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Abstract

Measuring precise concentrations of proteins can provide insights into biological processes. Here, 

we use efficient protein extraction and sample fractionation and state-of-the-art quantitative mass 

spectrometry techniques to generate a comprehensive, condition-dependent protein abundance 

map of Escherichia coli. We measure cellular protein concentrations for 55% of predicted E. coli 
genes (>2300 proteins) under 22 different experimental conditions and identify methylation and 

N-terminal protein acetylations previously not known to be prevalent in bacteria. We uncover 

system-wide proteome allocation, expression regulation, and post-translational adaptations. These 

data provide a valuable resource for the systems biology and broader E. coli research 

communities.

Introduction

Transcriptome analyses have provided valuable insights in gene regulation. However, 

transcriptome data do not capture post-transcriptional processes, such as protein turnover, 
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and therefore do not provide a complete picture of the expression state1,2. Thus, to 

understand how biological systems function, there is a need to complement these transcript-

based insights with quantitative protein information.

Recent developments in mass spectrometry-based proteomics have enabled absolute protein 

levels to be measured on a system-wide level in microbes3–5 and mammalian cell lines4,6. 

However, because in-depth protein quantification requires extensive sample fractionation, 

proteome studies have so far been limited to a few samples, conditions3,7,8 or cellular 

compartments9,10. Post-translational modifications have also been broadly characterized in 

E. coli, but these too have been restricted to one or few conditions and have relied on 

enrichment techniques to identify respective specific modification11–15. In contrast, studies 

that investigated the E. coli proteome across multiple conditions were limited in terms of 

protein coverage16,17, or with regards to absolute quantification12.

Here, we quantify proteins across 22 experimental conditions. By reducing sample 

fractionation to a few high-quality fractions and using high-resolution mass spectrometry, 

we could double sample throughput without compromising on proteome coverage. Using an 

efficient protein extraction method, we obtain quantitative information also on membrane 

and ribosomal proteins that are notoriously difficult to extract quantitatively18. Overall, we 

determine protein abundance levels for approximately 55% of the predicted E. coli genes 

(>2300 proteins). This not only doubles the number of proteins absolutely quantified in E. 
coli3, but also provides the most comprehensive condition-dependent protein abundance 

map for any organism to date. In addition, we identify eleven (3 novel) different types of 

post-translational modifications (PTMs) including 318 novel PTMs, predominately Nα-

acetylations and methylations, which were not previously reported in E. coli. We also 

uncover growth-rate dependent proteome re-arrangements, providing fundamental insights 

in global resource allocation.

Results

Experimental design

We grew E. coli BW2511319 under 22 different growth conditions in biological triplicates. 

These conditions included (i) growth on minimal media with excess of different carbon and 

energy sources, (ii) growth in glucose-limited chemostat cultures with varying growth rates, 

(iii) growth on glucose excess with different stress conditions, (iv) growth on complex 

medium, and (v) one and three days into stationary phase. Additionally, to enable use of the 

generated data also for other E. coli strains, we determined protein abundances under 

glucose and LB growth conditions also for two other frequently used strains; MG165520 

and NCM372221.

Generation of condition-dependent proteome profiles

Quantitative proteome analyses were carried out using a combination of recently developed 

mass spectrometry (MS) based strategies4,5,22 and an efficient protein extraction method, 

which together allowed for system-wide accurate quantification of protein levels across a 

large number of conditions (Fig. 1). First, aliquots of all samples taken from the different 
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conditions were subjected to shotgun LC-MS analysis to identify as many peptides as 

possible and to determine their condition-dependent intensities by label-free quantification. 

Towards maximizing the number of quantified proteins, we optimized protein extraction, 

sample pre-fractionation and LC parameters (Supplementary Fig. 1-3) and combined the 

data of two independent large-scale LC-MS analyses using different samples and 

experimental parameters (Supplementary Fig. 4).

Second, we accurately quantified a sub-set of identified proteins to establish a “calibration” 

for the determined MS-intensities of all identified proteins. Here, we selected 41 proteins, 

which we expected to be expressed at different abundances. Specifically, we selected the 

enzymes and iso-enzymes of the glycolytic pathway (including proteins with hypothetical 

function), tricarboxylic acid cycle enzymes and a few other proteins (Supplementary Table 

1). These proteins’ concentrations were determined in each sample using stable isotope 

dilution (SID) and selected reaction monitoring (SRM) LC-MS/MS analysis23,24 

(Supplementary Table 2&3). The concentration range of the 41 proteins covered more than 

four orders of magnitudes ranging from around 92’000 (Mdh, on acetate medium) to only 2 

(YbhA, 3 days into stationary phase) copies per cell.

To determine the concentrations of proteins that we did not quantify with synthetic peptides, 

we used summed precursor MS-intensities originating from the respective protein, and a 

quantitative model established for each sample using the absolutely quantified proteins (cf. 

4,25). We observed good correlation (r2> 0.8) and low median error rates (determined by 

bootstrapping5) between measured and estimated abundances being below 60% and 100% 

for the unfractionated (dataset 2) and Off-Gel electrophoresis (OGE)-fractionated (dataset 1) 

samples, respectively (Supplementary Fig. 4 and 5). Finally, together with the cell numbers 

determined from flow cytometric analyses (Step 3) and condition-dependent cell volumes26, 

accurate protein abundances per cell and per cell volume were calculated (Supplementary 

Table 4-6).

We determined absolute quantities for 2359 proteins across all conditions reflecting around 

55% of the predicted ORFs and >95% of the proteome mass27,28. The dataset is an 

unbiased representation of the E. coli proteome – including very hydrophobic proteins – 

with highly reproducible and accurate protein concentration determined for 22 growth 

conditions (seeSupplementary Note 1, Supplementary Fig. 6-9 and Supplementary Tables 

4-8). The high correlation coefficients of absolute protein levels observed with previously 

published small datasets comprising a few single conditions confirm the high quality of our 

dataset (Supplementary Fig. 8).

To test the applicability of our dataset to other E. coli strains, we determined absolute 

protein levels for two additional, commonly used E. coli strains (MG1655 and NCM3722) at 

two conditions and compared the levels with the data from BW25113 (Supplementary Fig. 

10 and Supplementary Table 9). We found highly similar protein levels, with the exception 

of proteins of the flagella assembly apparatus that are particularly high in MG165529. This 

indicates that the data acquired for BW25113 is to a significant extend also valid for other E. 
coli strains.
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Growth rate-dependent changes in protein abundance

Seminal studies in bacterial physiology uncovered that the mass fractions of cellular 

macromolecules (i.e. protein, RNA, DNA) are a function of growth rate, irrespective of the 

composition of the growth medium30–32. It was further found that the amounts of 

ribosomal proteins increased relative to the total protein amount with increasing growth 

rate33,34. Recently, using E. coli strains subjected to gradual carbon and nitrogen limitation, 

as well as gradual ribosome inhibition by chloramphenicol, it was found that the proteome 

undergoes growth-rate and limitation-dependent re-arrangements17.

Here, we further explore this idea and investigate protein resource allocation across 

conditions. We found that few cellular processes - as defined by COG classification 

(Clusters of Orthologous Groups35,36, Supplementary Table 10 and 11) - make up most of 

the proteome mass (Fig. 2A), with six COG processes comprising around 80% of the total 

proteome. Combining the masses of proteins assigned to each of the four main COG classes 

and correlating the combined masses with growth rates (Fig. 2B and Supplementary Table 

12), we found that proteins involved in “metabolism” showed a logarithmic increase in 

abundance with growth rate, ”cellular processes and signaling“, and ”information storage 

and processing“ (containing e.g. ribosomal proteins) a linear increase (Fig. 2B) and the 

levels of poorly characterized proteins stayed constant. Similar growth-rate dependent trends 

could be found in the 21 different functional COG-categories (Supplementary Fig. 11). 

Thus, extending the study of Hwa and colleagues17 to a large range of different growth 

conditions, our data demonstrates that the abundance of many functional processes strongly 

correlates with growth rate; also when the proteins of certain functional COG-categories are 

correlated against the growth rate (cf. Fig. 2C-E).

However, we also noted that in some conditions the fraction of the proteins of certain 

metabolic COG categories deviated from the growth-rate correlation, suggesting an altered 

demand for proteome resources. This was, for instance, the case when comparing conditions 

where amino acids were present or absent in the growth medium (Fig. 2C), or between 

conditions with respiratory versus fermentative metabolism (Fig. 2D). In the first case, the 

COG category of “amino acid transport and metabolism” was approximately 9% lower on 

the LB medium condition compared to the fastest growth condition without amino acids 

present. In the second case, on average about 10% of the protein mass was invested for 

energy generation on fermentative carbon sources (COG category “energy production and 

conversion”), while substrates that largely rely on respiration invested 15-30% of their total 

protein mass in energy regeneration (Fig. 2D). Increased allocation of protein resources in 

these metabolic processes was accompanied by lower allocation in proteins connected with 

“translation, ribosomal structure and biogenesis” (Fig. 2E). Since it has been suggested that 

the amount of ribosomes determines the cellular growth rate37, these observations propose 

that the investments required for metabolic processes of amino acid biosynthesis or energy 

metabolism under specific conditions constrain the possible investments in ribosomes, and 

thus can be considered growth-limiting factors.
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Role of transcriptional regulation in resource allocation

Next, we aimed to identify those cellular processes, which rely on transcriptional regulation 

for the adaptation to different conditions. Therefore, we determined the concentration 

variability of each detected protein, across conditions by calculating the coefficient of 

variation (CV). Here, we found different median variabilities in different COG categories 

(Supplementary Fig. 12). For instance, consistent with the fact that many of the tested 

conditions are carbon source changes, proteins belonging to the COG-categories 

“carbohydrate transport and metabolism” and “energy conversion and metabolism” were 

highly variable across conditions compared to the rest of the proteome. In contrast, proteins 

belonging to the COG category “transcription” exhibited significantly lower variability 

across conditions. In particular, the 90 reliably quantified transcription factors revealed 

significantly less variability across conditions than the rest of the proteome (Fig. 3A). Thus, 

proteins belonging to the COG category “transcription” may be subject to posttranslational 

regulation instead of transcriptional regulation.

Despite the mostly low variation across conditions for individual transcription factors, the 

overall range in copy numbers between transcription factors was very large (from approx. 10 

to >10000 copies per cell). To test whether these differences are related to the number of the 

transcription factors’ binding sites on the chromosome, we determined the ratio between 

transcription factor copy number and the number of reported chromosomal binding sites 

(Fig. 3B). While some extreme outliers exist (cf. caption of Fig. 3), we found that most 

transcription factors had only a median ratio around 10, with some of the global regulators, 

such as Cra, Fnr and Crp, having even lower ratios between 1 and 2. Since transcription 

factors also bind unspecifically to DNA38, which further reduces the number of free 

transcription factors, such low ratios make it unlikely that all available binding sites are 

actually occupied by the respective transcription factor at a given time point, which in turn 

may cause considerable competition between different binding sites for a relatively scarce 

transcription factor. Recently, it was found that such competition is used to establish the 

hierarchy of sugars co-utilization39, and the generally low ratio between TF copy number 

and binding sites suggests that similar hierarchical regulation may extend to other 

transcriptional regulators.

We next investigated the extent to which the topology of the transcriptional regulatory 

network can explain the expression of proteins across conditions. Therefore, we calculated 

the pairwise Pearson correlation between all proteins and compared the correlation 

coefficients of co-activated/co-repressed proteins (i.e. proteins sharing at least one 

transcriptional repressor or activator; as reported in RegulonDB40) with those of the rest of 

the protein pairs (Fig. 3C). Here, across conditions, we found that co-transcribed proteins 

(i.e. proteins from the same operon) have a clear bias towards strong positive correlations. 

Co-transcribed protein pairs with weak correlation had additional, non-overlapping 

transcription units (Fig. 3C, grey dashed line). The strong bias for strong positive 

correlations in co-transcribed proteins suggests that differential posttranscriptional 

regulation of gene expression within operons plays a limited role in E. coli. In contrast, we 

found that co-activated/co-repressed proteins (i.e. proteins that are regulated by the same 

transcription factors) show weak correlations. This finding suggests that in different 
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conditions distinct subsets of a transcription factor’s targets are activated or repressed, which 

makes the topology of the transcriptional regulatory network a poor predictor of protein 

expression across conditions.

Distribution of protein mass between peri- and cytoplasm

Next, we investigated the condition-specific localization of protein mass between different 

cellular compartments. 1174 of the measured proteins had a compartmental localization 

assigned representing between 76% and 83% of the total protein mass at the different 

conditions (Supplementary Table 13). Generally, we found that the protein mass fraction of 

the cytosolic proteins significantly increased with growth rate (Fig. 4A), while 

correspondingly the mass fraction of periplasmic proteins significantly decreased, even 

when considering geometric alterations resulting from increased cell volumes at faster 

growth rates (Supplementary Fig. 13). At the stationary phase conditions, periplasmic 

proteins accounted for 15% of the expressed protein mass, while on LB medium only 6%. 

On an absolute level, the mass of all periplasmic proteins per cell was higher in slowly 

growing E. coli cells (despite their smaller size) compared to their fast growing counterparts 

(Supplementary Table 14). Further, we found that the relative mass of proteins associated 

with the inner membrane increased, while the relative mass of proteins located at the outer 

membrane decreased at faster cell growth (Supplementary Table 14).

Taking these identified distributions of the protein mass together and assuming constant 

protein concentrations across cellular compartments suggested that the volume fractions 

between cytoplasm and periplasm change as a function of growth rate (Fig. 4B – upper 

panel), with the cytoplasm assuming higher and the periplasm lower volume fractions at 

high growth rates. To test this, we generated cryo-electron microscopy images of cells grown 

on LB medium and in stationary phase. We indeed found a significantly reduced periplasmic 

space at the fast growth rate condition (Fig. 4B – lower panel and Supplementary Fig. 14) 

consistent with the observed significant decrease in protein mass in the periplasmic space.

To investigate the growth rate-dependent distribution between cyto- and periplasmic 

proteins, we focused on protein classes that constituted a large fraction of the periplasmic 

proteome. We found that periplasmic binding proteins with ABC transporter functions were 

significantly enriched in the periplasm covering up to 80% of the total protein mass of the 

periplasm. Notably, the mass of periplasmic ABC transporter binding proteins in the 

periplasm decreased with increasing growth rates, explaining a large part of the observed 

reduction of the protein mass in the periplasm in fast growing cells (Fig. 4C). Focusing on 

stoichiometries between the periplasmic binding proteins and their membrane-bound 

counterparts, we found a high excess of periplasmic binding proteins compared to their ABC 

transporters of up to >100 fold at low growth rates (Supplementary Table 15) and we found 

that these stoichiometries (with some exceptions, Supplementary Table 16) decreased 

significantly with increasing growth rates (Fig. 4D).

Thus, at lower growth rates cells apparently increase the abundance of the periplasmic 

proteins and binding proteins and express higher numbers of binding proteins as compared 

to the respective ABC transporters. Eventually, these measures allow cells to increase the 

efficiency of nutrient uptake in less favorable conditions.
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Post-translational modifications

We performed a global and unrestricted protein modification search41,42 to identify the 

most frequent post-translational modifications (PTMs) in our protein dataset (Supplementary 

Fig. 15). We identified 11 different types of PTMs (Table 1, Supplementary Table 17) and 

confirmed many known lysine acetylation and phosphorylation sites from previous studies 

focusing on single PTMs11,14,43. We also found that certain PTMs are enriched in specific 

protein classes and pathways (Table 1), and modify proteins of different expression levels 

(Fig. 5A) and that proteins can carry different types of PTMs at the same residue 

(Supplementary Table 18).

Notably, we identified a large number of PTMs, in particular protein methylation and N-

terminal protein acetylation sites (Table 1). We found 31 proteins that were acetylated at the 

N-terminus. While a majority of eukaryotic proteins are N-terminally acetylated, so far Nα-

acetylation in bacteria has been considered extremely rare44,45 and its function remains 

unclear46. We found that Nα-acetylation mostly occurred on N-terminal serine, alanine, 

methionine and threonine (Fig. 5B). Furthermore, mainly caused by a decreasing Nα-

acetylation with growth rate (Supplementary Fig. 16), we found the highest total PTM 

abundances per protein to anticorrelate with growth rate (Fig. 5C and Supplementary Table 

19). This together with the high number of identified Nα-acetylations suggest that N-

terminal Nα- acetylation might also have physiological relevance in bacteria.

To further investigate into this, we analyzed Nα-acetylations in three mutant strains each 

lacking one of the three known E. coli Nα-acetyltransferases (NATs), originally assigned to 

only single target proteins. We found that only in the ribosomal-protein-alanine 

acetyltransferase rimJ mutant the number of Nα-acetylations significantly decreased (Fig. 

5D and Supplementary Table 20-21). We further found that the decrease could be mainly 

ascribed to serine and threonine residues that did not get Nα-acetylated in the rimJ mutant 

(Supplementary Fig. 17), which are the Nα-acetylations that we found to increase at slow 

growth rates in the wild-type (Supplementary Fig. 18 and Supplementary Table 22). This 

finding suggests that RimJ is not only involved in the Nα-acetylation of its known target 

protein (RpsE), but might play a wider role in Nα-acetylation of other proteins with N-

terminal serine and threonine residues, and this in a growth rate-dependent manner.

Discussion

In this work we determined absolute copy numbers for >2300 proteins mapped across 22 

growth conditions and covering the full dynamic range from ~1 to more than 100 000 copies 

per cells. With this protein and condition coverage, we extended proteomic analyses of 

microbes to the level of transcriptomics, enabling large-scale biological discovery also on 

the proteome level. Furthermore, we present the first global dataset on methylation and Nα-

acetylation in bacteria, and provide indication that these posttranslational modifications 

might have physiological relevance also in E. coli.

The generated protein abundance data will allow researchers of the systems biology 

community to develop quantitative models on certain biological subsystems, a task that 

requires precise knowledge on protein abundances. Furthermore, the data will also enable 
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global computational studies, particularly drawing on the broad protein- and condition-

coverage achieved. Finally, the data will also become a valuable resource for the broader E. 
coli community for novel discoveries.

Currently, proteomics analyses as done here can yet only be done in dedicated labs, where 

expertise ranging from sample handling via mass spectrometry to downstream 

bioinformatics analyses is present. However, we expect as technology advances quantitative 

proteomics technologies will become more broadly accessible – eventually through service 

companies – for a broader range of researchers. Still, for the scientific community 

significant challenges lie ahead, specifically those related to the elucidation of the second 

half of the – until now – obscure proteome, and the investigation of the identified novel 

types of posttranslational modifications.

Online methods

Strains and plasmids

The Escherichia coli K-12 strain BW25113 (genotype: F-, Δ(araD-araB)567, 

ΔlacZ4787(∷rrnB-3), λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514)19 was used to generate the 

proteome map for all 22 conditions. Mutant strains with either the rimL, rimJ or rimI gene 

deleted were taken from the KEIO collection19. Correctness of the deletions were checked 

by PCR. Additionally, the proteome for the glucose and LB condition was also determined 

for the strains MG1655 (genotype: F-, λ-, rph-1)20 and NCM3722 (genotype: F+)21.

Media

LB-medium was prepared as follows: Five grams of yeast extract (BD), 10 g Tryptone (BD) 

and 10 g NaCl were dissolved in one liter of water and the mixture sterilized by autoclaving. 

LB-plates were produced by adding 20 g agar (BD) to the LB-medium mixture before 

autoclaving. M9 minimal medium without carbon source was prepared in the following way: 

To 700 ml of water, 200 ml of 5x base salt solution (211 mM Na2HPO4, 110 mM KH2PO4, 

42.8 mM NaCl, 56.7 mM (NH4)2SO4, in H2O, autoclaved), 10 ml of trace elements (0.63 

mM ZnSO4, 0.7 mM CuCl2, 0.71 mM MnSO4, 0.76 mM CoCl2, in H2O, autoclaved), 1 ml 

0.1 M CaCl2 solution, in H2O, autoclaved, 1 ml 1 M MgSO4 solution, in H2O, autoclaved, 2 

ml of 500x thiamine solution (1.4 mM, in H2O, filter sterilized) and 0.6 ml 0.1 M FeCl3 

solution (in H2O, filter sterilized) were added. The resulting solution was filled up to 1 liter 

with water. All chemicals used were obtained from Sigma-Aldrich unless indicated 

otherwise. To prepare M9 minimal medium with a specific amount of carbon source, 

aqueous stock solutions were used. Aqueous stock solutions were prepared for every carbon 

source, adjusted to pH 7 by titration with 1 M sodium hydroxide or fuming hydrochloric 

acid. M9 minimal medium was complemented with carbon source by mixing appropriate 

amounts of carbon source free M9 minimal medium and carbon source stock solutions. The 

medium was always filtrated after preparation (Steritop-GP 500ml, Millipore). The 

following carbon sources and concentrations were used: acetate (sodium acetate, 3.5 g/L), 

fumarate (disodium fumarate, 2.8 g/L), galactose (2.3 g/L), glucose (5 g/L), glucosamine 

(2.1 g/L), glycerol (2.2 g/L), pyruvate (sodium pyruvate, 3.3 g/L), succinate (disodium 

succinate hexahydrate, 5.7 g/L), fructose (5 g/L), mannose (5 g/L), xylose (5 g/L). For 
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chemostat growth only 1 g/L of glucose was used. Glucose minimal medium for the cells 

grown with osmotic stress was supplemented with NaCl to a concentration of 50 mM, for 

the cells grown with pH stress, fuming hydrochloric acid was titrated to the medium until a 

pH of 6 was reached. The glycerol + amino acid medium was made by supplementing the 

media with glycerol to a concentration of 2.2 g/L, and complete CSM mixture (ForMedium) 

and the following individual amino acids: alanine, asparagine, cysteine, glutamate, glycine, 

proline and serine to final concentrations of alanine 1.0 mg/L (0.01mM), adenine 10.2 mg/L 

(0.1mM), arginine 51.1 mg/L (0.3mM), asparagine 1.6 mg/L (0.01mM), aspartic acid 81.8 

mg/L (0.6mM), cysteine 1.2 mg/L (0.01mM), glutamate 15.2 mg/L (0.1mM), glutamine 

13.9 mg/L (0.1mM), glycine 0.4 mg/L (0.01mM), histidine 20.5 mg/L (0.1mM), isoleucine 

51.1 mg/L (0.4mM), leucine 102.3 mg/L (0.8mM), lysine 51.1 mg/L (0.4mM), methionine 

20.5 mg/L (0.14mM), phenylalanine 51.1 mg/L (0.3mM), proline 5.2 mg/L (0.05mM), 

serine 9.2 mg/L (0.1mM), threonine 102.3 mg/L (0.9mM), tryptophan 51.1 mg/L (0.3mM), 

tyrosine 51.1 mg/L (0.3mM), valine 143.2 mg/L (1.2mM), uracil 20.5 mg/L (0.2mM). An 

overview about the used growth conditions can be found in Supplementary Table 23-24.

Cultivation

Cells taken from -80°C stocks were streaked out on LB-agar plates. The cells were grown on 

the plate overnight and kept at 4°C for a maximum of three weeks. For the preculture, a 

single colony was picked from a plate and grown overnight in 50 ml M9 glucose medium in 

a 500 ml unbaffled wide- neck Erlenmeyer flask covered by a 38 mm silicone sponge 

closure (BellCo glass) at 37°C, 300 rpm and 5 cm shaking diameter (ISF-4-V shaker, 

Kühner). For the batch cultures, the cells from a preculture were re-inoculated into 50 ml of 

the appropriate pre-warmed medium in a 500 ml unbaffled wide-neck Erlenmeyer flask 

covered by a 38 mm silicone sponge closure (BellCo glass) and grown at 37°C, orbital 

shaking at 300 rpm and 5 cm shaking diameter (ISF-4-V, Kühner). To ensure steady state 

growth, the cells were first grown to exponential phase and then passaged into a second 

shake- flask containing fresh medium ensuring the cells had undergone at least 10 divisions 

under the respective condition and were thus in a steady state. The cells undergoing 

temperature stress were grown at 42°C. Cells grown in a chemostat were inoculated from a 

preculture to an OD of 0.1 and allowed to grow in batch mode to an OD of around 0.8 before 

dilution (rates: 0.12, 0.2, 0.35, 0.5) was started51. Starved cells were continuously shaken 

after reaching stationary phase for either 1 or 3 days.

Determination of cell counts and growth rates

For all shake flask batch cultures, cell counts were determined over time using an Accuri® 

C6 Flow Cytometer (BD Biosciences). Samples used for flow cytometric analysis were 

diluted with M9 minimal medium to an OD600 value of around 0.001, corresponding to a 

cell density of approximately 106 cells/ml. The instrument settings were the following: Flow 

rate: medium, FSC-H: 106, SSC-H: 105: all log scale. Analysis of the data was done with 

CFlow plus analysis (Version 1.0.264.15). The growth rate of the cultures was determined 

from the cell counts over time at cell concentrations from 105 cells/ml to 109 cells/ml. The 

growth rate was calculated from at least four consecutive measurements.
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Sample preparation

Samples for proteome analyses were taken from cells that were grown until they reached 10 

divisions in exponential state, collected by centrifugation at 20,000g at 4°C, washed twice 

with 2 ml ice-cold PBS buffer, harvested by centrifugation at 20,000g and pellet was snap 

frozen in liquid nitrogen and stored at -80°C until further processing. Cells were 

resuspended either in 100µl lysis buffer 1 (100 mM ammoniumbicarbonate, 2% sodium 

deoxycholate) for the dataset 2 (see Supplementary Fig. 4 for details) or 100µl lysis buffer 2 

(100 mM ammoniumbicarbonate, 8M urea, 0.1% RapiGest™) for the dataset 1. The cells 

were disrupted by strong vortexing for 3 x 30 seconds followed by indirect sonication (100% 

amplitude, 0.5 cycle, 3 × 10 s) in a VialTweeter (Hielscher). A small aliquot of the 

supernatant was taken to determine the protein concentration of each sample using a BCA 

assay (Thermo Fisher Scientific). Proteins obtained from the different samples were reduced 

with 5mM TCEP for 60 (15)min at 37 (99)°C for dataset 1 (2), respectively, and alkylated 

with 10mM iodoacetamide for 30min in the dark at 25°C. After quenching the reaction with 

12 mM N-acetyl- cysteine, the proteins were proteolyzed for 4h at 37°C using sequencing-

grade Lys-C (Wako Chemicals) at 1/200 w/w. Then, the samples were diluted with 100mM 

ammoniumbicarbonate buffer to a final sodium deoxycholate (urea) concentration of 1% 

(1.6M) for dataset 2 (1) samples, respectively, and further digested by incubation with 

sequencing-grade modified trypsin (1/50, w/w; Promega, Madison, Wisconsin) over night at 

37°C. The samples were acidified with 2M HCl to a final concentration of 50mM, incubated 

for 15min at 37°C and the precipitated detergent removed by centrifugation at 10,000g for 

15min. Subsequently, an aliquot of the heavy reference peptide mix (see Supplementary 

Table 1 for details) were spiked into each sample at a concentration of 200/20 fmol of heavy 

reference peptides per 1µg of total endogenous protein mass. All peptide samples were then 

desalted by C18 reversed-phase spin columns according to the manufacturer’s instructions 

(Macrospin, Harvard Apparatus), separated in aliquots of 150 ug peptides, dried under 

vacuum and stored at -80ºC until further use. For LC-MS analysis, samples were solubilized 

in solvent A (98% water, 2% acetonitrile, 0.15% formic acid) at a concentration of 0.5 ug/ul 

and 4 ul were injected per LC-MS run. All samples of dataset 2 were prepared in biological 

triplicates.

Off-Gel electrophoresis

150 ug of dried peptides of each sample were solubilized in 1800 µl Off-Gel electrophoresis 

buffer, respectively, according to the manufacturer`s instructions (3100 OFFGEL 

Fractionator, Agilent Technologies). Then, all 19 peptide mixtures were separated on a 12cm 

pH 3-10 IPG strip (GE Healthcare), respectively, using a protocol of 1h rehydration at 

maximum 500V, 50μA and 200mW. Peptides were separated at maximum 8000V, 100μA 

and 300mW until 20kVh was reached. Subsequently, the 12 fractions were combined to 4 

final fractions (F1-F4) using the following pooling scheme; (F1) 1-3, (F2) 4-6, (F3) 7-9 and 

(F4) 10-12. The pooled fractions were subsequently desalted using C18 reversed-phase 

columns according to the manufacturer’s instructions (Microspin, Harvard Apparatus), dried 

under vacuum and subjected to LC-MS/MS analysis. For the initial comparison of different 

fractionation schemes (Supplementary Fig. 1), the following additional fractions pooling 

scheme was employed; 1, 2, 3, 4, 5-6, 7-8, 9-10 and 11-12.
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LC-MS/MS analysis

Two independent LC-MS experiments were carried out comprising samples with and 

without OGE- fractionation, respectively. The fractionated samples (dataset 1) were 

analyzed using a previously described µRPLC-MS system9 with some modifications. The 

hybrid Orbitrap-Velos mass spectrometer was interfaced to a nano electrospray ion source 

coupled online to an Easy-nLC system (all ThermoScientific). 1µg of peptides were 

separated on a RP-LC column (75 µm x 20 cm) packed in-house with C18 resin (Magic C18 

AQ 3 µm; Michrom BioResources) using a linear gradient from 95% solvent A (98% water, 

2% acetonitrile, 0.15% formic acid) and 5% solvent B (98% acetonitrile, 2% water, 0.15% 

formic acid) to 30% solvent B over 120 min at a flow rate of 0.2 µl/min. Each survey scan 

acquired in the Orbitrap at 60,000 FWHM was followed by 10 MS/MS scans of the most 

intense precursor ions in the linear ion trap. Preview mode was enabled and dynamic 

exclusion was set for 60 sec. Charge state screening was employed to select for ions with at 

least two charges and rejecting ions with undetermined charge state. The normalized 

collision energy was set to 32%, and one microscan was acquired for each spectrum. The 

unfractionated samples (dataset 2) were analyzed on a hybrid Orbitrap-Elite mass 

spectrometer connected online to an Easy-nLC 1000 system (both Thermo Scientific). 

Peptide separation was performed on a (75 µm x 45 cm) packed in-house with C18 resin 

(Reprosil-AQ Pur, Dr. Maisch 1.9 µm) using a linear gradient from 95% solvent A and 5% 

solvent B to 30% solvent B over 180 min at a flow rate of 0.2 µl/min. For MS1, 10E6 ions 

were accumulated in the Orbitrap cell over a maximum time of 300 ms and scanned at a 

resolution of 120,000 FWHM (at 400 m/z) followed by 10 MS/MS scans of the most intense 

precursor ions in the Orbitrap acquired at a target setting of 50,000 ions, accumulation time 

of 100 ms and a resolution of 15,000 FWHM (at 400 m/z). The normalized collision energy 

was set to 35%, and one microscan was acquired for each spectrum. A list comprising names 

of all samples and LC-MS runs included in this study is shown in Supplementary Table 25.

Protein identification and label-free quantification

The acquired raw-files were imported into the Progenesis LC-MS software (v4.0, Nonlinear 

Dynamics Limited), which was used to extract peptide precursor ion intensities across all 

samples applying the default parameters. The generated mgf-files were searched using 

MASCOT against a decoy database (consisting of forward and reverse protein sequences) of 

the predicted proteome from E.coli (UniProt, download date: 2012/07/20). The database 

consists of 4431 E. coli proteins as well as known contaminants such as porcine trypsin, 

human keratins and high abundant bovine serum proteins (Uniprot), resulting in a total of 

10388 protein sequences. The search criteria were set as follows: full tryptic specificity was 

required (cleavage after lysine or arginine residues, unless followed by proline); 2 missed 

cleavages were allowed; carbamidomethylation (C) was set as fixed modification; oxidation 

(M) was applied as variable modifications; mass tolerance of 10 ppm (precursor) and 0.6 

(0.02 for the HCD dataset) Da (fragments). The database search results were filtered using 

the ion score to set the false discovery rate (FDR) to 1% on the peptide and protein level, 

respectively, based on the number of reverse protein sequence hits in the datasets. The 

relative quantitative data obtained were normalized and statistically analyzed using our in-

house software script SafeQuant52 (see also Supplementary Note 2).
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Absolute quantification of glycolytic proteins by targeted LC-MS

41 proteins covering all enzymes and iso-enzymes of the glycolytic pathway were selected 

for absolute quantification by selected reaction monitoring (SRM) and stable isotope 

dilution (SID) (Supplementary Table 1). For each protein, one heavy reference peptide was 

synthesized matching the sequence of the endogenous peptide with the highest precursor ion 

MS-intensity determined in the label-free quantification experiment. Peptides containing 

missed cleavages or a glutamine at the N- terminus were excluded. Based on Top3 

quantification25,53, the proteins were ranked according to their expected cellular abundance 

and grouped into two groups containing either high or low abundant proteins. According to 

this, a standard mixture comprising all 41 heavy reference peptide was generated containing 

10/1 pmol/ul of peptides matching to high/low concentrated proteins (Supplementary Table 

1). To generated the SRM assays, an aliquot of this mixture containing 500/50 fmol of each 

reference peptide was analyzed by shotgun LC-MS/MS using HCD fragmentation, database 

searched by Mascot applying the same settings as above with two changes; isotopically 

labeled arginine (+10 Da) and lysine (+8 Da) were added as variable modifications and the 

mass tolerance for MS2 fragments was set to 0.02 Da. The resulting dat-file was imported to 

Skyline version 1.4 (https://brendanx-uw1.gs.washington.edu/labkey/project/home/software/

Skyline/begin. view) to generate a spectral library and select the best transitions for each 

peptide. After collision energy optimization, the 424 transitions (up to six transitions per 

peptide) were scheduled into time segments of 10 minutes and the final transition list 

(Supplementary Table 26) imported to a triple quadrupole mass spectrometer (TSQ Vantage) 

connected to an electrospray ionsoure (both ThermoFisher Scientific). Peptide separation 

was carried out using an nEasy-LC systems (ThermoFisher Scientific) equipped with a RP-

HPLC column (75 μm x 20 cm) packed in-house with C18 resin (Magic C18 AQ 3 μm; 

Michrom BioResources) using a linear gradient from 95% solvent A (0.15% formic acid, 

2% acetonitrile) and 5% solvent B (98% acetonitrile, 0.15% formic acid) to 35% solvent B 

over 90 minutes at a flow rate of 0.2 μl/min. Each sample was analyzed in duplicate. All 

raw-files were imported into Skyline for protein quantification. Based on the number of cells 

counted by FACS for each sample, absolute abundances for the selected proteins (in copies/

cell) could be calculated across all samples in both data sets (Supplementary Table 2-3).

Proteome-wide estimation of protein abundances

The absolute protein concentrations determined for 41 glycolytic proteins were aligned with 

the summed protein intensities as provided by the Progenesis LC-MS software (v4.0, 

Nonlinear Dynamics Limited) divided by the number of expected tryptic peptides as recently 

specified4,25. The thus generated models were applied to estimate absolute protein levels 

for all quantified proteins in the CID and HCD dataset, respectively, and the expected errors 

were calculated by bootstrapping25 (Supplementary Fig. 5). To control for variations in 

protein extraction efficiency, which was lower for stationary phase samples, we used the 

total protein mass per cell (that is the summed masses of all quantified proteins) accurately 

determined in triplicates for the glucose experiment by our LC-MS approach 

(Supplementary Fig. 5A) and, assuming that the volumetric protein concentration is 

condition independent54, we adjusted the total protein mass per cell for each condition 

according to the precisely measured cellular volumes (Supplementary Table 23 and 

Supplementary Note 3) determined previously26. Due to the higher number of quantified 
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membrane proteins, higher number of growth conditions included and the analysis in 

biological triplicates (Supplementary Fig. 4), protein quantities obtained from data set 2 

were employed for all quantitative analysis carry out in this study. Data generated in data set 

1 was only included in the qualitative analysis of identified protein modifications illustrated 

in Table 1 and Fig. 5A and B.

To assess the technical and biological variability of our label-free protein quantification 

approach, we performed duplicate SRM and shotgun LC-MS analyses of three independent 

biological samples grown in glucose media and chemostat µ=0.5 and correlated the protein 

abundances determined by our data analysis pipeline (Supplementary Fig. 7). Besides, 

stoichiometries were determined for quantified components of protein complexes with 

known subunit composition (Supplementary Table 27).

Analysis of post-translational modifications

The extensive LC-MS dataset generated also allowed us to search for different post-

translational modifications at various positions. To get an overview of the potential 

modification present in our dataset, we first carried out an Open Modification Search. 

Therefore, a spectral library was compiled from the MS data obtained from the glucose 

condition sample sequentially applying the software tools X!Tandem (TPP v4.6)55 and 

Peptide Prophet (TPP v4.6)56 followed by Liberator and DeLiberator (v.1.46 and v 0.19)57. 

The search parameters of the protein sequence database search tool X!Tandem were set as 

follows: full tryptic specificity (cleavage after lysine or arginine residues unless followed by 

proline), up to two missed cleavages, carbamidomethyl (C) as fixed modification, oxidation 

(M) as a variable modification, 10 ppm precursor mass tolerance, 0.6 Da fragment mass 

tolerance, screening a target-decoy UniProtKB/SwissProt E.coli (UniProt, download date: 

2012/07/20) protein sequence database. X!Tandem search results were processed using 

PeptideProphet and a consensus spectrum target-decoy spectral library was created using 

Liberator and DeLiberator applying default parameters. Next all MS/MS spectra from all 

samples were screened against this spectral library in an Open Modification Search using 

QuickMod (v.1.03)42. The search parameters of QuickMod were set to: fragment mass 

tolerance 0.06 Da, modification mass tolerance 150 Da, False Discovery Rate cutoff 0.01, 

while default values were used for all other parameters.

To verify the modifications detected above and extend the modification search space to 

lysine and arginine modifications that alter tryptic cleavage and therefore are missed by the 

QuickMod search tool, we re-searched all acquired MS/MS-scans against the E. coli protein 

database using Mascot and allowing additional variable modifications. Specifically, the 

following five sets of variable modifications were included: (1) acetyl (protein N-term and 

K); (2) phospho (S,T,Y); (3) mono-, di- and tri-methylation (K); (4) mono-, di- and tri-

methylation (R) and (5) formyl (protein N-term) and succinyl (K). All other parameters were 

set as described above. All peptide spectrum matches (PSM) identifying modified peptides 

were extracted and, for each modification and site, the false discovery rate adjusted to less 

than 1%, respectively, as described above. If the same modification was identified at 

multiple sites in the same peptide, the position of the modification determined in the PSM 

with the highest Mascot Ion Score was selected.
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Protein modifications were quantified using label-free quantification as described above (see 

Supplementary Table 22. The local error rate for all identified and quantified peptides 

carrying a modification was set to 1% and to control for protein regulations, all calculated 

ratios of modified peptides were normalized by the ratios of their corresponding proteins. 

All filtering and statistical analysis steps were carried out using our in-house software tool 

SafeQuant52.

Electron microscopy

For cryo-electron microscopy, cells were taken from the culture by centrifugation at 1500g 

for 1 min. The pellet was resuspended in 20 µl of the supernatant after which 2.5 µl of this 

suspension was attached to glow-discharged 200 mesh Quantifoil R3.5/1 grids inside a 

vitrobot (FEI, the Netherlands) of which the chamber was set to room temperature and 100% 

humidity. After blotting for 10 s, the grids were plunge-frozen into liquid nitrogen-cooled 

liquid ethane. The complete procedure from culture to frozen samples maximally took 3 

min. The frozen grids were then transferred into a FEI Tecnai20 transmission electron 

microscope running at 200 kV and imaged with a cooled slow-scan charge-coupled device 

camera (Ultrascan 4000; Gatan) using the low-dose procedure. Measurements on the 

periplasm and cytoplasm were performed in ImageJ and the results are illustrated in detail in 

Supplementary Fig. 14 and Supplementary Table 28-29.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Workflow of system-wide protein abundance determination.
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Figure 2. Fractions of protein mass in different COG processes.
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Figure 3. Role of transcriptional regulatory network in determining proteome resource 
allocation.
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Figure 4. Condition-dependent distribution of protein mass in different cellular compartments.
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Figure 5. Identification and quantification of post-translational modifications (PTMs).
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Table 1
Overview of identified post-translational modifications

Protein modification Unique sites identified Unique modified proteins Known sitesa Selected enriched KEGG pathways/
SwissProt-Keywords foundb

Acetyl (K) 61 44 25c glycolysis / gluconeogenesis, citrate 
cycle (TCA cycle), pyruvate 

metabolism, ribosome, acetylation, 
phosphoprotein

Accetyl (Protein N-term) 32 31d 1e nucelotide binding, atp-binding, 
acetylation, protein transport

Dimethy (K) 14 14

Dimethy (R) 2 2

Formyl (Protein N-term) 24 24 phosphoprotein, cytoplasm, pyridoxal 
phosphate, homodimer, transferase

Methyl (K) 84 64 acetylation, phosphoprotein, methylated 
amino acid, periplasm, ribosome, ABC 

transporters, RNA degradation

Methyl (R) 67 55 acetylation, protein biosynthesis, 
cytoplasm, homodimer, phosphoprotein, 

citrate cycle (TCA cycle), ribosome

Phospho (S/T) 24 21 8f metall binding, phosphoprotein, 
magnesium, manganese

Succinyl (K) 17 15 3g DNA binding, periplasm, heterodimer

Trimethy (K) 14 13 protein biosynthesis, acetylation

Trimethy (R) 16 16 protein biosynthesis

a)
Known sites from recent large-scale studies

b)
Benjamini probability <0.05

c)
Welnert, B. T. et al, Accetyl-phosphate is a critical determinant of lysine acetylation in E, coll. Mol Cell 51, 265-272 (2013). The largest dateset 

(52) was used for comparision.

d)
Two acetlyated N-terminal (+/- methlonline) were identified for protein sufa

e)
Smith, V. F., Schwartz, B. L., Randall, L. L., and Smith, R. D, (1996) Electrospray mass spectrometric Investigation of the chaperone SecB. 

Protein Scl, 5, 488–494

f)
Macek B. et al. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation, Molecular 

&Amp; Cellular Proteomks 2008;7:299–307.

g)
Colak, G. et al. Identification of Iysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichla coll. Mol Cell 

Proteomks 12, 3509–3520 (2013).
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