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Abstract: Recently, III-V semiconductor nanowires have been widely explored as promising candidates
for high-performance photodetectors due to their one-dimensional morphology, direct and tunable
bandgap, as well as unique optical and electrical properties. Here, the recent development of III-V
semiconductor-based single nanowire photodetectors for infrared photodetection is reviewed and
compared, including material synthesis, representative types (under different operation principles
and novel concepts), and device performance, as well as their challenges and future perspectives.
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1. Introduction

In the last decades, there has been an increased demand for semiconductor infrared (IR)
photodetectors, due to their broad defense and civilian applications such as imaging, night vision, free
space optical communication, search and rescue, surveillance, missile tracking, material inspection
and identification, scientific instrumentation (e.g., spectroscopy), and astronomy [1,2]. For example,
the current state-of-the-art infrared photodetector technology in the market has been mainly based
on the planar semiconductor detectors such as Si (0.4–1.1 µm), InGaAs (1.1–1.7 µm), Ge (0.7–1.8 µm),
InAs (0.9–3.5 µm), and HgCdTe (2–10.6 µm). Although most of these detectors have been explored for
decades with mature industrial platforms, limited spectral range, low responsivity, and high noise
level at room temperature have limited their use in many practical applications. In particular, in
narrow bandgap materials such as InAs [3], InSb [4,5], InAsSb [6], and HgCdTe [7] with extended
detection wavelength from near- and short-wavelength infrared (NIR and SWIR) to mid-wavelength
infrared (MWIR) and beyond, the detectivity degrades significantly at longer wavelengths due
to increased dark current resulting from carrier generation–recombination and minority carrier
diffusion [8]. In the planar photodetector device design, a common compromise that is often
made is to reduce absorption volume to suppress the dark current while sacrificing some responsivity.
Leveraging the development of nanotechnology, many nanostructures, such as nanowires (NWs) [9–11],
nanotubes [12–14], nanopillars [15–17], nanorods [18–20], and two-dimensional (2D) materials [21–23],
have emerged in the pursuit of high-performance room-temperature photodetectors, as their nanoscale
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size offers extremely small active volume (for reduced dark current) and at the same time, distinct light
absorption properties for large responsivity, as well as shorter response time and larger bandwidth [24].

One-dimensional (1D) semiconductor nanowires have attracted significant attention as
the promising candidates for the next generation nanoscale optoelectronic devices such as
photodetectors [9–11], solar cells [25–27], light-emitting diodes (LEDs) [28], and lasers [29–31].
These devices have unique geometry and physical properties leading to excellent optical and
electrical properties; quantum size effects; as well as enhanced light, biological, or chemical
sensitivity [32,33]. In particular, III-V semiconductor nanowires have direct and widely tunable
bandgap, high absorption coefficient and carrier mobility, as well as flexibility to form heterostructures,
making them excellent candidates for photodetection [1,33]. Moreover, it is found that the enhanced
photocarrier lifetime and decreased transit time in nanowire detectors lead to much higher gain
in nanowires in comparison to bulk structures [34]. Researchers have also implemented transistor
structures [11,35–37], metal-semiconductor (M-S) or metal-semiconductor-metal (M-S-M) Schottky
junctions [38–41], p-n junctions [42,43], and heterostructures [42–46] in nanowire-based photodetectors
to further reduce dark current and enhance Ilight/Idark ratio for infrared photodetection. In addition,
surface passivation [11,36,44] and introduction of the photo-gating effect [36,37,47] have been carried
out to manipulate the surface states of the nanowire materials to further enhance their performance.
It has also been demonstrated that metal-cluster decoration [11] and nanoantenna structures [48] are
capable of localizing and enhancing the spectral selectivity and light absorption of nanowires by
coupling of strongly resonant and highly localized plasmonic modes.

For practical applications, ensemble nanowire array photodetectors are important. However,
single nanowire-based devices provide a much simpler platform for fundamental study without having
to consider complex effects such as optical coupling of surrounding nanowires as well as nonuniformity
effects that arise from nanowire growth and contact formation processes in ensemble devices [33]. Here,
the recent development of III-V semiconductor nanowire infrared photodetectors operating at room
temperature is reviewed with an emphasis on single nanowire-based photodetectors. This includes
nanowire synthesis approaches and mechanisms, typical device structures and performance, as
well as the current challenges and some strategies for development toward high performance
future applications.

2. Nanowires Synthesis

III-V semiconductor nanowires can be either synthesized by top-down or bottom-up approaches,
or a combination of both [33,49,50]. In the top-down method, nanowire structures are obtained
through direct writing or wet/dry etching of lithographically-defined patterns on a bulk substrate or
layered structure. Nanolithography techniques can be used to form ordered nanowire arrays with
accurately defined placement, size, spacing, and orientation [33,49]. However, top-down methods
do not offer the important advantages of material saving and flexibility in material/structure design
benefiting from the effective strain relaxation as offered by bottom-up nanowire synthesis methods.
Additionally, the etching process can introduce surface defects and roughness on the sidewall that
adversely affect the nanowire properties and lead to degraded device performance [33,51]. Therefore,
top-down approaches are rarely used for single nanowire photodetectors and have been thoroughly
reviewed [33]. In this review, we mainly focus on the discussion on bottom-up approaches.

In the bottom-up method, freestanding nanowires are grown anisotropically on a substrate
along the axial direction by employing their constituent atoms. Several techniques [33,50] have been
explored for nanowire growth. These include metal organic [44,52] or solid-source [53] chemical
vapor deposition (CVD), molecular beam epitaxy (MBE) [54], and energy transfer method such as
pulsed laser ablation [55]. The bottom-up method is especially promising for future highly-integrated
electronic and optical systems as high-quality nanowire growth has been demonstrated on various
substrates [56,57].
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The bottom-up nanowires are normally synthesized via catalyst assisted vapor–liquid–solid
(VLS) [9,44,58] and/or vapor–solid–solid (VSS) [59] growth mechanisms. The catalyst can be either
disparate metals such as Au nanoparticles (foreign metal-catalyzed growth) [9,44] or particles that
contain constituent elements of the nanowire (self-catalyzed growth) [60]. Normally such nanowire
ensembles have no ordering unless a mask is used to arrange the seed particles [56]. Site-controlled
VLS growth has also been used to grow planar nanowires [61].

Non-catalyzed growth techniques, such as selective area epitaxy (SAE) [62,63], are also often used
to form nanowires on a prepatterned substrate, to accurately define position, geometry, and uniformity
of the nanowire arrays [33]. Oxide-assisted growth (OAG) [64] is another mechanism that is used
to grow nanowires. In this method, the semiconductor and its oxide are adsorbed on the substrate
surface and the semiconductor atoms create nucleation centers, which then assist the formation of the
semiconductor nanowires. The oxide acts as a passivating shell that suppresses the crystal growth in the
lateral direction [64]. Some research has also examined the use of template-assisted (TA) mechanisms
that employ a prefabricated template such as anodic aluminum oxide (AAO) [65] membrane to control
the nanowire diameter [50].

3. Single Nanowire Photodetectors

Due to their distinct geometry, single nanowire devices can be fabricated into two different
device configurations: (i) horizontal configuration where the nanowires are transferred from free
standing positions to lying on another substrate horizontally on their growth axes, and (ii) vertical
configuration, where the nanowire is perpendicular to the substrate. These different configurations
lead to different absorption properties [33,50] and variation in the fabrication techniques [33]. In the
horizontal configuration, light is illuminated onto the nanowire in a perpendicular direction to its axis,
whereas in the vertical configuration, the direction of incident light is parallel to the nanowire axis.
Vertical nanowire devices have a much larger absorption cross section compared with their physical
cross section, and thus a larger absorption efficiency [25]. Single vertical nanowire photodetectors,
however, have been rarely reported [43,66], which could be due to practical considerations and
challenges for material growth and device fabrication. In comparison, single horizontal nanowire
photodetectors are more commonly implemented and characterized and have been reported widely
in many material systems. In this section, typical III-V single nanowire infrared photodetectors are
discussed based on their device structures and operating wavelengths. The associated performance
metrics such as responsivity (R), specific detectivity (D*), gain (G), external quantum efficiency (EQE),
and response time (t) [1,34] under room temperature are summarized and compared in Table 1.

3.1. Photoconductors

One of the simplest forms of photodetectors are photoconductors that produce current under an
optical excitation when an external bias is applied. The current increases with the light illumination,
exceeding dark current, and thus provides the light-detection ability. The geometry and nanoscale
dimensions of nanowire photoconductors enable enhanced light absorption, polarization sensitivity,
and internal photoconductive gain compared to bulk photoconductors [48,67,68]. For example, similar
to bulk/planar devices, light at different wavelengths can be detected using nanowires based on different
materials. Yang et al. demonstrated a single-nanowire spectrometer based on a compositionally
engineered semiconducting CdSxSe1-x nanowires [69]. It could reconstruct incident spectra by
measuring photocurrents along the nanowire axis, indicating that single nanowire devices are potential
candidates as ultracompact microspectrometers for accurate and broadband light reconstruction, as
well as high-resolution spectral imaging [69]. It has also been shown that the light absorption in Ge
nanowires can be spectrally tuned and enhanced by engineering their size, geometry, and orientation as
the incident light can be efficiently coupled to strong resonant modes supported in such subwavelength,
high refractive index semiconductor nanostructures [70]. Moreover, some III-V nanowires, such as
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GaAs [71] and InP [72], show ultrafast photocarrier dynamics, indicating their potential application as
high-speed photodetectors.

Among III-V nanowire photoconductors, narrow bandgap binary nanowire materials, such as
InAs [11], GaSb [73], and InSb [74], can provide broadband photodetection spanning from visible (VIS)
to IR regions. InAs nanowires have been demonstrated to have high carrier mobility, easy formation of
ohmic contact, as well as excellent optoelectronic properties [11]. Miao et al. reported a single InAs
nanowire near-infrared photodetector with a detection wavelength up to ∼1.5 µm and photocurrent
responsivity as high as 1.9 × 103 A/W [11]. The carrier mobility and photoresponsivity could be further
enhanced by addition of an Al2O3 or HfO2 passivation layer that can suppress the negative influence of
surface defect states and atmospheric molecules [11]. Yuan et al. showed that nanowire photodetector
responsivity can also be enhanced using in situ passivation by epitaxial growth of a GaInP shell on
GaAs core nanowires [75], whereas Li et al. demonstrated enhanced infrared photoresponse of GaAsSb
nanowires by the in situ passivation of adding an InP shell [76]. Moreover, core–shell heterostructures,
such as InAs/AlSb core–shell [46], form a type-II bandgap alignment that further improves charge
carrier separation, photosensivity, and photoresponse. Single GaSb nanowire photodetectors have
also been fabricated on rigid SiO2/Si and flexible polyethylene terephthalate (PET) substrates with
high responsivity and fast response coupled with stable photoswitching in a broad spectral range from
ultraviolet (UV) to NIR [73].

Ternary III-V nanowires with tunable bandgaps, such as GaAsSb [9], InGaAs [77], and InAsP [78],
have been also extensively studied. Li et al. demonstrated a single GaAs0.56Sb0.44 nanowire
photodetector with good responsivity and detectivity at a low operating bias voltage of 0.15 V at both
1.3 and 1.55 µm telecommunication wavelengths by tuning the bandgap of GaAsSb (Figure 1) [9].
InGaAs nanowires have also been reported as room temperature high-performance NIR photodetectors
with high responsivity of 6.5 × 103 A/W and EQE of 5.04 × 105% [77]. Ren et al. synthesized InAsxP1-x
(0 ≤ x ≤ 1) nanowires that span the whole range of x and studied their photoresponse in the broad
IR range from 0.7 to 3.5 µm [78]. A responsivity of 5.417 × 103 A/W and EQE of 3.96 × 105% at
1.7 µm and 0.5 V were demonstrated for InAs0.52P0.48 [78]. It was also found that the ternary InAsxP1-x
nanowire detectors showed better performance than binary InP (R of 337 A/W at 0.9 µm) and InAs
(R of 1.668 × 103 A/W at 2.9 µm) nanowires, presenting a highest value of R when x = 0.52 [78]. This
improved performance was attributed to the fact that electron concentration n of InAsxP1-x alloys was
first increased and then decreased when x was increased from 0 to 1, showing the peak concentration
at x = 0.52, whereas the electron mobility remained almost unchanged because alloy scattering is not
dominant at room temperature, leading to higher electron density than binary nanowires [78,79].
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3.2. Phototransistors

Single horizontal nanowires are usually fabricated on thermally oxidized Si substrates with
electrodes on the two ends of the nanowire for drain and source contacts, as shown in Figure 2a.
When a gate voltage is applied to the back of the heavily doped Si substrate, a field effect transistor
(FET) structure is formed [37]. Alternatively, applying an insulating layer and a contacting layer on
top of the nanowire, a top-gated FET can be achieved as shown in Figure 2d [11,35]. Such transistor
structures have been used for InAs photodetectors to manipulate electron trapping sites formed by
the native oxide, leading to tunable positive or negative photoconductivity [11,36,37,80,81]. Although
most semiconductors have increased conductivity under photoexcitation (positive photoconductivity
(PPC)), Alexander-Webber et al. reported an unusual negative photoconductivity (NPC) of InAs
nanowire-based phototransistors under visible light illumination as shown in Figure 2b [36]. This surface
photo-gating effect may be explained by the fact [36,80] that the free carriers in the InAs nanowire
could be excited into charge trapping sites located in the surface native oxide after the absorption of
light with photon energy much higher than the bandgap. It was also found that the time-dependent
photoresponse of the device at increased gate voltages showed a more obvious and gradually saturated
NPC behavior under illumination and increased current after the light was switched off with an
optical memory effect [36]. Surface passivation of the transistors with a 90 nm layer of Al2O3

can be used to significantly reduce charge trap density with an order of magnitude increase in
field-effect mobility (µ), leading to a PPC in InAs nanowires [36]. Zheng et al. demonstrated a
top-gated InP nanowire photodetector in which the dark current was significantly suppressed by
applying an ultrahigh electrostatic field to polarized P(VDF-TrFE) ferroelectric polymer as shown
in Figure 2d–f [35]. This behavior could be maintained even when the gate voltage was removed.
Very high photoconductive gain of 4.2 × 105, responsivity of 2.8 × 105 A/W, and specific detectivity
of 9.1 × 1015 Jones at λ = 0.83 µm were measured [35]. More recently, Zhang et al. developed a
P(VDF-TrFE)-coated InAs nanowire photodetector that exhibited an ultrasensitive photoresponse in a
wide spectral range extending to MWIR [81,82]. The electrostatic field of the polarized ferroelectric
material was capable of modifying the surface electron–hole distribution and the InAs nanowire band
structure, resulting in a photoresponse at a MWIR wavelength of 4.3 µm (well below the InAs band gap)
and a responsivity of 9.6 × 103 A/W and detectivity of ∼8.5 × 1010 Jones (cm·Hz1/2W−1) at 77 K [82].

Single InAs nanowire-based FETs have also been successfully developed as highly sensitive room
temperature THz detectors with a detection frequency range from 0.3 to 2.8 THz [83–86]. As the active
element, these FETs could work as rectifying diodes with modulated photoconductivity when the
electromagnetic radiation was funneled onto a resonant or broadband antenna and excites plasma
oscillations [85]. As InAs nanowires have a narrow bandgap and degenerate Fermi-level pinning, these
devices are promising for bolometric detection with scaled down-dimensions when compared with
planar structures [85]. In addition, these devices could be used in continuous-wave THz transmission
imaging applications as demonstrated by Romeo et al. [85,86].
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American Chemical Society.

3.3. Junction Based Photodetectors

Fabrication of proper metal contacts or implementing doping can be used to form Schottky
metal-semiconductor, homo- or heterojunction in nanowires for photodetection. A Schottky barrier
tends to be formed when some noble metals such as Au and Ag make contact with a semiconductor
such as InP and GaAs [87]. The junction at the interface between metal and semiconductor nanowire
produces photocurrent with contributions from photoexcited electron–hole pairs in the semiconductor
and electrons in the metal under reversed high electric field across the junction [32]. Due to the
morphology and associated properties of the nanowires, the performance of these photodetectors
could be tuned by adjusting the Schottky barrier height, which is sensitive to the carrier generation and
transport [88]. As the photocurrent is normally localized near the metal electrode–nanowire contact,
scanning photocurrent mapping can be an effective way to investigate the effects of Schottky barriers
on the mechanisms of photoconduction [32,75,89]. Compared to the M-S structure-based Schottky
barrier photodiode that can produce photocurrent at zero bias with a gain no more than 1 but very fast
response time [32], the M-S-M structure is symmetrical at zero bias with a built-in potential well for
photoexcited carriers until a high external voltage is applied to break through the potential barrier.
Photodiodes based on the M-S-M structure have been shown to possess many desirable characteristics
such as high speed, gain, and photosensitivity [32,38,60,88]. Thunich et al. used focused ion beam
(FIB) deposition technique to form Au/GaAs Schottky junctions on a p-doped GaAs nanowire with
a response time faster than 200 µs [38]. Dai et al. designed a GaAs/AlGaAs photodetector using an
M-S-M radial architecture that formed built-in electric fields at the semiconductor hetero-interface and
the metal/semiconductor Schottky contact to promote photogenerated charge separation and thus
enhance the photosensitivity [44]. As shown in Figure 3, Fang et al. proposed a visible light-assisted
dark-current suppressing method to enhance the barrier height of the metal–semiconductor contact
and form an M-S-M photodiode. The dark current was reduced and the infrared photodetection was
broadened from 0.83 to 3.133 µm with a high responsivity of 40 A/W, detectivity of ∼1010 Jones, and
fast response time of 80 µs at λ = 2 µm at a low bias voltage of 0.1 V [39]. Kuo et al. fabricated single
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InSb nanowires based on M-S-M structure (Pt-InSb-Pt) as MWIR photodetectors and demonstrated a
superior responsivity of 8.4 × 104 A/W at MWIR wavelength of 5.5 µm [74].
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characteristics and (c) responsivity and detectivity spectra of the fabricated detector. Reproduced with
permission [39]. Copyright 2016, American Chemical Society.

In addition to the aforementioned configurations, p-n or p-i-n nanowire photodiodes have been
employed to operate under photovoltaic mode at zero bias [33] or photoconductive mode at reverse
biases. Homojunctions can be formed either axially along the nanowire or radially conforming
the nanowire core by a shell [33], whereas heterojunctions are normally formed by the core–shell
configuration or a nanowire vertically grown on a substrate with different materials. Such junctions
showed rectifying behavior to suppress the dark current and enhance the detector’s sensitivity, with
relatively fast photoresponse [32]. Brenneis et al. demonstrated a Si/InAs heterojunction infrared
photodetector formed by a single vertical unintentionally n-type InAs nanowire grown on a p-type Si
substrate [43]. Miao et al. presented a graphene/InAs nanowire heterojunction photodetector with
an Ilight/Idark ratio of 500 at λ = 1 µm by integrating a horizontal single InAs nanowire on a vertically
stacked graphene layer as shown in Figure 4 [45]. Ma et al. reported a GaSb/GaInSb p-n heterojunction
based photodetector [42]. High responsivity of 103 A/W, EQE of 104 and response time of 2 ms at the
optical communication wavelength of 1.55 µm were obtained by applying a high forward bias (+1 V).
Wang et al. demonstrated a GaAsSb/InAs p-n heterojunction-based photodetector that showed a wide
spectral photoresponse ranging from 0.488 to 1.8 µm [90]. A responsivity of 0.0046 and 0.12 A/W to
1.31 µm telecommunication light was obtained under −0.3 and +0.3 V, respectively [90].Materials 2020, 13, x FOR PEER REVIEW 8 of 19 
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Figure 4. (a) Schematic and (b) Ilight /Idark ratios of a graphene/InAs nanowire heterojunction infrared
photodetector with much enhanced Ilight /Idark ratio in comparison with the single horizontal InAs
nanowire photodetectors. Reproduced with permission [45]. Copyright 2014, Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim.

When a photodiode operates as an avalanche photodetector (APD) at a high reverse bias condition,
impact ionization leads to multiplication of holes and electrons created by the initial photon excitation,
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enabling large photocurrent gain and sensitivity. The intrinsic small photon collection area and
active volume of nanowire-based APDs make them especially attractive device structures to enable
photocurrent gain and sensitivity even down to the single photon level. Linear mode APDs have been
reported in ensemble InGaAs/GaAs core–shell nanoneedles [91], exhibiting extremely high gain values
at bias voltages significantly below breakdown [92] due to the reduction of active material volume.
More significantly, a vertical InGaAs/GaAs nanowire array separate absorption-multiplication (SAM)
APD operating in Geiger mode has also been demonstrated recently [93]. The nanowire array contained
thousands of nanowires with each avalanche event confined in a single nanowire, drastically reducing
the avalanche volume and the number of filled traps. This led to an extremely small afterpulsing
probability compared with conventional InGaAs-based single-photon avalanche diodes (SPADs) and
enabled operation in free-running mode up to 150 K, which is attractive for emerging integrated
photonics and quantum information applications [93].

3.4. Photoconductive Switch THz Detectors

GaAs [94,95] and InP [63,96] nanowires have also been explored as photoconductive terahertz
(THz) detectors, as a promising alternative to bulk semiconductor detectors due to its nanoscale spatial
resolution and intrinsic polarization-resolved sensitivity. A single-nanowire photoconductive antenna
(SNW-PCA) can be integrated into a pulsed THz time-domain spectroscopy (TDS) system with a
Ti:sapphire laser to obtain the time-domain THz response (THz induced photocurrent) of a nanowire
detector as shown in Figure 5a,b [94]. Kun et al. successfully demonstrated a narrow bandwidth single
GaAs/AlGaAs/GaAs core–shell-cap nanowire photoconductive THz detector that operated well in the
range of 0.1 to 0.6 THz due to local field enhancement by a simple two-pad antenna [94]. Further
optimization of the antenna design yielded a single InP nanowire photoconductive detector with
a high-amplitude and phase-sensitive time-domain spectrum in a broad bandwidth range of 0.1 to
2 THz [96]. The contact quality was improved using an n+-i-n+ structure implemented for the single
InP nanowire THz detectors, leading to enhancement of signal-to-noise ratio, ~2.5 times of the undoped
InP nanowire detector [63]. The function of the single nanowire THz detector has also been further
confirmed by measuring the absorption coefficient and refractive index of paper cards in a THz-TDS
system where a single InP nanowire detector was used to measure the transmitted THz signal through
the paper card as shown in Figure 5c [96].Materials 2020, 13, x FOR PEER REVIEW 9 of 19 
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Figure 5. (a) Schematic of the detector design and optical arrangement of a single GaAs/AlGaAs/GaAs
core–shell–cap nanowire photoconductive THz detector and SEM image of the central area of a
fabricated device. (b) Time-domain THz response of the detector characterized in a THz-TDS system.
(c) Schematic of the THz signal transmission measurement in a THz-TDS system when paper cards are
presented. Reproduced with permission [94]. Copyright 2014, American Chemical Society.
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3.5. Hybrid-Type Nanowire Detectors

Plasmonic structures could be combined with nanowires to enhance the detector performance and
polarization sensitivity. Casadei et al. demonstrated a nanowire/nanoantenna hybrid structure that
could be used to engineer the polarization response of nanowires by embedding a GaAs horizontal
nanowire in a bow-tie antenna array, as shown in Figure 6 [48]. The nanowire coupled with the plasmonic
modes of the bow-tie nanoantennas when excited with transverse polarized light (perpendicular to
the nanowire axis), thus enhancing light absorption (Figure 6a–c) and polarization photoresponse
(Figure 6d–f) [48]. Senanayake et al. successfully fabricated self-aligned metal nanoholes on vertical
nanopillars as a 2-dimensional (2D) plasmonic crystal to realize plasmon-enhanced photodetectors
that could tune the peak responsivity wavelength and polarization with enhanced optical coupling
efficiency [17,97].Materials 2020, 13, x FOR PEER REVIEW 10 of 19 
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Figure 6. (a,b,c) Simulated absorption spectra and (d,e,f) measured photocurrent spectra of single
nanowire and hybrid nanowire/nanoantenna structures for light perpendicular to the nanowire axis
(black) and parallel to the nanowire axis (red), respectively. Reproduced with permission [48].

Table 1 presents a summary of the key performance metrics of the reported III-V single nanowire
infrared photodetectors measured at room temperature.
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Table 1. Summary of the key performance metrics of room temperature III-V single nanowire infrared photodetectors.

NW Material
Band
Gap
(eV)

Growth Details Device Structure λ
(µm)

R
(A/W)

D*
(Jones) G EQE

(%)
t

(µs) Ref.

InP
1.338 (zincblende
(ZB)) and 1.408
(wurtzite (WZ))

Bottom-up, metal
organic CVD
(MOCVD),

Au-assisted VLS

Horizontal, M-S-M
Schottky photodiode 0.7–1 [98]

InP 1.34 CVD

Horizontal,
phototransistor with

polarization
ofP(VDF-TrFE)

ferroelectric polymer

0.5–1.2 2.8 × 105@0.83 µm,
1 V 9.1 × 1015 4.2 × 105 2.91 × 104 [35]

InP 1.42 Bottom-up,
MOCVD, SAE

Horizontal,
photoconductor

0.1–2
THz [96]

InP 1.41 Bottom-up,
MOCVD, SAE

Horizontal, n+-i-n+

photoconductor 0.1–2.2 THz [63]

GaAs 1.42 Bottom-up, MBE,
Ga-assisted VLS

Horizontal, Schottky
photodiode 0.7–1 167 [38]

GaAs 1.42
Bottom-up,
MOCVD,

Au-assisted VLS

Horizontal, M-S-M
Schottky photodiode 0.4–1.2 2 × 104 [88]

GaAs

1.51 for undoped
NW@77 K;
1.45 for 2
× 1017 cm−3

n-doped NW@77 K

Bottom-up, MBE
Vertical on GaAs

substrate, Schottky
photodiode

0.808

5.3 ×10−7@10 V for
undoped NW; 1.5 ×
10−7@10 V for 2 ×

1017 cm−3 n-doped
NW

1 × 10−6 [66]

i-GaAs/p-GaAs
core–shell Bottom-up

Horizontal,
photoconductor with
electrical contact on

p-type shell

0.48–0.88 [48]

GaAs/
AlGaAs

core–shell

Bottom-up,
MOCVD,

Au-assisted VLS

Horizontal,
M-S-M Schottky

photodiode
0.8 10−4 13.5 5 × 10−3 [71]

GaAs/
AlGaAs

core–shell

Bottom-up,
MOCVD,

Au-assisted VLS

Horizontal, M-S-M
Schottky photodiode 0.5–0.9 [89]
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Table 1. Cont.

NW Material
Band
Gap
(eV)

Growth Details Device Structure λ
(µm)

R
(A/W)

D*
(Jones) G EQE

(%)
t

(µs) Ref.

GaAs/
hight-T GaAs/

AlGaAs
core-multi

shell

1.412
Bottom-up,
MOCVD,

Au-assisted VLS

Horizontal, radial
heterojunction

M-S-M Schottky
photodiode

0.3–0.9 0.57@0.855 µm, 1 V 7.20 × 1010 [44]

GaAs/
AlGaAs/GaAs
core–shell-cap

1.43
Bottom-up,
MOCVD,

Au-assisted VLS

Horizontal,
photoconductor 0.1–0.6 THz 4.6 × 10−3 [94]

GaAs/
AlGaAs/GaAs
core–shell-cap

1.43
Bottom-up,
MOCVD,

Au-assisted VLS

Horizontal,
photoconductor 0.1–1.5 THz 4.6 × 10−3 [95]

GaSb 0.725 Horizontal tube
furnace, CVD

Horizontal,
photoconductor 0.35–0.8 443.3@0.8 µm, 0.4 V 2.86 × 109@

0.8 µm
688.4@0.8

µm
2 × 105@0.6

µm
[73]

GaSb/
GaInSb

0.75 for GaSb@77 K;
0.625 for Ga0.9

In0.1
Sb@77 K

Horizontal tube
furnace, CVD

Horizontal,
p-n heterojunction

photodiode
0.78–2.25 1.5 × 103@1.55 µm,

1 V 8.5 × 106 2 × 103 [42]

InAs 0.354 Bottom-up, CVD,
Au-assisted

Horizontal,
photoconductor &

phototransistor
0.3–1.1 4.4 × 103@

0.532 µm, 15 V 2.6 × 1011 1.03 × 106 [99]

InAs 0.365 Bottom-up, MBE,
Au-assisted

Horizontal,
photoconductor Schottky

photodiode &
phototransistor

0.632–1.47

5.3 × 103 for
photodiode;
1.9 × 103 for

photoconductor

[11]

InAs 0.35 Bottom-up, MBE,
Au-assisted

Horizontal,
photoconductor &

phototransistor
0.5–1.6 −3 × 104@0.2 V −7.5 × 104 <100 [80]

InAs 0.35 Bottom-up, MBE,
Au-assisted VLS

Horizontal, M-S-M
Schottky photodiode, VIS

light (450 nm)-assisted
0.83–3.133 40@2 µm, 0.1 V;

0.6@3.113 µm, 0.4 V

2 × 1012@2
µm;

1010@3.113
µm

80 [39]

InAs
Bottom-up,
MOCVD,

self-assisted

Horizontal,
phototransistor 0.633, 0.65–1 <2.5 × 105 [37]
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Table 1. Cont.

NW Material
Band
Gap
(eV)

Growth Details Device Structure λ
(µm)

R
(A/W)

D*
(Jones) G EQE

(%)
t

(µs) Ref.

InAs 0.477
Bottom-up,
MOCVD,

Au-assisted VLS

Horizontal,
phototransistor

halogen lamp
with a peak@

0.906 µm
(1.37 eV)

[36]

InAs

Bottom-up,
chemical beam
epitaxy (CBE),

Au-assisted VLS

Horizontal,
phototransistor 0.3 THz >1 V/W@Vgs = −7 V

and Vds = 0.01 V [83]

InAs Bottom-up, CBE,
Au-assisted VLS

Horizontal,
phototransistor 1.5 THz 12 V/W@Vgs = -2 V

and Vds = 0.005 V [84]

InAs Bottom-up, CBE,
Au-assisted VLS

Horizontal,
phototransistor 0.3 THz 100 V/W@Vgs = 5 V [85]

InAs Bottom-up, CBE,
Au-assisted VLS

Horizontal,
phototransistor 2.8 THz 5 V/W@Vgs = 8 V

and Vds = 0.025 V [86]

InAs/Si 0.36 Bottom-up, MBE,
SAE

Vertical InAs NW on
p-type Si substrate,
p-n heterojunction

photodiode

1.47 [43]

InAs/
Graphene

Bottom-up, MBE,
Au-assisted

Horizontal, hetero
junction photodetector 0.457–1 0.5 [45]

InSb 0.18

Bottom-up, direct
current (DC) electro

deposition
with AAO template

Horizontal,
photoconductor & M-S-M

Schottky photodiode
0.5–1 [100]

InSb 0.17–0.4
Bottom-up, tube

furnace, Au-assisted
VLS

Horizontal, Schottky
photodiode

1000 ◦C black
body radiation 60 [41]

InSb 0.17

Bottom-up,
electrochemical

method with AAO
template

Horizontal,
M-S-M Schottky

photodiode
5.5 8.4 × 104 1.96 × 106 2.6 × 105 [74]
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Table 1. Cont.

NW Material
Band
Gap
(eV)

Growth Details Device Structure λ
(µm)

R
(A/W)

D*
(Jones) G EQE

(%)
t

(µs) Ref.

InAsP 1.416(InP)–0.421
(InAs)

VLS and
ion-exchange (IE)

Horizontal,
photoconductor 0.7–3.5

1668@2.9 µm, 0.5 V
for InAs; 4998@2.3
µm for InAs0.8P0.2;
5417@1.7 µm, 0.5 V

for InAs0.52P0.48;
3833@1.2 µm, 0.5 V

for InAs0.25P0.75;
337@0.9 µm, 0.5 V

for InP

7.15 × 104

for InAs;
2.7 × 105

for InAs0.8
P0.2;

3.96 × 105

for
InAs0.52

P0.48;
3.67 × 105

for
InAs0.25

P0.75;
4.65 × 104

for InP

[78]

InGaAs 0.69@77 K for
In0.65Ga0.35As

Bottom-up, CVD,
Au-assisted

Horizontal,
photoconductor 1.1–2 6.5 × 103@1.6 µm,

0.5 V 5.04 × 105 7 × 104 [77]

GaAsSb 0.9@77 K for Ga
As0.26Sb0.74

CVD Horizontal,
photoconductor 1.16–1.55 1.7 × 103@1.31 µm,

1 V 1.62 × 105 6 × 104 [101]

GaAsSb 0.827 for Ga
As0.56Sb0.44

Bottom-up,
MOCVD,

Au-assisted VLS

Horizontal,
photoconductor 1.1–1.66

2.37@1.3 µm, 0.15 V;
1.44@1.55 µm, 0.15

V

1.08 × 109@
1.3 µm; 6.55
× 108@ 1.55

µm

[9]

GaAsSb/InAs 1.1 for Ga
As0.82Sb0.18

Bottom-up,
solid-source MBE,
self-assisted VLS

Horizontal, p-n
heterojunction

photodiode
0.488–1.8 0.12@1.31 µm, 0.3 V 12

4.5 ×
102@0.633

µm
[90]

GaAsSb/InP 0.92 for As0.66Sb0.34

Bottom-up,
MOCVD,

Au-assisted VLS

Horizontal,
photoconductor 1.05–1.55

143.5@1.3 µm, 1.5 V
for GaAsSb
core-only;

325.1@1.3 µm, 1.5 V
for GaAsSb/InP

core–shell

5.3 ×
1010@1.3 µm,

1.5 V for
GaAsSb

core-only;
4.7 ×

1010@1.3 µm,
1.5 V for

GaAsSb/InP
core–shell

1.37 × 104

for
GaAsSb

core-only;
3.1 × 104

for
GaAsSb/InP
core–shell;

[76]
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4. Challenges and Future Perspectives

Although III-V semiconductor nanowires present unique and excellent optical and electrical
properties and have been demonstrated to have promising performance for room temperature
infrared photodetection, there are still many technological challenges to overcome. Despite good
device performance, the output current of the single nanowire photodetectors is still too low
for practical applications. Therefore, the fabrication technique for large-scale and controlled
assembly of single nanowires into horizontal arrays is highly desirable [102]. There have been
a few techniques reported for nanowire position alignment, such as optical tweezers [103], electric
field-assisted assembly technique [102,104], elastomeric poly(dimethylsiloxane) (PDMS) stamp-assisted
transfer [105], Langmuir–Blodgett method [106], bespoke polymer µ-stamp-assisted nano-scale
transfer printing technique [107,108], as well as a large-scale transfer printing technique known
as contact printing [53,109], by simply transferring nanowires from the growth substrate to a
patterned receiver substrate. However, there is always a trade-off between the accuracy of nanowire
positioning and scalability of the technique. This requires further development of the technology for
high-performance, stable-operation, and low-cost assembly of horizontal nanowire arrays on both
rigid and flexible substrates.

Another limitation of III-V semiconductor nanowire photodetectors is their detection wavelength
that are determined by the material bandgap, especially for the relatively easy synthesis but wider
bandgap binary materials such as GaAs and InP. To enable light detection of photon energies well below
the semiconductor bandgap, Knight et al. proposed a novel idea of active optical antennas, in which
hot carriers are generated and injected into the semiconductor material (e.g., Si substrate) through the
antenna–semiconductor Schottky barrier, contributing to a detectable photocurrent response at SWIR
wavelengths up to 1.6 µm [110]. To further extend the nanowire photodetector photoresponse range to
long-wavelength infrared (LWIR), 0-dimensional (0D) nanomaterials, such as semiconductor quantum
dots (QDs) and quantum wells (QWs), could be incorporated into nanowire structures. Synthesis of
single or multiple low-bandgap InAsP quantum discs (QDiscs) within an InP nanowire axially was
demonstrated by Karimi et al. such that the intersubband transitions in the conduction band of the
InAsP QDiscs enabled broad infrared response ranging from 3 to 20 µm [111].

5. Conclusions

Single III-V semiconductor nanowires have been extensively explored in the past decade as
room temperature high-performance infrared photodetectors with broad detection wavelength range
covering UV, VIS, IR, and THz regimes. In this article, we present a review on their recent development
in materials, structures, and comparative performances, as well as the existing challenges and possible
future directions.
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