac,c′ and f aceAreac,c′ represent the area occupied by structural points
located on the adjacent face of the two cells (c, c′) and area of the face shared by the two
adjacent cells, respectively (occupiedAreac,c′ ≤ f aceAreac,c′ ). The occupiedAreac,c′ is close
to zero when the cells (c, c’) are located both inside or outside of indoor spaces, whereas
that is close to the f aceAreac,c′ when the cells are located different region (inside or outside)
of indoor spaces. Therefore, the cells with low wc,c′ are connected to large weights on a
graph, while the cells with high wc,c′ are connected to low weights on the graph. Figure 7
illustrates two pairs of adjacent cells depicted red and green cells and red and blue cells.

Figure 7. Illustration of two pairs of adjacent cells of an indoor space depicted in Figure 6a expressed
in 2D for visualization. The area occupied by structural points located on the adjacent face of red and
green cells is close to zero, while that of red and blue cells is close to the area of face shared by the
two cells.
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3.4.3. Water-Tight Mesh Generation

The indoor space models are generated as boundary polyhedral of the set of interior
cells labeled Lint. The models are represented by triangular meshes via 2D constrained
Delaunay triangulation algorithm [33] for each target face of cells.

4. Experimental Results

In this section, we validated the proposed method by evaluating its performance for
seven datasets, with five real-world indoor spaces and two public datasets.

4.1. Dataset

We collected the data on real-world indoor spaces using a robot system and a backpack
system as illustrated in Figure 8. The robot system is a combination of a spherical camera,
two 3D LiDARs, and an inertial sensor, while the backpack system consists of a 3D LiDAR
and an inertial sensor. The registered point cloud and trajectory of the real-world indoor
spaces were generated by LiDAR-IMU based SLAM [29,30].

(a)

3D LiDAR
HDL-32E

Inertial Sensor
3DM-GX4-25ᵀᴹ

(b)

Figure 8. (a) Robot system and (b) backpack system employed for data acquisition.

For efficient contextualization, datasets are classified according to their environmen-
tal characteristics:

• Group A: Environments with multiple rooms and a single level.
• Group B: Environments with no room and a single level.
• Group C: Environments with multiple rooms and multiple levels.

Table 2 records the environmental information of the indoor spaces used in the experi-
ment. A1, B1, B2, C2, and C3 are the real-world indoor space datasets acquired by the robot
or backpack systems. A2 is the “TUB1” on the ISPRS benchmark datasets [34] and C1 is
the “house” on the UZH rooms detection datasets [35]. In Table 2, the “#Registered points”
and “#Trajectory points” indicate the number of registered point cloud and optimized pose
of raw LiDAR scan locations generated by SLAM, respectively. The “#Rooms”, “#Floors”,
and “#Stairs” indicate the number of rooms, floors, and stairs in the target spaces, respectively.

Table 2. Environment of indoor spaces used in the experiment.

Dataset Size W × D × H [m] #Registered Points #Trajectory Points #Rooms #Floors #Stairs

A1 18.6 × 8.9 × 3.3 108,508,257 20,972 7 1 0
A2 15.0 × 42.8 × 2.6 32,597,694 89,393 10 1 0

B1 28.1 × 64.5 × 3.5 26,658,402 296 1 1 0
B2 137.2 × 49.1 × 12.8 305,388,028 85,981 1 1 0

C1 13.9 × 10.9 × 10.0 51,600,820 19 11 3 2
C2 13.4 × 12.2 × 7.7 241,610,195 5340 11 3 3
C3 9.0 × 4.8 × 12.2 300,701,197 114,562 11 5 4
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Figure 9 demonstrates the structural points and trajectory points of the datasets A1
and C3. The trajectory of the dataset A1 shown in Figure 9a is continuous through multiple
rooms, and the trajectory of the dataset C3 shown in Figure 9b is continuous through
multiple levels in the building.

(a) (b)
Figure 9. Structural points (grey) and the trajectory points (red) of (a) dataset A1 and (b) dataset C3.
The trajectory is continuous through multiple rooms or multiple levels.

4.2. Results of Structural Points Extraction

The registered points can be segmented into structural points, non-structural (object)
points, and noise points. Structural points are extracted using the architectural point cloud
construction approach in [16]. In Table 3, the “#Registered points” and “#Structural points”
indicate the number of registered point cloud and structural points, respectively.

Table 3. Number of registered point cloud and structural points.

Dataset #Registered Points #Structural Points

A1 108,508,257 77,569,453
A2 32,597,694 28,151,560

B1 26,658,402 17,626,644
B2 305,388,028 99,695,180

C1 51,600,820 47,697,095
C2 241,610,195 211,110,747
C3 300,701,197 107,109,986

4.3. Results of Model Generation

The generated indoor structure mesh models are illustrated in Figure 10, which
demonstrates that the proposed method successfully modeled the entire datasets, including
environments with multi-room (A1, A2), room-less (B1, B2), and multi-level buildings (C1,
C2, C3). In particular, the environments with slanted structures (A1, B2, C1, C2, C3) were
modeled. In addition, the inter-room and inter-floor connections were reconstructed as
shown in (A1, A2, C1, C2, C3) and (C2, C3), respectively. Note that because the dataset C1
did not provide sufficient point cloud and trajectory for stairs, we did not build models
of stairs.

The detailed illustrations of the modeling results of inter-floor and inter-room con-
nections for dataset C2 and C3 are presented in Figures 11 and 12, respectively, which
convey that the inter-floor (stairs) and inter-room connections (doors or openings) were
successfully modeled using the proposed approach.
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(a) Dataset A1.

(b) Dataset A2.

(c) Dataset B1.

(d) Dataset B2.

Figure 10. Cont.
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(e) Dataset C1.

(f) Dataset C2.

(g) Dataset C3.

Figure 10. Results of the generated water-tight meshes. The bird’s-eye view of the entire spaces (left) and the fist floor
without ceilings (right) are displayed.
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(a) (b) (c)
Figure 11. Detailed images of dataset C2. (a) inter-floor and three inter-room connections, (b) inter-
floor and two inter-room connections, and (c) inter-floor connection.

(a) (b) (c)
Figure 12. Detailed images of dataset C3. (a) inter-floor connection between underground and
first floor, (b) inter-floor connection between first and second floor, and (c) top view of inter-floor
connection between third and fourth floor.

The accuracy of the reconstructed indoor structure mesh models were evaluated by
the error in distance between the structural points and corresponding meshes. Table 4 lists
the median distance error and median absolute deviation (MAD) [36] of the datasets.

Table 4. Median distance error [cm] and median absolute deviation (MAD) [cm] between structural
points and reconstructed mesh.

Dataset A1 A2 B1 B2 C1 C2 C3

Median [cm] 1.53 1.86 1.19 1.41 0.79 1.22 1.21
MAD [cm] 1.64 2.92 1.45 3.61 1.76 1.44 1.27

5. Conclusions and Future Work

We proposed a method for automatic reconstruction of indoor structure comprising
inter-room and inter-floor connections in multi-level buildings from point cloud and
trajectory. The proposed method allows the modeling of multi-room environments with
inter-room connections, room-less environments, and multi-level buildings with inter-floor
connections. We constructed a structural points from the registered point cloud. Then,
piece-wise planar segments were extracted to decompose the indoor spaces. Finally, water-
tight meshes of indoor spaces were generated through energy minimization using graph cut
algorithm. The trajectory through multiple rooms and multiple floors within the buildings
was used to determine the difference in visibility in the data term of an energy function.
Experimental results for seven datasets were recorded demonstrating that the proposed
method has a wide range of applicability of indoor spaces with complex environments (such
as multi-room, room-less, and multi-level building) in a single framework. The proposed
method reconstructs the target indoor space as a unique model without segmenting the
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target indoor space into several sub-spaces. Since both point cloud and trajectory are
used, the entire indoor space models, including inter-room and inter-floor connections,
can be built in multi-level buildings. However, since reconstruction results rely on the
precision of structural points extraction, manual works (e.g., noise removal) can improve
the performance of the proposed method.

Future work involves the improvement of the proposed method for large-scale and
room-less environments as depicted in Figure 13. Additionally, experiments in indoor
spaces with curved surfaces and cylindrical pillars will be conducted.

Figure 13. Point cloud of large-scale and room-less indoor space with curved surfaces and cylindri-
cal pillars.
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