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Single nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF ) gene
and the catechol-O-methyltransferase (COMT ) gene influence brain structure and
function, as well as cognitive abilities. They are most influential in the hippocampus
and prefrontal cortex (PFC), respectively. Recall and recognition are forms of memory
proposed to have different neural substrates, with recall having a greater dependence on
the PFC and hippocampus. This study aimed to determine whether the BDNF val66met
or COMT val158met polymorphisms differentially affect recall and recognition, and
whether these polymorphisms interact. A sample of 100 healthy adults was assessed on
recall and familiarity-based recognition using the Faces and Family Pictures subscales
of the Wechsler Memory Scale – Third Edition (WMS-III). COMT genotype did not affect
performance on either task. The BDNF polymorphism (i.e., met carriers relative to val
homozygotes) was associated with poorer recall ability, while not influencing recognition.
Combining subscale scores in memory tests such as the WMS might obscure gene
effects. Our results demonstrate the importance of distinguishing between recall and
familiarity-based recognition in neurogenetics research.
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Introduction

Individual differences in the memory ability of healthy individuals are ubiquitous, readily observed
both within the laboratory and without. A single nucleotide polymorphism (SNP) found in the
gene coding for brain-derived neurotrophic factor (BDNF) has been implicated in variation in
mnemonic ability (e.g., Egan et al., 2003; Hariri et al., 2003). Similarly, individual differences in
a range of cognitive skills have been attributed partly to a SNP in the gene coding for catechol-
O-methyltransferase (COMT; e.g., Egan et al., 2001; de Frias et al., 2004). The present study
investigated the effects of the BDNF val66met and COMT val158met polymorphisms on recall and
recognition, two neurally dissociable forms of memory.

When researching the potential genetic correlates of memory performance, it is necessary to
distinguish between forms of memory. Previous research in this area has often used memory
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scores that collapse across different forms of memory. However,
it is probable that forms of memory are influenced by unique
clusters of genes (Nilsson, 2000). One major qualitative division
of memory exists between recall and familiarity judgments
(Mandler, 1980, 2008). Familiarity-based memory, a component
of recognition, is the capacity to judge the extent to which a
stimulus has previously occurred. This ability does not necessitate
the retrieval of specific information concerning the context
in which the previous encounters took place (Perfect et al.,
1996). Recollection, on the other hand, entails the retrieval of
precise identifying characteristics of the stimulus, or contextual
information such as concepts with which the stimulus was
previously associated.

Aggleton and Brown (1999) proposed that these memory
functions are the products of two limbic loops that are, to a
large extent, functionally independent. The recall of episodic or
episodic-like information is achieved by a network of structures
involving the hippocampus and the anterior thalamic complex.
Familiarity judgments were proposed to be accomplished by
a second network which instead incorporates the perirhinal
cortex and the mediodorsal thalamus. Animal studies (e.g.,
Morris et al., 1982; Meunier et al., 1993; Steele and Rawlins,
1993; Duva et al., 1997; Bussey et al., 1999) and neuroimaging
studies of humans (e.g., Squire et al., 1992; Schacter et al.,
1996; Kirk et al., 2004; Ryan et al., 2008; Kafkas and Montaldi,
2012) have provided empirical support for Aggleton and Brown’s
hypotheses, although there is some recent evidence that the
mediodorsal thalamus plays a role in recall (e.g., Pergola et al.,
2012, 2013).

While most aspects of Aggleton and Brown’s (1999) model
have received considerable support, one criticism has been
that Aggleton and Brown (1999) do not fully acknowledge the
particular importance of the prefrontal cortex (PFC) in recall
(Knowlton, 1999; Parker, 1999). A review by Davidson et al.
(2006) suggests that the PFC may be more crucial for recall than
recognition, although further research into this is necessary. The
greater importance of the PFC in recall is consistent with the
role this region is thought to play in binding diverse pieces of
information together (Fernández and Tendolkar, 2001). From
research implicating frontal and medial temporal formations in
memory processes, it follows that genes affecting the structure
and function of these regions could also influence memory
performance.

Part of the neurotrophin family, BDNF is a small, dimeric
signaling protein (Lessmann et al., 2003). BDNF promotes
neuronal growth and differentiation whilst the peripheral
and central nervous systems develop (Poo, 2001; Huang and
Reichardt, 2003). Although the functions of BDNF in the adult
brain are less understood (Cunha et al., 2010), BDNF has been
found to encourage neurogenesis in the mature dentate gyrus
(Sairanen et al., 2005; Scharfman et al., 2005; Thakker-Varia et al.,
2014) and striatum (Mohapel et al., 2005). BDNF also appears to
play a vital role in long-term potentiation (LTP; Poo, 2001; Panja
and Bramham, 2014), the long-lasting enhancement of synaptic
efficacy that is thought to underlie memory and learning (Bliss
and Collingridge, 1993; Cooke and Bliss, 2006). Egan et al. (2003)
proposed that it is through the role of BDNF in LTP that BDNF

secretion impacts memory and learning (see Lamb et al., 2014 for
a recent review).

The BDNF val66met polymorphism produces a non-
conservative substitution of a valine with a methionine at
codon 66 of this gene (Egan et al., 2003; Chen et al., 2004).
In a population of European ancestry, 64% of individuals are
val homozygotes (val/val), another 3% are met homozygotes
(met/met), and the 34% that remain are heterozygotes (val/met;
HapMap-CEU). The presence of the met allele has been
associated with decreased activity-dependent secretion of BDNF
and abnormal intracellular trafficking of the protein (Egan et al.,
2003). In accordance with BDNF expression being maximal in
the hippocampus (Murer et al., 2001), three meta-analyses have
reported that the met allele is associated with lower hippocampal
volume (Hajek et al., 2012; Kambeitz et al., 2012; Molendijk et al.,
2012). It should, however, be noted that a later meta-analysis by
Harrisberger et al. (2014) found no evidence of BDNF genotype
affecting hippocampal volume, suggesting previous effects may
have been overestimated.

Hariri et al. (2003) demonstrated that individuals carrying
a met allele show less hippocampal activation during memory
encoding and retrieval than val homozygotes, which may reflect
impaired synaptic events in the met carriers. A weaker memory
trace may be formed, thus accounting for their poorer subsequent
performance on the hippocampal-dependent memory task.
While the cumulative literature does suggest that the met allele
is detrimental to memory (see Kambeitz et al., 2012 for a
meta-analysis), a number of empirical studies have not detected
an association between genotype and memory performance
(e.g., Hansell et al., 2007; van Wingen et al., 2010). This
inconsistency may in part reflect differences in the forms of
memory assessed and the extent to which they are dependent on
the hippocampus.

As with the neurotrophins, neurotransmitters and the proteins
that regulate them are integral to neurodevelopment and
cognition. The metabolism of released dopamine is catalyzed
by COMT, with the degradation decreasing levels of this
neurotransmitter within the synapse (Egan et al., 2001).
Insufficient dopamine has been implicated in deficits across a
range of cognitive domains (Nieoullon, 2002), including memory
(e.g., Brozoski et al., 1979; Cai and Arnsten, 1997). Interestingly,
excessive dopaminergic activity appears to also be detrimental
for the memory functions of the PFC (e.g., Cai and Arnsten,
1997; Zahrt et al., 1997). Xu et al. (2009) demonstrated that when
dopamine is significantly increased in mice, the induction of LTP
in the PFC is eroded rather than facilitated.

The activity and thermal stability of the COMT enzyme are
influenced by a common SNP located on the coding region of
the COMT gene (Lotta et al., 1995; Lachman et al., 1996). This
val158met polymorphism involves a valine being switched for a
methionine. In a European population, 29% are homozygous for
the val allele (val/val), 25% are homozygous for the met allele
(met/met) and the 46% are heterozygotes (val/met; HapMap-
CEU). At body temperature, the met allele is associated with
almost four times more COMT activity than the val allele
(Lachman et al., 1996). Met homozygotes would thus be expected
to have slower dopamine inactivation than val homozygotes. The
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alleles appear to be codominant, with heterozygotes displaying an
intermediate phenotype (Chen et al., 2004).

COMT genotype has been found to affect gray matter levels
in the hippocampus and dorsolateral PFC (Honea et al., 2009).
Functional differences have also been observed. In an fMRI study
by Egan et al. (2001), PFC blood oxygenation level dependent
(BOLD) response during a working memory task differed as a
function of genotype. The greatest BOLD response was seen in
the val homozygotes and may indicate a less efficient system.
This differential PFC response has been replicated in a number
of later studies (e.g., Mattay et al., 2003; Meyer-Lindenberg et al.,
2006; Jasper et al., 2015). As there are few dopamine transporters
in the PFC, variation in COMT function could be particularly
influential on activity in this region (McIntosh et al., 2007).

COMT genotype has been demonstrated to predict variation
in executive function (e.g., Egan et al., 2001; Malhotra et al.,
2002; Mitaki et al., 2013) and processing speed (e.g., Bilder
et al., 2002), with the met allele typically being associated with
superior performance (although a meta-analysis by Barnett et al.,
2008 suggests genotypic effects may be smaller than initially
thought). A number of studies have reported met homozygotes
to have an advantage on memory tasks when compared to val
carriers (e.g., de Frias et al., 2004; Enoch et al., 2009; Raz et al.,
2009). de Frias et al. (2004) found that when episodic memory
was broken down into its elements of recall and recognition, a
significant difference between genotypes was only present for the
recall component. This differential effect demonstrates that the
polymorphism could have some degree of memory specificity,
possibly driven by the relative involvement of the PFC.

The present study aimed to examine both recall and
recognition performance in the same group of participants,
to determine (1) whether the BDNF val66met polymorphism
differentially influences performance on recall and recognition
tasks; (2) whether the COMT val158met polymorphism
differentially influences performance on recall and recognition
tasks; and (3) whether the BDNF val66met and COMT val158met
polymorphism interact to influence either recall or recognition
performance. Based on the particular influence of the BDNF
val66met polymorphism on the hippocampus and the specific
dependency of recall on the hippocampus, it was hypothesized
that the BDNF polymorphism would influence recall but
not familiarity-based recognition. On the recall task, val
homozygotes were expected to outperform those with the
met allele, thus replicating the results of past research on
hippocampal-dependent memory (e.g., Egan et al., 2003;
Hariri et al., 2003). As the influence of the COMT val158met
polymorphism appears to be highest in the PFC,COMT genotype
was also predicted to solely affect performance on the recall task.
On this task, met homozygotes were expected to perform better
than individuals with the val allele, replicating de Frias et al.
(2004).

Brain-derived neurotrophic factor plays a pivotal role in the
development of dopaminergic-related systems (Zhou et al., 1994),
while COMT levels affect the structure of frontal and limbic
regions (e.g., Honea et al., 2009). Furthermore, BDNF (Poo,
2001) and COMT (Jacobsen et al., 2010) both influence forms
of LTP and a study by Witte et al. (2012) has noted that the

BDNF and COMT polymorphisms interact to impact on cortical
plasticity. A BDNF and COMT interaction has also been recently
reported for immediate recall in older adults (Stuart et al., 2014).
Consequently, it was hypothesized that an interaction between
the BDNF val66met and COMT val158met polymorphisms might
be found for recall performance.

Materials and Methods

Participants
A sample of 100 healthy university students aged between 18
and 42 years (M = 23.3, SD = 4.0) participated in this study.
Of these participants, 64 were female. Participants had either
normal or corrected-to-normal vision. All participants gave their
informed consent for inclusion in this study and the University of
Auckland Human Subjects Ethics Committee approved all study
procedures.

Genotyping
DNA Collection
Participants were asked to give a small blood sample or
saliva sample. Blood sample collection was performed with
sterile procedures. Saliva samples were collected using Oragene-
DNA Self Collection kits in a manner consistent with the
manufacturer’s instructions.

DNA Extraction
DNA was extracted from the blood samples following the
method outlined by Miller et al. (1988) and from the saliva
samples following the method given by Nishita et al. (2009).
All resultant DNA samples were resuspended in Tris-EDTA
buffer and were quantified used Nanodrop ND-1000 1-position
spectrophotometer (Thermo Scientific).

DNA Amplification
The DNA samples were all diluted to 50 ng/μL. A modified
version of the method described by Erickson et al. (2008) was
used for the DNA amplification. Amplification was carried out
on the 113 bp polymorphic BDNF fragment, using the primers
BDNF-F 5-GAG GCT TGC CAT CAT TGG CT-3 and BDNF-R
5-CGT GTA CAA GTC TGC GTC CT-3. Amplification of the
176 bp polymorphic COMT fragment used the primers COMT-F
5-TCA CCA TCG AGA TCA ACC CC-3 and COMT-R 5-GAA
CGT GGT GTG AAC ACC TG-3. Polymerase chain reaction
(PCR) was conducted using 10X Taq buffer (2.5L μL), Taq
polymerase (0.125μL), dNTPs (5 nmol), primers (10 pmol each),
Q solution (5 μL), and DNA (100 ng) made up to 25 μL with
dH2O. The PCR conditions consisted of denaturation at 95◦C for
15 min, 30 cycles on a ThermoCycler (involving denaturation at
94◦C for 30 s, annealing at 60◦C for 30 s, and extension at 72◦C
for 30 s) and a final extension at 72◦C.

Enzyme Digestion
For BDNF, PCR product (6.5 μL) was incubated with Pm1l at
37◦C overnight. For COMT, PCR product (8 μL) was incubated
with N1aIII at 37◦C for 1 h. The digestion products were analyzed
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using a high-resolution agarose gel (4%) with a Quick Load
100 bp ladder (BioLabs) and a GelPilot Loading Dye (QIAGEN).
After immersion in an ethidium bromide solution for 10 min,
DNA was visualized under ultraviolet light.

Genotyping
For BDNF, enzyme digestion resulted in a 113 bp fragment for
the met66 allele, which was cut into 78 and 35 bp fragments for
the val66 allele. For COMT, digestion resulted in bands of 82, 54
and 41 bp for the val158 allele and the 82 bp fragment was cut into
64 and 18 bp fragments for the met158 allele. This was as described
by Erickson et al. (2008).

Memory Measurements
Familiarity and recall performance were assessed using two
subtests from the Wechsler Memory Scale – Third Edition
(WMS-III; Wechsler, 1997b). These subtests were the Faces and
Family pictures tasks, each of which tap into visual memory. In
the Faces subtest, participants were presented with 24 images
of faces that they were requested to remember. The faces were
presented serially for 2 s each. Immediately after being presented
with this list, participants were shown 48 faces, half of which they
had just seen and the rest of which were novel. For each of these,
participants were required to make a judgment as to whether or
not they had previously been shown it. Raw Faces scores were
converted into percentage correct for each participant.

In the Family Pictures task, participants were first introduced
to images of a fictional family consisting of seven members.
They were then presented with four scenes in turn, shown for
10 s each. Within each of these scenes, up to four members
of the fictional family appear engaged in various activities in
unique spatial locations. Immediately subsequent to the viewing
of these, participants were asked set questions that assessed their
memory of the scenes. These questions related to the activities
and locations of each character. Unlike the Faces subtest, the
Family Pictures subtest necessitates recall, with contextualized
details of the scenes being retrieved from memory. Raw Family
Pictures scores were converted into percentage correct for each
participant.

Data Analysis
Data Preparation
Observed BDNF genotypes did not differ significantly from
those predicted by Hardy Weinberg equilibrium (χ2 = 0.849,
p > 0.05). Of the 100 participants, 53 (53.0%) were val (G)
homozygotes, 10 (10.0%) were met (A) homozygotes and 37
(37.0%) were heterozygotes (val/met; G/A). BDNF genotypes
were dichotomised into val homozygotes and met allele carriers
for analysis. While research would ideally distinguish between
the BDNF val/met and met/met genotypes, this is often not
practical due to the rarity of met homozygotes and low
sample sizes. Consequently, numerous previous studies have
combined heterozygotes and met homozygotes in this manner
(e.g., Pezawas et al., 2004; Erickson et al., 2008), still detecting
significant differences.

For similar reasons, COMT genotypes were dichotomised into
met homozygotes and val allele carriers. A number of prior

cognitive studies have found only the COMT met homozygotes
to significantly differ from the other genotypes, supporting the
decision of grouping the heterozygotes and val homozygotes
together (e.g., Malhotra et al., 2002; Tsai et al., 2003). COMT
genotypes in the present study did not differ significantly from
those predicted by Hardy Weinberg equilibrium (χ2 = 0.998,
p > 0.05). Of the 100 participants, 27 (27.0%) were val (G)
homozygotes, 28 (28.0%) were met (A) homozygotes and 45
(45.0%) were heterozygotes (val/met; G/A).

Statistical Analyses
AMANOVAwas conducted on the Family Pictures (recall) scores
and Faces (recognition) scores, with BDNF genotype (val/val and
met allele) and COMT genotype (val allele and met/met) as the
between-subjects independent variables.

Mean recall and recognition scores for BDNF and COMT
genotypes are shown in Table 1.

Results

Results of the MANOVA are shown in Table 2. The MANOVA
revealed a significant main effect of BDNF genotype on recall
performance [F(1,96) = 6.204, p = 0.014]. This main effect
is shown in Figure 1. On average, BDNF val homozygotes
(M = 79.3, SE = 2.10) attained significantly higher recall scores
than met allele carriers (M = 72.0, SE = 2.06).

A two-way interaction between BDNF and COMT genotype
on recall scores was approaching significance [F(1,96) = 3.864,
p = 0.052]. It should be noted that neither this interaction trend
nor the main effect of BDNF on recall appear to have been
driven by influential outliers. Data screening results were not

TABLE 1 | Mean recall and recognition scores for brain-derived
neurotrophic factor (BDNF) and catechol-O-methyltransferase (COMT)
genotypes.

Form of memory BDNF COMT Mean SE N

Recall Val/Val Val allele 76.8 2.08 40

Met/Met 81.8 3.65 13

Total 79.3 2.10 53

Met allele Val allele 75.3 2.32 32

Met/Met 68.8 3.40 15

Total 72.0 2.06 47

Total Val allele 76.1 1.56 72

Met/Met 75.3 2.49 28

Total 75.8 1.34 100

Recognition Val/Val Val allele 79.1 1.71 40

Met/Met 81.1 3.01 13

Total 80.1 1.73 53

Met allele Val allele 78.8 1.92 32

Met/Met 82.6 2.80 15

Total 80.7 1.70 47

Total Val allele 78.9 1.29 72

Met/Met 81.9 2.05 28

Total 79.8 1.08 100
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TABLE 2 | MANOVA for recall (Family Pictures) and recognition (Faces)
scores with BDNF genotype and COMT genotype as the
between-subjects variables.

Source F df P

BDNF genotype Recall 6.204∗ 1 0.014

Recognition 0.068 1 0.795

COMT genotype Recall 0.068 1 0.795

Recognition 1.477 1 0.227

BDNF∗COMT Recall 3.864 1 0.052

Recognition 0.143 1 0.706

Error 96

*p < 0.05.

FIGURE 1 | Recall and recognition scores for participants with the
brain-derived neurotrophic factor (BDNF) val/val genotype and
participants with at least one copy of the BDNF met allele. The error
bars are based on ±1 SE. ∗p < 0.05.

consistent with the presence of influential outliers and Shapiro–
Wilk tests indicate recall scores were sufficiently normally
distributed for each BDNF and COMT genotype combination
(p > 0.05).

No other effects or interactions were significant for recall or
recognition.

Discussion

Support was found for the hypothesis that the BDNF val66met
polymorphism would differentially affect recall and familiarity-
based recognition. As predicted, there was a main effect of BDNF
genotype for recall scores, with val homozygotes significantly
outperforming those with a copy of the met allele. In contrast,
there was no effect of BDNF genotype on recognition scores.
The superior performance of val homozygotes on the recall
task replicates previous studies that have assessed hippocampal-
dependent memory (e.g., Egan et al., 2003; Hariri et al., 2003).
Similarly, the lack of effect on familiarity-based recognition
reproduces the null effects reported by van Wingen et al. (2010).
The differential effect of the BDNF polymorphism on recall

and recognition suggests that BDNF is less influential on extra-
hippocampal structures and processes than it is on those of
the hippocampus. This interpretation is consistent with research
showing the anatomical and physiological effects of BDNF to
be particularly salient in the hippocampus (e.g., Hofer et al.,
1990), as well as Hariri et al. (2003) demonstration of BDNF
genotype having a hippocampal-specific impact on activation
levels. Consequently, the results from the present study may
help explain some of the inconsistencies in the existing literature
(see Mandelman and Grigorenko, 2012, and Kambeitz et al.,
2012 for recent meta-analyses), in that BDNF is unlikely to be
implicated in memory in studies where memory is assessed solely
on familiarity judgments.

The differential effect on recall and recognition found in
the present study has implications for theories of memory,
particularly that of Aggleton and Brown (1999). Aggleton
and Brown’s distinction between recall and familiarity-based
recognition has been criticized on the grounds that the
importance of recollection in familiarity-based recognition is
widely acknowledged, with the overlap between recall and
familiarity-based recognition rendering a neural dissociation
between these forms of memory invalid (e.g., Mayes et al.,
1999). The results of the present study suggest that the
difference between recall and recognition is sufficient to have
practical consequences for research, as well as possible clinical
applications. A distinction between recall and familiarity-based
recognition should be considered by researchers investigating the
genetics and neural processes involved in memory.

The hypothesis that the COMT val158met genotype would
differentially affect recall and recognition performance was not
supported in the present study. COMT genotype affected neither
recall nor recognition. This is inconsistent with previous studies
that have found COMT genotype to have consequences for
memory. Research by de Frias et al. (2004) reported that the
COMT met allele was beneficial for recall performance, while
not affecting recognition. The failure of the present study
to replicate this result may be a consequence of differences
between the participant samples. de Frias et al. (2004) research
sample consisted of older participants, whereas the present
study examined the performance of young adults. Furthermore,
de Frias et al. (2004) study only involved male participants.
Research indicates that the impacts of the COMT polymorphism
on cognition can vary with age (e.g., Nagel et al., 2008), and
that sex differences might be present (e.g., O’Hara et al., 2006).
It should also be noted that meta-analyses (e.g., Barnett et al.,
2008) suggest the effects of COMT on memory and other forms
of cognition may not be as large as initially thought. Furthermore,
other genetic variants affecting the dopaminergic system, such as
the dopamine receptor D1 (DRD1) and D2 (DRD2) SNPs, should
ideally be included in studies looking at the effects of COMT.
When studied in isolation the effects of a single polymorphism
on memory may be obscured (Gosso et al., 2008).

While we found a trend toward BDNF and COMT genotypes
interacting to affect recall, this did not reach significance. It is
possible that our study lacked the statistical power necessary to
detect an interaction effect, due to having insufficient participants
with certain BDNF and COMT genotypic combinations. While
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there is pre-existing evidence that BDNF genotypes influence
levels of LTP induction (Thompson et al., 2013) and may interact
with COMT genotypes in doing so (Witte et al., 2012), an effect
on this brain-based phenotype may not necessarily result in a
robust cognitive phenotype. While Stuart et al. (2014) did detect a
significant interaction between BDNF and COMT on immediate
auditory recall in older adults, their sample was larger and the
effect size modest. Neurophysiological measures may be a more
immediate reflection of the neurobiological effects of genes than
more distal behavioral measures, as performance on behavioral
tasks can be swayed by a multitude of additional factors including
motivation, strategy use and attitude to assessment (Goldberg
and Weinberger, 2004). Consistent with this, Kambeitz et al.
(2012) found that the BDNF polymorphism has a weaker effect on
memory performance than it does on hippocampal physiology.

Further studies replicating aspects of the present study would
be constructive. The present study had several limitations, some
of which were consequences of its small sample size. Due to
having a limited number of participants of each genotype for
each polymorphism, some genotypes were combined. As a result,
this study was not capable of investigating the dosage effects that
previous studies have reported to be evident across the three
genotypes that result from each polymorphism (e.g., Egan et al.,
2001; Beste et al., 2010; Wang et al., 2014). A study with a larger
sample size would allow research into additional variables that
could potentially influence the effects of these polymorphisms
on memory. These variables include age, gender and general
intelligence, as well as further genes (e.g., DRD1 and DRD2).

There are also limitations associated with the use of the
Faces and Family Pictures tasks from the WMS-III, tasks which
have not been included in a more recent edition of the scale

(WMS-IV; Wechsler, 2009) due in part to issues associated with
their scoring systems (Pearson Clinical Assessment, 2009). In
the present study, the Faces and Family Pictures tasks were
scored according to the WMS-III Administration and Scoring
Manual (Wechsler, 1997a). Many of our participants lost marks
on the Family Pictures task due to misidentifying characters
with similar appearances. As a consequence of these errors,
they could not receive marks for any correct recall of the
location and activity associated with that misidentified character.
Therefore visual discrimination and recognition abilities also
played a role in determining the scores participants received in
the Family Pictures task, rather than it being a pure test of recalled
associations. This is less than ideal and future research may look
to replicate the present result with a more valid recall measure.

The present study contributes to our understanding of the
genetic influences on normal memory variation in healthy
young adults. It replicates and builds upon previous findings
in demonstrating that the BDNF val allele benefits recall
performance while not influencing familiarity-based recognition
performance. The role of BDNF in the structure and function
of the hippocampus in particular is consistent with the effect
of the BDNF polymorphism being specific to hippocampal-
dependent forms of memory such as recall. This differential
effect on recall and recognition substantiates the legitimacy
and desirability of distinguishing between these forms of
memory when investigating the genetic underpinnings of
memory. Combining subscale scores such as is usually done
in the WMS will likely obscure the effects of the BDNF
polymorphism. Sensitivity may be lost when collapsing across
different cognitive phenotypes, contributing to inconsistencies in
the literature.
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