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Abstract: Pigs are used as potential donor animals for xenotransplantation. However, porcine
endogenous retrovirus (PERV), shown to infect both human and non-human primate (NHP) cells
in vitro, presents a risk of transmission to humans in xenotransplantation. In this study, we analyzed
PERV transmission in various organs after pig-to-NHP xenotransplantation. We utilized pig-to-NHP
xenotransplant tissue samples obtained using two types of transgenic pigs from the National Institute
of Animal Science (NIAS, Republic of Korea), and examined them for the existence of PERV genes
in different organs via PCR and RT-PCR with specific primers. To determine PERV insertion into
chromosomes, inverse PCR using PERV long terminal repeat (LTR) region-specific primers was
conducted. The PERV gene was not detected in NHP organs in cardiac xenotransplantation but
detected in NHP bladders in renal xenotransplantation. The insertion experiment confirmed that
PERVs originate from porcine donor cells rather than integrated provirus in the NHP chromosome.
We also demonstrate the presence of pig cells in the NHP bladder after renal xenotransplantation
using specific-porcine mitochondrial DNA gene PCR. The PERV sequence was detected in the bladder
of NHPs after renal xenotransplantation by porcine cell-microchimerism but did not integrate into
the NHP chromosome.

Keywords: pig-to-NHP xenotransplantation; heart xenotransplantation; kidney xenotransplantation;
porcine endogenous retrovirus (PERV); microchimerism

1. Introduction

Xenotransplantation is an excellent alternative tool for replacing organs and resolving the issue
of organ shortage for transplantation in patients with terminal organ failure [1–4]. Genetically
modified pigs provide an important organ source in the development of xenotransplantation for the
treatment of diabetes mellitus (pancreatic islets), heart, and kidney disfunction [5,6]. Initial encouraging
results using porcine islets were obtained in non-human primate (NHP) models in New Zealand.
Several groups have reported pig islet transplantation in diabetic NHPs that successfully maintained
normoglycemia for periods >1 year. Life-supporting (orthotopic) kidneys from pigs expressing a single
human complement regulatory protein have been shown to function for up to 90 days, and the survival
of a non-life-supporting heart in the abdomen (heterotopic) has been documented to be >2 years [5].
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However, immunological barriers must be overcome for cross-species transplantation, such as
transplant rejection and porcine viral transmission. Porcine endogenous retroviruses (PERV) are
proviral elements that may replicate in human cells with the risk of transmission in the setting of
xenotransplantation [7,8]. PERV-A, -B, and recombinant PERV-A/C have been shown to infect both
human and pig cells in vitro while PERV-C infection is mainly restricted to pigs [9]. Therefore,
PERV transmission to humans presents a potential threat in the field of xenotransplantation and
raises major concerns. A recent study reported that PERV-A/C adapted to human cells can
infect NHP cells due to mutations in long terminal repeats that play an important role in viral
replication [10]. Moreover, cases of PERV infection and viral gene expression were reported following
transplantation of pig islet cells into immunodeficient animals or non-obese diabetic/severe combined
immunodeficiency (NOD/SCID) mouse models [11,12]. PERV DNA and RNA were additionally
detected at multiple points in transgenic mice expressing human PERV-A receptor 2, indicating virus
replication after xenotransplantation [13–15].

Xenografting of porcine organs is known to cause zoonotic infections but the frequency of viral
transmission from xenograft sources in host animals has not been established. Furthermore, little is
known about the potential risk of infection in host animals treated with transient immunosuppressive
agents [16]. In order to prevent acute immune rejection, a large amount of immunosuppressive
drug is prescribed and continuous administration is required. Although long-term survival has
become possible with the prescription of immunosuppressive drugs after interspecies transplantation,
it has the risk of chronic immunosuppression-related infection, xenograft rejection, and host adaptive
virus production [17–21].

Transplantation of porcine organs into NHP recipients leads to the major problem of hyperacute
and acute rejection. Pre-formed antibodies against the alpha 1,3-galactosyltransferase (GT) epitope
activate the complement system, resulting in rapid destruction of the xenograft and consequent
hyperacute rejection [22,23]. GGTA1 gene knockout pig heart expressing GT transplanted into NHP
underwent acute, but not hyperacute, rejection [24]. Complement regulators, such as membrane
cofactor proteins (MCP or CD46), CD55, and CD39, play a critical role in inhibiting complement
activation, and may thus be useful in preventing acute rejection. Nucleotides such as adenosine
triphosphate (ATP) and adenosine diphosphate (ADP) present in the blood are sequentially degraded
into adenosine monophosphate (AMP) and adenosine by CD39 on the surface of vascular endothelial.
This adenosine is known to be an important signaling factor that regulates thrombus formation and
inflammatory responses. Indeed, studies have been reported to inhibit rejection in xenotransplantation
by human CD39 overexpression [25–27]. Xenotransplantation of organs using a transgenic pig model
with a knockout of GGTA1 and expressing a complement regulator has been shown to effectively
suppress the immune rejection response [28–30].

In the current investigation, we examined tissue samples from NHPs transplanted with organs of
GT knockout transgenic pigs expressing MCP or CD39 to determine whether PERV is transmitted to
host tissues after xenotransplantation.

2. Materials and Methods

2.1. Animal and Tissues

Tissues of xenotransplanted NHP (n = 4) and donor pigs were provided by the National Institute of
Animal Science (NIAS, Republic of Korea). Rhesus macaques (Macaca mulatta) were used as xenograft
recipients (Table 1). Heart transplantation was performed using organs from transgenic pig models
with GT inactivation and MCP expression [31,32] or GT knockout and human CD39 expression [33].
The recipient NHP23-16′s tissues were isolated at 60 days after transplantation and NHP20-01 tissues
were isolated at 18 days. For kidney transplantation, transgenic pigs with GT knockout and human
CD39 expression were used. Tissues were isolated from NHPs at 25 and 35 days after transplantation.
All tissue samples were frozen at 80 °C until required. This experiment was approved by the Orient
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Genia Institutional Animal Care and Use Committee (IACUC No. ORIENT-IACUC-16141, permitted
on July 11, 2016).

Table 1. Information about pigs for xenotransplantation.

Type Transgenic Pig Rhesus Macaques Survival Date
(After Transplantation, Day)

Heart GT-MCP/-MCP 1 NHP23-16 60
Heart GT-CD39/-CD39 2 NHP20-01 18

Kidney GT-CD39/-CD39 NHP20-06 32
Kidney GT-CD39/-CD39 NHP23-30 25

1 GT knockout transgenic pigs expressing MCP; 2 GT knockout transgenic pigs expressing CD39.

2.2. Xenotransplantation

For heart xenotransplantation, the donor pig’s ascending aorta is attached to the abdominal
aorta of the NHP, and the donor pig’s pulmonary artery to the inferior vein of the NHP. The porcine
coronary arteries are perfused in the abdominal aorta, and the coronary venous blood enters the
right heart through the coronary arteries and is then ejected into the inferior cava via the pulmonary
trunk [34]. For kidney xenotransplantation, the donor pig’s kidney containing arteries, veins, and
ureter are removed near the bladder. After the right kidney of the NHP is removed, the NHP’s aorta
and the donor’s renal artery, the inferior vena of NHP and the donor’s renal vein are connected. Next,
the ureter of the transplanted kidney is connected to the NHP’s bladder. Finally, the state of NHP was
observed, and transplanted organs were excised

2.3. PCR and RT-PCR Detection of PERV Genes

Genomic DNA was isolated from different tissues using a DNA mini kit (Qiagen, Valencia, CA,
USA) and 50 ng of gDNA was used for PCR. Total RNA was isolated using a RNeasy mini kit (Qiagen,
Valencia, CA, USA), according to the manufacturer’s instructions. cDNA was synthesized from 1 µg of
RNA using SuperScript II reverse transcriptase (Invitrogen, Carlsbad, CA, USA), and was RT-PCR
performed using specific primers for conserved PERV gag and pol (Table 2) [35]. The cycling reaction
was performed under the following conditions: denaturation at 94 °C for 5 min, 30 cycles at 94 °C for
20 sec, 55 °C for 20 sec, 72 °C for 20 sec, and extension at 72 °C for 10 min. The housekeeping gene 18s
rRNA was used for normalization of PCR data.

Table 2. Primers used for PCR and RT-PCR.

Name Sequence (5′ to 3′)

PERV-pol-F GATGAGCGTAAGGGAGTAGC
PERV-pol-R TGCTTCCGTCAGTGAACCAG
PERV-gag-F CCCGATCAGGAGCCCTATATCCTTACGTG
PERV-gag-R CGCAGCGGTAATGTCGCGATCTCGT

PERV LTR 1-F ATGCCCCCGAATTCCAGA
PERV LTR 1-R GGTTAGGTTGCATTTTCATCCTT
PERV LTR 2-F CCCCGAATTCCAGACCCT
PERV LTR 2-R AGGTTGCATTTTCATCCTTTCATT

Porcine cytochrome B-F CATTGGAGTAGTCCTACTATTTCCG
Porcine cytochrome B-R CATTGGAGTAGTCCTACTATTTCCG

18sRNA-F GTTCCGACCATAAACGATGCC
18sRNA-R TGGTGGTGCCCTTCCGTCAAT
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2.4. Quantitative Real-Time PCR Analysis of PERV Genes

The plasmid clones of the PERV pol gene were generated to serve as a quantitative standard.
The PERV pol gene was amplified by RT-PCR from PK-15 (porcine kidney-15) cells. The PCR products
were cloned into a pGEM-T easy vector (Promega, Madison, WA, USA) and sequenced by sequencing
analysis (Macrogen, Seoul, Republic of Korea). The, concentration of the plasmid was measured using
a spectrophotometer (Epoch, Biotek, Winooski, VT, USA), and this value was used to determine the
copy number. Quantitative real-time PCR was conducted based on specific primers for the PERV
pol gene using SYBR green (Takara, Seoul, Korea). The gDNA and cDNA of NHP20-06 were used
for qRT-PCR under the same condition as PCR and RT-PCR. The PCR reaction was performed in a
StepOnePlus real-time PCR system from Applied Biosystems (Foster City, CA, USA) with the following
thermal cycle conditions: 10 min of pre-incubation at 94 °C and 40 cycles in three steps each (94 °C
for 20 sec, 55 °C for 20 sec, 72 °C for 20 sec). The results were analyzed with StepOneplus software
(Applied Biosystems, Foster City, CA, USA).

2.5. Analysis of PERV Integration

We analyzed the PERV insertion site in NHP bladders via inverse PCR to determine whether
the virus was transmitted to the organ. The gDNA (200ng) of NHP bladders and donor pig kidneys
were digested using Sau3AI (New EnglandBiolabs, Ipswich, MA, USA) and self-ligated with T4 DNA
ligase (Promega, Madison, WA, USA). Next, fragments containing the PERV-host DNA junctions were
amplified via PCR using PERV LTR primer 1 (Table 2). PCR products were re-amplified using PERV
LTR primer 2 (Table 2). All reactions were performed over 35 cycles under the following conditions:
94 °C for 5 min, 30 sec at 94 °C, 30 sec at 55 °C, 20 sec at 72 °C, and 72 °C for 10 min. The amplified
products were cloned into pGEM-T easy vector (Promega, Madison, WA, USA) and DNA sequencing
was performed by Macrogen Inc. (Seoul, Korea). Sequences immediately adjacent to PERV LTRs were
aligned using the NCBI BLASTn program (National Center for Biotechnology Information, Bethesda,
MD, USA).

2.6. Analysis of Porcine Cell Microchimerism using PCR

A previous study reported a species-specificity molecular approach based on the amplification of
the mitochondrial cytochrome B gene [36]. To determine the porcine cell microchimerism, we detected
pig cytochrome B mitochondrial gene from porcine cell using PCR. The PCR mixture contained each
2.5mM dNTPs, 10 pmol of primers (Table 2), rTaq DNA polymerase (Takara, Seoul, Republic of Korea),
and 50 ng of gDNA in a total volume of 20 µL. The PCR was performed for 30 cycles under the
following condition: 94 °C for 5 min, 15 sec at 94 °C, 15 sec at 60 °C, 15 sec at 72 °C, and 72 °C for
10 min. We confirmed the detection of cytochrome B gene using electrophoresis.

3. Results

3.1. PERV Is not Detected in Recipient NHPs of Heart Xenotransplantation

Heart, aorta, lung, spleen, kidney, and liver tissue were sampled from the heart transplant recipient
23-16. Genomic DNA and RNA were isolated from these tissues and PCR was applied to detect
PERV (Figure 1A,C). The gag and pol genes of PERV were detected in the heart of the GT-MCP/-MCP
donor pig. Sampling was performed on the day of death after xenotransplantation. PERV pol and gag
were not detectable in the heart, aorta, lung, spleen, kidney, and liver tissues of the host NHPs 23-16.
Similarly, genomic DNA and RNA were isolated from heart, pulmonary, spleen, kidney, and liver
tissues of the heart transplant recipient NHP 20-01 and PCR was employed to detect pol and gag genes
of PERV (Figure 1B,D). Notably, PERV pol and gag were detected in porcine GT-CD39/-CD39 heart,
but not recipient organs, clearly indicating that PERV from transplanted pig heart is not transmitted to
recipient NHPs.
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transplanted recipients NHP 20-01. 
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NHPs, albeit at lower levels than donor tissues. 
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PERV sequences isolated from the recipient and donor were identical. 

Figure 1. Analysis of PERV in different tissues of the heart transplanted recipients by PCR. The PCR
and RT-PCR were performed to detect PERV gag and pol in different of heart transplanted recipients.
The PERV level identified via electrophoresis and normalized to that of 18s rRNA. (A) gDNA and
(C) cDNA of the heart transplanted recipients NHP 23-16. (B) gDNA and (D) cDNA of the heart
transplanted recipients NHP 20-01.

3.2. PERV Is Detected in Recipient NHPs of Kidney Xenotransplantation

Heart, aorta, lung, spleen, kidney, and liver tissue were sampled from kidney transplant recipients
NHP20-06 and NHP 23-30. Genomic DNA and RNA of the heart, bladder, liver, lung, ureter, spleen,
and kidney were isolated from recipient NHPs as well as donor porcine GT-CD39/-CD39 kidney and
ureter. PERV transmission was analyzed via PCR (Figure 2). In the case of NHP 20-06 (Figure 2A,C),
pol and gag genes of PERV were not detected in the heart, lung, spleen, and liver tissue of the host
animal. Interestingly, pol and gag were detected in renal and ureter tissue from NHPs, albeit at lower
levels than donor tissues.

In another kidney transplantation case, NHP 23-30, genomic DNA and RNA were isolated from
heart, bladder, liver, lung, ureter, spleen, and kidney, followed by PCR to detect PERV. Similar to NHP
20-06, pol and gag genes of PERV were not identified in the heart, lung, spleen, and liver, but detected
in bladder tissue of the host animal.

Previously, we developed the classification methods for PERV types based on PCR using specific
primers [35]. To identify the origin of PERVs, the env of PERV from both donors and recipients were
detected by PCR using PERV types specific primers (Table S1). All three subtypes of PERV were
confirmed in both gDNA of donor and recipients (Figure S1). Sequence analysis showed that the PERV
sequences isolated from the recipient and donor were identical.
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3.3. Quantitative Real-Time PCR Analysis of PERV 

PERV pol genes were detected in NHPs transplanted with porcine kidney. A quantitative real-
time PCR was performed with 10-fold serial dilution of the standard plasmid DNA and the NHP 
tissues samples. The standard showed a strong linear relationship (r2 = 0.997), as shown in Figure 3A. 
The 33 copies/ µL were the detection limits of real-time PCR (more than 35 CT value or not detectable). 
Genomic DNA and cDNA of the bladder, heart, lung, liver, spleen, ureter, and kidney from recipient 
20-06 were used. The number of PERV copies/ µL of NHP bladder gDNA and cDNA were 71,701 and 
8056, respectively (Figure 3B,C). Compare to donor porcine organs (kidney and ureter), PERV DNA 
and RNA levels in the NHP bladder were 32.6–48.1 and 21.6–78.1 times lower, respectively. 

Figure 2. Analysis of PERV in different tissues of the kidney transplanted recipients by PCR. The PERV
gag and pol were detected by PCR and RT-PCR from different tissues of the kidney transplanted
recipients. (A) gDNA and (C) cDNA of the kidney transplanted recipients NHP 20-06. (B) gDNA and
(D) cDNA of the kidney transplanted recipients NHP 23-30.

3.3. Quantitative Real-Time PCR Analysis of PERV

PERV pol genes were detected in NHPs transplanted with porcine kidney. A quantitative real-time
PCR was performed with 10-fold serial dilution of the standard plasmid DNA and the NHP tissues
samples. The standard showed a strong linear relationship (r2 = 0.997), as shown in Figure 3A.
The 33 copies/ µL were the detection limits of real-time PCR (more than 35 CT value or not detectable).
Genomic DNA and cDNA of the bladder, heart, lung, liver, spleen, ureter, and kidney from recipient
20-06 were used. The number of PERV copies/ µL of NHP bladder gDNA and cDNA were 71,701 and
8056, respectively (Figure 3B,C). Compare to donor porcine organs (kidney and ureter), PERV DNA
and RNA levels in the NHP bladder were 32.6–48.1 and 21.6–78.1 times lower, respectively.
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Figure 3. Quantitative analysis of PERV pol gene by real-time PCR. Quantitative real-time PCR was 
performed to detect the pol gene of PERV in tissues. (A) A typical standard curve derived from a serial 
dilution of standard plasmid DNA. (B) Copies/ µL of PERV pol in gDNA, (C) Copies/ µL of PERV pol 
in cDNA. Values are presented as means ± SD based on three tissues. (****p < 0.0001 for comparison 
between the two groups). 

Figure 3. Quantitative analysis of PERV pol gene by real-time PCR. Quantitative real-time PCR was
performed to detect the pol gene of PERV in tissues. (A) A typical standard curve derived from a serial
dilution of standard plasmid DNA. (B) Copies/µL of PERV pol in gDNA, (C) Copies/µL of PERV pol in
cDNA. Values are presented as means ± SD based on three tissues. (**** p < 0.0001 for comparison
between the two groups).
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3.4. Detection of PERV Is Not Due to Integration into the NHP Chromosome but to the Presence
of Porcine Cells

Using the long-terminal repeat (LTR) region, integration of PERV into the host genome was
analyzed via inverse PCR using specific primers. After shotgun cloning, inverse PCR-amplified genes
were cloned and insert sequences analyzed. All cloned PERV LTR clones were derived from the donor
porcine chromosome and no insertion into the NHP chromosome was detected (Table 3). Our data
may indicate that PERV in the bladder represents circulating viruses or cells from the transplanted
porcine kidney. To identify the microchimerism, we detected the porcine cytochrome B mitochondrial
gene in gDNA. The porcine cytochrome B was not detected in heart, lung, spleen, and liver of NHP,
but detected in NHP’s bladder, donor pig’s kidney, and donor pig’s ureter (Figure 4). The level in the
NHP’s bladder was lower than that of donors and the porcine cells from transplanted porcine kidney
were found to be present in the NHP’s bladder.

Table 3. Identification of PERV insertion of NHP’s bladder using inverse PCR.

Junction Sequence 1 Position Species

ATGCCCCCGAATTCCAGACCCTGTTCCCTATAGGT
AAAAGATCATGGTACTTAGACAGCA LOC110259374 Sus scrofa

ATGCCCCCGAATTCCAGACCCTGCTCCCTGCCAAT
AAATAGGTAGAAGGTCACACTTCTT

CH242-417C1 on
chromosome 4 Pig

ATGCCCCCGAATTCCAGACCCTGCTCCCTGCCAGT
AAATCGGTAGAAGGTCACACTTCT LOC110261659 Sus scrofa

ATGCCCCGAATTCCAGACCCTGTTCCCTATAGGTA
AAAGATCATGGTACTTAGACAGCAG LOC110256025 Sus scrofa

ATGCCCCGAATTCCAGATCCTTTCATTCCCCACTT
CTTCTCTTGTTAATAGTTCTAA LOC110261658 Sus scrofa

ATGCCCCGAATTCCAGATACCAAGGCCTTCCGAGC
TAAGGAGAAACTGACCTTTAGCCT

CH242-160D12 on
chromosome X Sus scrofa

1 The underline is the LTR nucleotide, and the italic is cellular nucleotide.
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Figure 4. PCR analysis of porcine cytochrome B mitochondrial genes in different tissues of the
kidney transplanted recipients for microchimerism determination. To determine the porcine
cell microchimerism, we detected porcine cytochrome B mitochondrial genes in tissue using PCR.
We confirmed the PCR product via electrophoresis.

4. Discussion

Xenotransplantation using porcine organs is becoming a realistic strategy for the prevention and
treatment of organ failure. Several clinical trials have been performed on islet transplantation for the
treatment of diabetes and ex vivo perfusion using pig spleen or liver. To our knowledge, while PERV
transmission has not been observed in preclinical and clinical xenotransplantation trials performed to
date, the risk remains to be established [37].
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To prevent immunological rejection, humanized pigs were developed and immunosuppressive
drugs administered after transplantation [38]. The immunologically modified porcine organs are more
likely to produce more infectious PERV in humans or NHPs. A previous report by our group showed
PERV transmission from mice transplanted with mouse-adapted PERV-producing cells. In addition, the
frequency of PERV transmission was increased in CsA-treated mice transplanted with PERV-producing
murine cells, compared to PERV-producing porcine cells [21].

In the current study, transgenic porcine kidney and heart were transplanted into NHPs. Among
the heart transplant tissues, PERV was detected in transplanted pig hearts, but not in other organs of
NHP, indicating that PERV present in transplanted pig heart does not spread to other recipient tissues
through the blood. The observed lack of PERV suggests lower risk of viral transmission in the case of
heart xenografts.

Following kidney transplantation, PERV was detected in the donor kidney and ureter as expected.
However, PERV was identified in the bladder of NHPs. In addition, normalized to 18s rRNA, PERV
levels of each tissue were compared. PERV levels in the bladder were lower than those in the donor
kidney and ureter (Figure 2), and compared to the pig kidney and ureter, the bladder PERV copies/ µL
of NHPs were lower than those of the donors (Figure 3). In view of these results, we suggest that lower
levels of PERV gDNA and mRNA in the host bladder may be attributed to the transmission from donor
kidney and ureter. To establish PERV transmission into host NHPs, the PERV integration test was
conducted. We observed that the outer DNA sequence of PERV LTRs corresponded to the pig genome
(Table 3). The porcine cytochrome B mitochondrial gene was detected in NHP’s bladder. These results
suggest that porcine cells from donor pig tissue form microchimerism in the NHP bladder (Figure 4).
Similar to our results, there are reports that PERVs were detected in peripheral blood mononuclear
cell (PBMC) of NHPs after cardiac and renal xenotransplantation by cell microchimerism [39,40].
Our data show that despite the presence of PERV in the bladder, the virus was not integrated into NHP
chromosomes, indicating that PERV particles and pig cells are non-infective circulating urinary vessels.

However, one major concern is that NHPs (baboons, rhesus monkeys, cynomolgus macaques) lack
the specific PERV receptor, HuPAR1, that is fully functional in human cells, instead containing a variant
receptor, PAR1 (109Ser-Leu), which allows limited infection. Others have shown that PERV can infect
rhesus macaques but do not seem to replicate following infection [41]. Another potential issue is that
the short survival time after transplantation may affect PERV propagation after infection. Interestingly,
PERV-A/C adapted to human cells has been shown to infect NHP cells due to mutations in long-terminal
repeats that play important roles in viral replication [10,42]. Previous studies have reported that
humans or NHPs exposed to porcine tissues after xenotransplantation have no productive infection
in vivo [43–45]. The detection of PERV attributed to porcine cell microchimerism have reported no
evidence of viral replication in host cells [40]. Therefore, our data suggest that PERV detected in
NHP bladders were no evidence of productive infection. However, further studies are needed with
long-term follow-up observations to ensure continued identification of infection by variant PERV.

In conclusion, we detected no transmission of PERV in heart xenotransplant tissues while PERV-A,
B, and C were detected in the NHP bladder following kidney xenotransplantation. Encouragingly,
PERV did not integrate into the host chromosome following renal transplantation, supporting further
investigations in clinical trials. However, these results do not guarantee that PERV is not transmitted to
the host. Our pre-clinical studies on NHPs are expected to provide valuable data on PERV transmission
during xenotransplantation. All available methods should be used to effectively monitor PERVs and
extreme caution exercised at all stages of control. To attain a higher level of safety in xenotransplantation,
both extensive monitoring and inactivation of PERV are essential steps.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/9/801/s1.
Figure S1. Detection of PERV by PCR with type-specific primers from gDNA; Table S1. Primers used for detection
of PERV types.
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