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Protein localization in cells has been analyzed by fluorescent labeling using indirect
immunofluorescence and fluorescent protein tagging. However, the relationships
between the localization of different proteins had not been analyzed using artificial
intelligence. Here, we applied convolutional networks for the prediction of localization of
the cytoskeletal proteins from the localization of the other proteins. Lamellipodia are one
of the actin-dependent subcellular structures involved in cell migration and are mainly
generated by the Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous
protein 2 (WAVE2) and the membrane remodeling I-BAR domain protein IRSp53. Focal
adhesion is another actin-based structure that contains vinculin protein and promotes
lamellipodia formation and cell migration. In contrast, microtubules are not directly
related to actin filaments. The convolutional network was trained using images of actin
filaments paired with WAVE2, IRSp53, vinculin, and microtubules. The generated images
of WAVE2, IRSp53, and vinculin were highly similar to their real images. In contrast,
the microtubule images generated from actin filament images were inferior without
the generation of filamentous structures, suggesting that microscopic images of actin
filaments provide more information about actin-related protein localization. Collectively,
this study suggests that image translation by the convolutional network can predict the
localization of functionally related proteins, and the convolutional network might be used
to describe the relationships between the proteins by their localization.

Keywords: machine learning, Pix2pix, image conversion, WAVE2, lamellipodia

INTRODUCTION

Machine learning has achieved significant success in various fields, including the biomedical
fields (Moen et al., 2019). Machine learning has been used to classify cellular images (Brent and
Boucheron, 2018; Camacho et al., 2018; Moen et al., 2019). Among machine learning, convolutional
networks, including U-net, have been shown to segment biomedical images, including cellular
images (Ronneberger et al., 2015). After U-net, several applications of convolutional networks for
the analysis of cellular images have been reported. Using bright-field cell images, radiation-resistant
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cells were distinguished from parental cells by machine learning
(Toratani et al., 2018). Breast cancer cells treated with the
anti-cancer agent paclitaxel were also distinguished from non-
treated cells by machine learning (Kobayashi et al., 2017).
Furthermore, the direction of cell migration was predicted
using the sequences of cell images (Nishimoto et al., 2019).
These results demonstrated that machine learning could extract
information associated with cellular properties from images.

Machine learning has been applied not only in the
classifications mentioned above but also in protein localization.
For example, a method that is known as in silico labeling
reportedly generated a putative stained image of a specific
marker protein from bright-field cell images to identify the
nuclei, neural cells, and live cells (Christiansen et al., 2018).
Automatic segmentation of intracellular organelles such as the
Golgi apparatus and endoplasmic reticulum from bright-field cell
images was also achieved (Pärnamaa and Parts, 2017). However,
the translation of protein localization to the localization of
another protein has not been reported.

The generative adversarial network (GAN) is the method
derived from the U-net, where the probability distribution
model obtained through training with a number of paired
images generates hypothetical images (Goodfellow et al., 2014).
The GAN comprises two components: a generator and a
discriminator; thus, it can generate high-quality images by
competing between the generator and discriminator. Therefore,
GAN generates a more similar image of A from an image of
B than the U-net alone, after learning many paired images
of A and B. For example, the GAN can reportedly generate
an image of a “smiling” face from an image with a “non-
smiling” face by learning many paired images of non-smiling
and smiling faces (Sagawa and Hagiwara, 2018). Pix2pix is
one of the major implementations of GAN in image-to-image
translation problems (Isola et al., 2017). Pix2pix successfully
generated many kinds of paired images, including a map from
an aerial image, a color image from a black-and-white image, a
label to a street scene, a biomedical image like that from MRI
to the labels of the organs, and so on. In cell biology, pix2pix
has been used to label cellular membranes and nuclei using
images of their markers (Tsuda and Hotta, 2019), where label
generation was performed by training with the image pairs of the
labels indicating the membrane and nucleus (label images) and
their actual images.

However, as far as we know, no report has demonstrated
the application of convolutional networks including U-net
and pix2pix to the generation of an image showing the
cellular molecule localization at subcellular resolutions, i.e., the
generation of images showing the localization of a protein from
those of other proteins. We hypothesized that convolutional
networks of U-net and pix2pix could be used to generate, i.e.,
to predict protein localization, depending on the relationships
between the proteins.

Cells change their shapes based on the mitotic cycle,
surrounding environment, and various other situations by
altering the cytoskeleton, including actin filaments (Pollard and
Borisy, 2003; Gunning et al., 2015). In cells, actin filaments
further assemble into higher-order configurations, which are

primarily determined by Rho-family small GTPases, including
Cdc42, RhoA, and Rac1 (Hall, 1998; Takai et al., 2001). Among
them, Rac1 induces actin filament branching through WASP-
family verprolin homologous protein 2 (WAVE2) and the Arp2/3
complex (Bear et al., 1998; Machesky and Insall, 1998; Miki
et al., 1998; Suetsugu et al., 1999b, 2003). The activation of Rac1
induces conformational changes in WAVE2 in the regulatory
complex, consisting of Sra1/PIR121, WAVE2, Nap1, Abi1/2,
and HSPC300/BRICK, leading to the activation of the Arp2/3
complex within the branched actin filaments (Innocenti et al.,
2004; Suetsugu et al., 2006; Ismail et al., 2009; Chen et al.,
2010; Figure 1A). IRSp53 is also involved in lamellipodia
formation through WAVE2 (Miki et al., 2000; Suetsugu et al.,
2006). Vinculin is a protein at focal adhesions, which are
connected to actin filaments and promote lamellipodia formation
(Ziegler et al., 2006). Lamellipodia are regarded as essential
structures for cell migration, including cancer cell invasion
and metastasis (Takenawa and Suetsugu, 2007; Ridley, 2011).
Another cytoskeleton, the microtubule, is not directly related
to the actin cytoskeleton. In this study, we translated the
images of actin filaments of cells to those of WAVE2, IRSp53,
vinculin, and microtubules using convolutional networks; then,
we examined the quality of the translated images. The generated
images of WAVE2, IRSp53, and vinculin from actin filament
images were similar to the truth images, indicating that the
convolutional networks were able to predict the actin-related
protein localization from actin filament images. However, the
accuracy of translation was not at pixel resolution, which
is thought to be the target of future studies. In contrast,
the large filamentous structures of microtubules were not
accurately predicted, which might imply indirect connections
between actin filaments and microtubules. Collectively, this
study suggests that image translation by convolutional networks
can predict the localization of functionally related proteins,
and the convolutional networks might be used to describe the
relationships between the proteins by their localization.

RESULTS

Prediction of WAVE2 Localization From
Images of Actin Filaments
We used Swiss 3T3 cells because they form lamellipodia upon
the activation of Rac1 (Ridley et al., 1992). We introduced
a constitutively active Rac1 mutant into Swiss 3T3 cells to
induce lamellipodia. After chemical fixation, the cells were
stained with phalloidin and an anti-WAVE2 antibody to visualize
actin filaments and WAVE2, respectively. The fan-shaped actin
filament substructures at the cell periphery, which were assumed
to be lamellipodia, had WAVE2 (Figures 1B,C). However, not all
actin filaments have WAVE2.

For an initial test for the image translations from actin
filament images to WAVE2 images, the pairs of images of actin
filaments and WAVE2 were taken and used for the training of
the pix2pix conditional GAN model. The detailed methodology
is described in the Conditional GAN subsection of the “Materials
and Methods” section (Hiasa et al., 2019). The translation
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FIGURE 1 | Lamellipodia and WAVE2 localization in Swiss 3T3 cells. (A) Schematic illustration of the configuration of actin filaments and WAVE2 localization at
lamellipodia. Upon Rac1 activation, the WAVE2 in the protein complex is activated, leading to the activation of the Arp2/3 complex for branched actin filament
formation. IRSp53 cooperates with WAVE2 for its activation by Rac1 at the plasma membrane. (B) Input image of actin filaments in Swiss 3T3 cells expressing the
active form of Rac1. Actin filaments were stained by Rhodamine–phalloidin. Lamellipodia are fan-shaped structures formed at cell edges. (C) Actual WAVE2 image
co-immunostained with panel (B), showing accumulation at the edges of lamellipodia. (D) Progress of the WAVE2 image generation. Images are shown at every
2,500 iterations (1 epoch). The iteration number is shown in the images. Image generation starts with a gray image without any features. Scale bars, 10 µm.

performance was estimated by four-fold cross-validation, with
772 paired images of actin filaments and WAVE2. In each subset,
the training set comprised 579 images, of which 15% were used
as the validation set. No augmentation of the images of the Swiss
3T3 cells was performed. The remaining 193 images were used
as the test set. The number of iterations, which corresponded to
the epoch number for the training, was 200,000. This process was
repeated four times for four-fold cross-validation. As the number
of iterations increased, the similarity between the generated and
actual WAVE2 images increased (Figure 1D). The generated
WAVE2 final images were similar to those obtained using
antibody staining.

Figure 2 presents examples of the generated WAVE2
images, which also show the true actin filaments and true
WAVE2 at lamellipodia, microspikes, cellular protrusions, and
cell-cell adhesions. WAVE2 showed prominent localization at
lamellipodia, and WAVE2 localization was clearly generated at

the edge of the cells by the trained pix2pix model (Figures 2A–
C). Regardless of the size of the lamellipodia, the pix2pix
model predicted the localization of WAVE2 (Figures 2A–C).
WAVE2 was not only localized in lamellipodia but also in other
subcellular structures of actin filaments, including the tips of
microspikes or filopodia within the lamellipodia (Figure 2A;
Nakagawa et al., 2003; Nozumi et al., 2003). The dashed square
in Figure 2A indicates that the pix2pix model could predict
WAVE2 localization at the microspike structures in lamellipodia.
Interestingly, the solid square in Figure 2A indicates that the
protrusions outside of the lamellipodia were also predicted
to have WAVE2 and indeed had real WAVE2. WAVE2 also
reportedly functions at the cell-cell junctions (Yamazaki et al.,
2007; Nishimura et al., 2016). The two cells were in contact
with each other, with WAVE2 localization at the contact sites
(Figure 2D). WAVE2 localization was clearly generated between
the cell-cell contacts (Figure 2D). In each image, the overall
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predicted WAVE2 localization by pix2pix appeared to be quite
similar to the real WAVE2 localization detected by antibody
staining. Together, these facts suggested that pix2pix could
predict the localization of WAVE2 not only in the lamellipodia
but also in other cellular structures from actin filament images.

Performance of the Prediction of WAVE2
Localization
We evaluated the prediction accuracy of each pixel. The absolute
error in Figures 2A–D is the difference between the generated
and true WAVE2 in each pixel, which at lamellipodia was higher
than that of the background (Figures 2A–D). Another estimation
of accuracy was based on the robustness of the prediction.
The uncertainty of such translation was successfully estimated
using Bayesian convolutional neural networks (Bayesian CNNs),
based on the U-net architecture combined with the Monte Carlo
dropout of the network layers (Hiasa et al., 2019). The dropout
(removal) of the network layers results in different outputs;
however, the high probability output contains less dependency on
the alterations of the network layers, resulting in less uncertainty
in the output. The uncertainty in the predictions of WAVE2
localization was also high in the lamellipodia (Figures 2A–D).

Despite the recognizable similarity, the errors were higher for
the pixels of WAVE2 localization. These higher absolute errors
and uncertainty at the pixels of WAVE2 localization compared to
those at the background appeared to suggest that the intensity of
WAVE2 localization was not predicted in the absolute values at
a pixel resolution; instead, the prediction was more qualitative,
reflecting the context of actin filaments for WAVE2 localization.
Therefore, the absolute error would be caused by the aleatoric
uncertainty from the randomness of the measurements rather
than the epistemic uncertainty of the prediction.

Then, the overall image prediction was summarized by the
mean absolute error (MAE) between the generated and truth
WAVE2 images. MAE is the mean absolute difference in pixel
values, which is related to the absolute errors in each image.
Therefore, a smaller MAE indicates a higher similarity between
the two images. We also employed another estimation, the
structural similarity index measurement (SSIM). SSIM is based
on the variance in the pixel values, and the multi-scale SSIM
(MS-SSIM) uses SSIM of various scales, i.e., image resolution,
to synthesize the similarity at various scales (Wang et al., 2003).
A higher MS-SSIM indicates greater similarity in perceived
quality. The MAE between the generated and truth images was
statistically lower, and the MS-SSIM between the generated and
truth images was statistically higher than those between the
true actin filament (input) and true WAVE2 images, indicating
that the pix2pix generated more similar images to the truth
images than to the input images (Figures 2E,F). The MAE
and MS-SSIM between WAVE2 images and random noise were
significantly inferior to those between the generated and true
WAVE2 images, indicating the validity of these estimations
(Supplementary Figure 1).

During training, the MAE and MS-SSIM values were
progressively improved by increasing the number of iterations
(Supplementary Figure 2). At 0–25,000 iterations, the actin

filamentous structures of the input images were still strongly
reflected in the generated WAVE2 images (Figure 1D). These
filamentous structures disappeared after 100,000 iterations
(Figure 1D). Evaluations with MAE and MS-SSIM showed that
they gradually improved as the iteration numbers increased,
although no significant difference was observed between the
MS-SSIM at 100,000 and 200,000 iterations (Supplementary
Figure 2), suggesting that these values were not suitable for
the evaluation of the recognizable image quality. Overall, these
results suggested that pix2pix successfully produced WAVE2
images that were similar to true WAVE2 images compared to
the input actin filament images, although the accuracy was not
at pixel resolution.

Subsequently, we analyzed the performance of WAVE2
localization prediction at the subcellular level, which was the
intermediate between the pixel and the whole image levels, as
described above. The SSIM was calculated for each 11 × 11-
pixel window to generate the SSIM map, and the representative
analysis corresponding to Figure 2C is shown in Figure 2G.
Then, the images of the ground truth were manually annotated
using Labelme (Russell et al., 2008), which is a software used
to assist in the extraction of the coordinates of the manually
determined region of interest as polygons, saving the lamellipodia
region information by the human eye (Figure 2G). The SSIM
of these manually annotated lamellipodia and cell-cell adhesions
was compared with the SSIM in the other cellular regions
(Figure 2H). The average SSIMs of lamellipodia and cell-cell
adhesion sites were higher than the average SSIMs in the non-
lamellipodia regions (Figure 2H), suggesting that the GAN
generated images based on meaningful localizations.

Comparison With U-Net
Pix2pix has two components: a generator and a discriminator.
The generator is similar to an original U-net (Ronneberger et al.,
2015). To examine the contribution of the discriminator in GAN
for image generation by pix2pix, we trained the model with a
generator alone, i.e., only a U-net structure. The condition is
the same as described above, except that the contribution of
the discriminator to be none. The U-net-only model generated
a blurry image compared to those by pix2pix (Supplementary
Figure 3A). However, WAVE2 at the leading edge was predicted
using the U-net-only model. Therefore, the U-net-only model
was able to predict WAVE2 localization in lamellipodia. The
difference between the U-net-only model and pix2pix appeared
to be the dot-like localization of WAVE2 inside the cell, which
was the blurred localization of WAVE2 in the U-net-only model.
Importantly, the prediction of dot-like localization of WAVE2
was not accurate at pixel resolution, as described for Figure 2. In
addition, the generated WAVE2 localization by the U-net-only
model inside the cells was partially filamentous, reflecting the
localization of actin filaments in the input images.

The images obtained using the U-net-only model and pix2pix
were evaluated using MAE and MS-SSIM (Supplementary
Figures 3B,C). The U-net only model showed higher
performance than the pix2pix model in MS-SSIM values,
which would be the result of the inaccurate prediction of the
dot-like localization of WAVE2 by pix2pix. Therefore, to estimate
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FIGURE 2 | Generation of WAVE2 images from actin filaments in Swiss 3T3 cells. (A) Generation of a WAVE2 image by pix2pix from an actin filament image. The
cells were stained with phalloidin for actin filaments and with an anti-WAVE2 antibody after fixation and permeabilization. An input image (actin filament image), an
output image (generated WAVE2 image), a ground truth image (WAVE2 immunostained image), an absolute error image, and an uncertainty image are shown. The
microspikes in the lamellipodia are marked with dashed squares, and the protrusions outside of the lamellipodia are marked with solid squares. Absolute error
represents the difference in WAVE2 values in each pixel. Uncertainty in image generation represents the fluctuation of WAVE2 values based on various “dropouts” in
convolutional neural networks, i.e., the robustness of the generation in each pixel. With higher values of absolute errors and uncertainty, the color of the heat map
becomes closer to red. The merged image of actin filament, WAVE2 (generated), and WAVE2 (truth) was also shown to visualize the co-localization. Scale bar,
10 µm. (B,C) Generation of WAVE2 images of cells with various sizes of lamellipodia, as shown in panel (A). Scale bars, 10 µm. (D) Generation of a WAVE2 image
of cells that formed a cell-cell adhesion marked by a rectangle. Scale bar, 10 µm. (E) Box plot of the mean absolute error (MAE) between the generated and actual
WAVE2 images, as well as between images of actin filaments (input) and actual WAVE2 as a reference. Quantification was performed for all images with four-fold
cross-validation (n = 772). The mean values are shown at the bottom. (F) Box plot of the multi-scale structural similarity index measure (MS-SSIM) value between the
generated and actual WAVE2 images, as well as between images of actin filaments and actual WAVE2 as a reference. Quantification was performed for all images
with four-fold cross-validation (n = 772). The data points represent the MS-SSIM values for the generated images in panels (A–D). The mean values are shown at the
bottom. In panels (E,F), the yellow, red, blue, and green circles indicate the values for images in panels (A–D), respectively. (G) Representative SSIM map
corresponding to the image in panel (C), showing the structural similarity at each 11 × 11 pixel window. Regions of lamellipodia are marked with polygons. (H) Box
plot of the SSIM values from 1,926 pairs of lamellipodia, cell-cell adhesions, and other cellular regions. Statistical significance is shown by p < 0.05 by two-sample
equal variance two-tailed Student’s t-test.

the complexity of the generated image, we compared the entropy
of the label image, the image generated by pix2pix, and the image
generated by the U-net-only model (Supplementary Figure 3D).

The entropy showed that the generated image of the pix2pix
model was closer to the label image than the generated image of
the U-net-only model. Therefore, we thought that the U-net-only
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model did not express the complexity of the original WAVE2
stained image, but pix2pox did not generate accurate WAVE2
localization at pixel resolution.

Application to the Localization of Actin
Filaments by Lifeact and to That of
IRSp53
To examine the generalization of this method, we trained the
pix2pix model using the images of glioma U251 cells for another
regulator of WAVE2, IRSp53 (Miki et al., 2000; Suetsugu et al.,
2006). IRSp53-knockout U251 cells were prepared, and IRSp53
expression was restored by stable expression of GFP-IRSp53. The
cells were then further stably labeled with a lifeact tagged with
mCherry (lifeact-mCherry) to visualize actin filaments (Riedl
et al., 2008). These U251 cells were cultured in serum and fixed
for the observation of lamellipodia without forced activation of
Rac1. WAVE2 localization was identified using antibody staining.
The images of the actin filaments by lifeact, IRSp53 by GFP, and
WAVE2 by antibody staining were similar in lamellipodia but
not identical in the other regions of the cells. These images were
subjected to the machine learning for image translation using
pix2pix. We attempted to translate the images of actin filaments
(lifeact) to WAVE2, actin filaments to IRSp53, and IRSp53 to
WAVE2. Translation performance was estimated using four-fold
cross-validation. In total, 100 images were obtained, and 75 were
subjected to training. The 75 images were augmented seven-fold
by rotations at 90◦ steps and vertical and horizontal flipping,
resulting in a training dataset composed of 525 images, of which
15% were used as the validation set. The remaining 25 images
were used as the test set. The results showed that a lifeact image
could produce images of WAVE2 and IRSp53 (Figures 3A,B).
Furthermore, pix2pix translated the IRSp53 images into WAVE2
images (Figure 3C). WAVE2 and IRSp53 were well co-localized
at lamellipodia but were not well co-localized in the other regions
of the cells. The prediction of lamellipodia localization of these
proteins, as well as the localization at the cytosol, was regarded
as having good quality, because the MAE values between the
truth and generated images were lower than the MAE values
between the input and truth images (Figure 3D), and because
the MS-SSIM values between the generated and truth images
were higher than those between the input and truth images
(Figure 3E). However, the staining around the nucleus appeared
to be predicted with less accuracy than that at the cell periphery
(Figures 3A,B), which might indicate the lesser relationships of
these proteins in the nucleus.

We observed the lifeact-mCherry in live cells to identify
lamellipodia at the leading edge (Figure 3F). The cells were
then fixed, permeabilized, and stained for WAVE2 localization.
Permeabilization slightly altered the lifeact images because
the free lifeact in the cytosol was probably removed by
permeabilization. The active lamellipodia region was stained with
WAVE2, and the actin filament images for these lamellipodia
were able to generate the WAVE2 image by using the
trained model as described above (Figure 3G). From these
results, we concluded that pix2pix could specifically predict
WAVE2 localization at the leading edge of lamellipodia under
different conditions.

Application to Vinculin and Tubulin
Localizations
Focal adhesions, which contain vinculin protein, are known
to promote lamellipodia formation. To examine whether GAN
could be applied to other molecules that are related to
lamellipodia, we trained the model between actin filaments and
vinculin staining. The translation performance of the model,
trained by 100-paired actin filament and vinculin images of
U251 cells, was estimated by four-fold cross-validation as for the
IRSp53 and WAVE2 analysis. Pix2pix succeeded in generating
vinculin images from the actin filament images (Figure 4A). The
prediction of vinculin was regarded as having good quality, as
judged by the MAE and MS-SSIM values (Figures 4B,C), as well
as by human eye recognition.

To examine whether GAN could be applied to other molecules
that are not strongly related to actin filaments, we trained the
model between actin filaments and tubulin staining of U251 cells
as was performed for the IRSp53, WAVE2, and vinculin analyses.
The trained pix2pix model generated a tubulin-like image
from the actin filament images (Figures 4D–F). However, the
generated images did not reflect the features of filamentous and
radial tubulin distribution (Figures 4D–F). On the other hand,
the MAE and MS-SSIM values indicated a good quality of image
translation, and the generated tubulin images were apparently
closer to the tubulin images than the actin images. Therefore,
the MAE and MS-SSIM might not reflect cell-wide features, such
as filamentous radial localization. Then, we tested the salience
score, showing the local symmetry of the images (Rezanejad
et al., 2019; Wilder et al., 2019). The generated tubulin images
had a smaller score than the truth tubulin images (Figure 4G).
However, further development of the index for evaluating the
similarity between images would be required in the future.

DISCUSSION

In this study, we predicted the subcellular localization of
WAVE2, IRSp53, and vinculin, which were established regulators
of lamellipodia, using convolutional networks. The generated
images had striking similarities to the truth images, although, at
this moment, the generated images did not have accuracy at pixel
resolution, which would be in future development. Therefore,
the prediction of these localizations by image translation was
suggested to be used for global estimation of protein localization,
which would include an annotation of lamellipodia by protein
localization among actin cytoskeletal structures. Experts in the
field will easily distinguish lamellipodial actin filaments from
non-lamellipodial ones, but sometimes lamellipodia are not
obvious to the untrained eyes. Furthermore, this method can be
used to label lamellipodia in live cells to quantify the degree of
lamellipodia formation if the computation speed is sufficient.

The prediction of WAVE2 localization was independent of
lamellipodia size (Figure 2). This independence could be related
to the kernel size required for the computation. The kernel size of
the algorithm, which used the four-pixel window, was equivalent
to ∼1.9 µm2. The features of actin filaments in lamellipodia,
i.e., branched filaments, were thought to be within this window.
Thus, various sizes of lamellipodia could be predicted for WAVE2
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FIGURE 3 | Generation of WAVE2 and IRSp53 images from actin filaments and WAVE2 images in IRSp53-expressing U251 cells. (A) Generation of a WAVE2 image
from an actin filament image that was visualized by lifeact-mCherry. The IRSp53-knocked-out U251 cells re-expressing GFP-tagged IRSp53 and lifeact-mCherry
were stained with an anti-WAVE2 antibody after fixation and permeabilization. The results are depicted as in Figure 2A. Scale bar, 10 µm. (B) Generation of an
IRSp53 image from an actin filament-stained image. Scale bar, 10 µm. (C) Image generation into a WAVE2 image from an IRSp53-stained image. Scale bar, 10 µm.
(D) Box plot of the MAE of the entire images in four-fold cross-validation (n = 100). (E) Box plot of the MS-SSIM of the entire images in four-fold cross-validation
(n = 100). The data points represent the MS-SSIM values for the generated images in panels (A–C). In panels (D,E), the yellow circles indicate the values for images
in panels (A–C). Statistical significance is shown by p < 0.05 (*) by two-sample equal variance two-tailed Student’s t-test. (F) Lamellipodia structures (arrows)
observed in the live imaging of lifeact-mCherry. Scale bar, 10 µm. (G) Generation of a WAVE2 image from a lifeact-mCherry image. The cells observed in panel (F)
were fixed, permeabilized, and immunostained for WAVE2 (truth). The arrows indicate lamellipodia. Scale bar, 10 µm.

localization. Vinculin and IRSp53 localizations were also thought
to be predictable with such features of actin filaments in a four-
pixel window.

Thus, the continuous features above this size are supposed to
be difficult to be predicted. We attempted to predict microtubule
localization from actin filament localization; however, the

predicted localization of microtubules was not filamentous. These
non-continuous filaments might arise from the kernel size.
Alternatively, microtubules were not directly linked to actin
filaments, in contrast to the regulators of actin filaments such as
WAVE2, IRSp53, and vinculin, resulting in inaccurate prediction
because of the potential shortage of information related to
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FIGURE 4 | Generation of vinculin and tubulin images in U251 cells. (A) Generation of a vinculin image from an actin filament-stained image. U251 cells were stained
with phalloidin for actin filaments and with an anti-vinculin antibody after fixation and permeabilization. The results are depicted as in Figure 2A. Scale bar, 10 µm.
(B) Box plot of the MAE of entire images in four-fold cross-validation for panel (A) (n = 100). (C) Box plot of the SSIM of entire images in four-fold cross-validation for
panel (A) (n = 100). The data point represents the MS-SSIM values for the generated images in panel (A). (D) Generation of a tubulin image from an actin
filament-stained image. U251 cells were stained with phalloidin for actin filaments and with an anti-α-tubulin antibody after fixation and permeabilization. The results
are depicted as in Figure 2A. Scale bar, 10 µm. (E) Box plot of the MAE of entire images in four-fold cross-validation for panel (D) (n = 100). (F) Box plot of the SSIM
of entire images in four-fold cross-validation for panel (D) (n = 100). The data point represents the MS-SSIM values for the generated images in panel (D). (G) Box
plot of the salience score of entire images in four-fold cross-validation for panel (D) (n = 100). In panels (B,C,E–G), the yellow circles indicate the values for images in
panels (A,D). Statistical significance is shown by p < 0.05 by two-sample equal variance two-tailed Student’s t-test.

microtubules. Nevertheless, it should be noted that the image
comparison statistics, MAE and MS-SSIM, suggested that the
generated tubulin images were more similar to the truth tubulin
images than to the actin filament images.

If the difference between the experimental and predicted
images resulted from the mutually independent localization and
function, then the convolutional network might be used as a
tool to discover a localization and a function that could be

independent of each other. The possible failure of the prediction
of the nuclear staining of WAVE2 in U251 cells might indeed
suggest the actin filament-independent function of WAVE2
(Figure 3), as the nuclear localization of WAVE1 has been
reported (Miyamoto and Gurdon, 2013). However, the nuclear
staining of WAVE2 might represent non-specific staining, which
was also thought to be independent of actin filaments. Such
nuclear staining of WAVE2 was not observed in Swiss 3T3 cells
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(Figure 2), which might imply both that nuclear WAVE2 in
U251 cells could be a result of non-specific staining and that
the nuclear function of WAVE2 might differ between U251 and
Swiss 3T3 cells. In both cases, the prediction was thought to
require training depending on the cell types and might reflect the
specific observation of the cells. In addition, these inconsistencies
in WAVE2 localization between the generated and truth images
might be due to insufficient learning and randomness in
experimental errors. Therefore, further investigations, especially
the development of statistics that could evaluate such image
features, would be required to explore further the idea that the
difference between the predicted and truth images results from
the functional independence of the observed pair of molecules.

With the development of statistics for image comparison, as
well as the refinement of the prediction into pixel resolutions
as well as into cell-wide features that were seen in tubulin
images, the prediction of protein localization could have
great potential for understanding the relationships between
proteins and molecules. Furthermore, the prediction of molecule
localization was also considered as artificial staining of cells.
Labeling with antibodies was normally limited to several proteins.
In contrast, artificial staining could predict an unlimited number
of protein localizations from single staining, which would be
useful for detecting the relationships between many molecules
after future development.

MATERIALS AND METHODS

Cell Culture
Plat-E, Swiss 3T3, and U251 cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Nacalai Tesque, 08459-64),
supplemented with 10% fetal calf serum (FCS) and penicillin-
streptomycin (PS) (DMEM-10% FCS/PS) at 37◦C in a 5% CO2
incubator. Plat-E, Swiss 3T3, and A549 cells were passaged every
4, 3, and 2 days, respectively.

Retrovirus-Mediated Gene Transfer
Swiss 3T3 cells were transfected with the pMX-Myc-Rac1-CA
vector (Suetsugu et al., 1999a). First, Plat-E cells were cultured
overnight in a 12-well plate in DMEM containing 10% FCS/PS.
For transfection, 100 µL of Opti-MEM with 1.6 µg of vector
and 100 µL of Opti-MEM with 1 µL of 293 fectin transfection
reagents (Thermo Fisher) were mixed, allowed to form a complex
at room temperature for 20 min, and then added to the Plat-E
cells in 0.8 ml medium (Kitamura et al., 2003). After 48 h, the
culture supernatant was filtered using a 0.22 µm filter and added
to the cells in 1.2 ml medium with polybrene at a concentration of
8 µg/mL. After 24 h, the medium was replaced with fresh DMEM
containing 10% FCS/PS. After an additional 24 h, the cells were
replated on a 24-well plate containing a coverslip (Matsunami)
and cultured for another 48 h.

The IRSp53-knockout U251 cell line expressing GFP-IRSp53
was established using CRISPR/Cas9-mediated genome editing.
The guide RNA targeting the second exon (29th amino-
acid residue) of IRSp53 (CCATGGCGATGAAGTTCCGG) was
designed using the server http://crispr.mit.edu (Hsu et al., 2013)

and inserted into the pX330 vector, which was transfected into
the cells and then cloned (Mashiko et al., 2013). The expression
of GFP-IRSp53 and lifeact-mCherry was performed using the
retrovirus as described above, and then clones were isolated using
a fluorescence-activated cell sorter.

Immunofluorescent Staining of Swiss
3T3 and U251 Cells
The cells were fixed with 4% paraformaldehyde in PBS for 20 min
at room temperature. Subsequently, the cells were permeabilized
with 0.5% Triton X-100 in PBS for 20 min at room temperature
with gentle shaking. Then, the cells were washed with 0.1% Triton
X-100 in PBS (PBS-T). Next, PBS containing 3% bovine serum
albumin and 10% goat serum was added to block the cells for 1 h
with gentle shaking. The cells were then washed with PBS-T. The
primary antibody, rabbit anti-WAVE2 antibody (Cell Signaling, #
3659S), mouse anti-vinculin (SIGMA, V 9131), and mouse anti-
alpha-tubulin (SIGMA, clone DM1A) was diluted 100-, 200-,
and 500-fold, respectively, in the blocking solution, incubated
for 1 h with gentle shaking, and then washed three times with
PBS-T. The secondary antibody, Alexa Fluor 488-goat anti-
rabbit or mouse IgG antibody (highly cross-absorbed, Thermo
Fisher) diluted 400-fold, and rhodamine-phalloidin (Thermo
Fisher) for actin filament detection, diluted 1,000-fold in the
blocking solution, were added and then incubated for 1 h with
gentle shaking in the dark. The cells were then washed with
PBS-T and mounted on a glass slide, using Prolong Diamond
Antifade Mountant with DAPI (Thermo Fisher), allowed to
solidify at room temperature overnight, and then stored at
4◦C. Swiss 3T3 cells were observed using an IX81 fluorescence
microscope (OLYMPUS) with W-View Gemini (Hamamatsu
Photonics). U251 cells were observed using an FV1000 confocal
microscope (Olympus).

Conditional GANs
The purpose of this study was to determine the conditional
distribution of WAVE2 based on actin filaments. The
pix2pix conditional GAN (Isola et al., 2017) allows the patch
discriminator to capture the Markov property of the image as
an adversarial loss, allowing the transformed image to maintain
high spatial frequencies. The formula for this adversarial learning
is as follows:

Ĝ = arg min
G

max
D

LGAN (G, D)+ λLL1 (G) , (1)

where a generator G translates images of actin filaments x to
WAVE2 images y, which are trained to translate images of actin
filaments that a discriminator D cannot distinguish from the
“real” WAVE2 images by antibody staining, as follows:

LGAN (G, D) = Ex,y∼pdata(x,y)
[
log D

(
x, y

)]
+ Ex∼pdata(x), z∼pz(z)

[
log(1− D (x, G (x, z))

]
. (2)

In addition to the adversarial loss, the conditional
loss, which is the similarity between the
“fake” and “real” WAVE2 images, is introduced as follows:
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LL1 (G) = Ex,y∼pdata(x,y), z∼pz(z)
[
||y− G(x, z)||1

]
, (3)

where z denotes the random noise.
We primarily followed this framework and extended the

generator and discriminator networks. Here, the generator was
replaced with a Bayesian U-Net (Hiasa et al., 2019) for the
uncertainty estimation. Spectral normalization (Miyato et al.,
2018) was applied to the patch discriminator to stabilize the
optimization. In the inference phase, the predictive distribution
is expressed as

µ[y] = Ez∼pz G (x, z) , var
[
y
]
= Ez∼pz

(
G (x, z)− ŷ

)
, (4)

where µ and var denote the mean and variance, respectively.
WAVE2 and actin filament images were downscaled to

256 × 256 pixels and normalized such that the intensities of
the 1st and 99th percentiles were mapped to [−1, 1]. Data
augmentation was applied based on spatial transforms, including
the translation of [−10, +10]% of the image size, rotation of
[−10, +10]◦, scale of [−10, +10]%, shear transformation with a
shear angle of [−π/16,+π/16] rad, and flipping in the horizontal
and vertical directions. The kernel size was 4 pixels, that is,
∼1.9 µm2. The codes that were used, including the details of each
network and training manner, are available at https://github.com/
yuta-hi/bayesian_unet.

Estimation of Errors
The results were evaluated based on the MAE and SSIM. The
MAE shows the absolute error in the brightness value of each
pixel and is expressed as

MAE
(
fi, yi

)
=

1
n

n∑
k−1

∣∣fi − yi
∣∣ , (5)

where fi and yi denote the true and predicted values, respectively.
The SSIM indicates the similarity of the average, variance,

and covariance of the surrounding pixels in terms of brightness,
contrast, and structure. Thus, it is an index that incorporates
the correlation not only with individual pixels but also with the
surrounding pixels. The SSIM is expressed as

SSIM
(
x, y

)
=

(
2µxµy + C1

) (
2σxy + C2

)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

, (6)

where x and y are the ground truth (WAVE2) and predicted
images, respectively, µ is the average pixel value, σ is the standard
deviation of the pixel value, σxy is the covariance between x and
y, C1 = (0.01× L2), C2 = (0.03× L2), and L is the dynamic range
of the images (Wang et al., 2004). We used 8-bit images; hence,
L = 255.

Multi-scale SSIM was calculated by the SSIM at five scales,
which were down sampling of images by a factor of two with each
scaling.

MS- SSIM(x, y) = [lM(x, y)]αM

M∏
J=1

[cJ(x, y)]βj [sj(x, y)]γj , (7)

where M is the number of down sampling, α, β, and γ are equal
values in each scale, and β1 = γ1 = 0.0448, β2 = γ2 = 0.2856,
β3 = γ3 = 0.3001, β4 = γ4 = 0.2363, α5 = β5 = γ5 = 01333,
which is derived from the Gaussian distribution with the
assumption that the medium resolution is suitable for recognition
(Wang et al., 2003).

Random noise images were obtained from the label image by
random shuffling of each pixel.

The lamellipodia regions were manually annotated for SSIM
calculations using Labelme (Russell et al., 2008)1 to extract the
SSIM values at the lamellipodia.

Entropy represents the complexity of images. The entropy is
expressed as

H =−
∑

pilog2pi, (8)

where pi is the probability of appearance of a particular pixel
value, which is introduced as follows:

pi=
Ni

N
, (9)

where N is the number of total pixels, and Ni is the number of
particular pixel values.

The salience score was calculated using the local symmetry
of the images (Rezanejad et al., 2019; Wilder et al., 2019). The
contour for the salience score was generated by the banalization
of the images, with a threshold level of 0.25, because the
average threshold for binarization by the Otsu method was
approximately 0.25.

Statistical significance is shown by p < 0.05 by two-sample
equal variance two-tailed Student’s t-test.
1 https://github.com/wkentaro/Labelme
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Supplementary Figure 1 | The MAE and MS-SSIM to random noise. (A) True
and the generated WAVE2 images as in Figure 2 and the random noise image
that was generated by shuffling the true WAVE2 image. (B) Box plot of the MAE of

entire images for panel (A) (n = 772). (C) Box plot of the MS-SSIM of entire images
for panel (A) (n = 772).

Supplementary Figure 2 | The progress of image generation per iterations. (A)
Box plot of the MAE of entire images in four-fold cross-validation for Figure 1D
(n = 772). (B) Box plot of the MS-SSIM of entire images in four-fold
cross-validation for Figure 1D (n = 772). Statistical significance is shown by
p < 0.05 (*) by two-sample equal variance two-tailed Student’s t-test.

Supplementary Figure 3 | The comparison between pix2pix and U-net. (A)
Generation of a WAVE2 image by pix2pix model and U-net only model from an
actin filament image. An input image (actin filament image), a ground truth image
(WAVE2 immunostained image), a pix2pix output image, and a U-net only model
output image. Scale bar, 10 µm. (B) Box plot of the MAE of entire images in
four-fold cross-validation for panel (A) (n = 772). (C) Box plot of the MS-SSIM of
entire images in four-fold cross-validation for panel (A) (n = 772). (D) Box plot of
the entropy of entire images in four-fold cross-validation for panel (A) (n = 772).
Statistical significance is shown by p < 0.05 by two-sample equal variance
two-tailed Student’s t-test.
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