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Ovarian cancer (OV) has become the most lethal gynecological cancer. However, its
treatment methods and staging system are far from ideal. In the present study, taking the
advantage of large-scale public cohorts, we extracted a list of immune-related prognostic
genes that differentially expressed in tumor and normal ovarian tissues. Importantly, an
individualized immune-related gene based prognostic model (IPM) for OV patients were
developed. Furthermore, we validated our IPM in Gene Expression Omnibus (GEO)
repository and compared the immune landscape and pathways between high-risk and
low-risk groups. The results of our study can serve as an important model to identify the
immune subset of patients and has potential for use in immune therapeutic selection and
patient management.
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INTRODUCTION

With patients often diagnosing at an advanced stage, Ovarian Cancer (OV) has become the most
lethal gynecological cancer (1). Patients with OV may have no symptoms or mild symptoms until
the cancer is in its advanced stages (1), which then responds poorly to treatment. According to the
International Federation of Gynecology and Obstetrics (FIGO) staging system, treatments for OV
patients usually include debulking surgery and adjuvant or neoadjuvant chemotherapy. However,
even if patients have similar clinical characteristics and the same stage, clinical outcome of them
may vary (2), so FIGO staging system currently used is far from ideal. As a result of the molecular
heterogeneity, a large amount of OV patients develop metastases and relapses earlier than other
patients. Gene expression of biomarkers in tumor tissues has been proved to be reliably related to
clinical outcome (3, 4). Hence, in the context of additional clinical therapy, it is vital to identify the
subcategory of patients with poor survival outcomes and higher mortality. In ovarian cancer, it is of
primary importance to recognize a more comprehensive prognostic signature that includes the
biological context. To do so, extensive databases of the biological characteristics and accessibility of
all-encompassing public cohorts with data on their gene expression have been established.
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Current first-line treatments for OV involve debulking surgery
followed by chemotherapy and target therapy. Even though this
initial therapy shows a better curative effect to more than 80% of
patients, chemotherapy resistance will appear when most patients
relapse (5). Also, the emergence of immunotherapy for the
treatment of ovarian cancer has led to the rise of the most
promising methodologies and options. The association of the
abundance of tumor infiltrating cells (TIICs) with higher levels of
survival for OV patients (6–8), remains evident. In light of this,
immunotherapies possess crucial importance in enhancing cancer
outcomes, which are also applicable to OV. Algorithms (9, 10) have
been designed to predict the infiltration of TIICs. For instance, an
algorithm named ESTIMATE (Estimation of STromal and Immune
cells in MAlignant Tumor tissues using Expression data) (9), which
develop by Yoshihara et al, could predict the infiltration of immune
cells and stromal cells by calculating immune scores and stromal
scores based on gene expression data from TCGA database. Many
previous study have applied the algorithm to various types of
cancer, such as breast cancer (11), colon cancer (12), gastric
cancer (13) and brain cancer (14). Thus, the effectiveness of such
big-data based algorithms has already been shown, although the
utility on OV has not been studied in detail.

In the present study, taking the advantage of large-scale public
cohorts, we extracted a list of immune-related prognostic genes
that differentially expressed in tumor and normal ovarian tissues.
Importantly, an individualized immune-related gene based
prognostic model for OV patients was developed. Furthermore,
we validated our immune prognostic model (IPM) in Gene
Expression Omnibus (GEO) repository and compared the
immune landscape and pathways between high-risk and low-
risk groups. The results of our study can serve as an important
model to identify the immune subset of patients and has potential
for use in immune therapeutic selection and patient management.
METHODS AND MATERIALS

Data Acquisition
388 gene expression profiling and the corresponding clinical
information were downloaded from the Cancer Genome Atlas
(TCGA) data portal (https://tcga-data.nci.nih.gov/tcga/) (up to
July 10, 2019) (15). The gene expression profile matrix files and
clinical information from GSE9891 based on platform
Affymetrix Human Genome U133 Plus 2.0 Array (containing
285 OV samples) were obtained from Gene Expression Omnibus
(GEO) repository (16). In addition, we downloaded the gene
expression profiling of 88 normal ovarian tissues from the
Genotype-Tissue Expression (GTEx) project, which used for
comparing with tumor tissues (17). The next processing
excluded cases lacking important clinical feature, such as age,
stage, and overall survival. Finally, 374 samples from TCGA-OV
and 275 samples from GSE9891 were retained for further study.
Upon the discovery of data duplication, we utilized the average
value of the RNA expression. We generated the data according to
the policies of GEO and TCGA on their data accessibility and
based our analyses on existing regulations and protocols.
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Recognition of Differentially Expressed
Genes (DEGs)
We performed differentially expression analysis between high and
low immune score groups (|log2 FC| > 1.8 and FDR<0.05), tumor
and normal tissues (|log2 FC| > 1 and FDR<0.05). Package limma
(18) was used to perform differentially expression analysis.

Functional Enrichment Analysis
To analyze the DEGs we identified, we utilized the v 6.8 of the
Database for Annotation, Visualization and Integrated Discovery
(DAVID). Moreover, we also used an enrichment analysis known
as gene ontology (GO) to verify the cellular components, signaling
pathways, biological processes, and molecular functions that are
linked to these differentially expressed genes (19). Our statistical
significance level was set at a p-value of <0.05.

Evaluation of Immune Infiltration Level
CIBERSORT algorithm was used to evaluate the proportion of
tumor-infiltrating lymphocytes. CIBERSORT (20) is a widely
accepted computing method to analyze immunological
characteristics based on a gene expression signature matrix
containing hundreds of marker genes. We downloaded a gene
signature matrix with interpretation, known as the LM22, from
the webpage of CIBERSORT (http://cibersort.stanford.edu/),
which outlined 22 subtypes of immune cells. These cells are
comprised of activated and resting dendritic cells, activated and
resting NK cells, and activated and resting mast cells. Additionally,
the 22 subtypes also include neutrophils and eosinophils, naive
and memory B cells, plasma cells, seven kinds of T cells, M0-M2
macrophages, and monocytes. For every sample file, we accounted
for the root mean squared error and p-value of the CIBERSORT to
enhance the deconvolution algorithm’s accuracy. The number of
permutations that the algorithm utilized under standard signature
matrix was 100. For the succeeding analysis, we specifically chose
and filtered data that had a CIBERSORT p-value<0.05.
Additionally, using the algorithm of the CIBERSORT, we
analyzed the immune cell fractions of the samples we generated
fromGEO and TCGA cohorts. The gene expression data across 32
different kinds of cancer from TCGA is comprised of 10,897
samples. TIMER conducts another set of analysis to compute the
abundance of immune cells that have infiltrated the tumor. There
are six subcategories and they are the neutrophils, CD8 T and CD4
cells, macrophages, dendritic cells, and B cells. This could be
certainly used for discovering the association of TIICs with the
other parameters. Then, we obtained the matrix of immune cells
that are infiltrating the tumor of ovarian cancer patients. Finally,
we computed the association of the IPM risk score with the
immune infiltration.

Association Between TFs and Immune-
Related Prognostic Genes
To reveal potential regulatory mechanisms of immune-related
prognostic genes, we explored which TFs have ability in regulating
these genes. Cistrome Cancer (21) is a comprehensive web
database that incorporates the TCGA’s data on cancer genomics
that have accessible profiles of 23,000 chromatin and ChIP-seq,
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necessary to generate the governing association of TFs with the
transcriptomes. Additionally, this is a valued system for empirical
and computational study on the biology of cancer. Moreover, it
encompasses 318 clinically relevant TFs that are responsible for
establishing the governing network of the possible TFs and
existing IRGs.

Construction of Immune Prognostic Model
528 genes both differentially expressed in normal vs tumor
tissues and high immune score vs. low immune score groups
were analyzed via univariate Cox analysis to define the
prognostic value of these genes. At P<0.05, we regarded the
genes as statistically significant in this research. Original
proportional hazards regression does not apply to genes that
are highly associated, leading to our use of the least absolute
shrinkage and selection operator (LASSO) with L1-penalty. This
is a renowned methodology that evaluates the rules that predict
and handle the collinearity (22). Using the LASSO method, we
selected the primary immune genes from the significant cohort
in the univariate analysis of the Cox regression. This approach
enabled us to determine a sub-category of the immune genes that
are included in the prognosis of hepatocellular carcinoma (HCC)
patients. This was executed by taking into account the decrease
of the regression coefficient through the pressing of a penalty
comparative to their size. Finally, a small number of indicators
that have a nonzero weight persisted while the majority of the
possible indicators were contracted to zero. Hence, we applied
the proportional hazards regression that has been calculated by
LASSO to further decrease the presence of immune genes. In this
study, we generated samples of an already existing sample dataset
repeatedly for 1000 times. Then, we selected the immune genes
that were repeated N900 times (23). Using the “glmnet” R
package, we completed the LASSO Cox analysis (Version: 2.0–
16; https://cran.r-project.org/web/packages/glmnet/index.html).
Then, we established a prognostic immune-related model by
using the beta coefficients from the multivariate Cox regression
analysis. These coefficients are multiplied to the expression level
of each immune gene. Finally, to investigate the best threshold or
cutoff for patients with HCC, we applied the X-tile 3.6.1 software
(Yale University, New Haven, CT, USA).

Evaluation of Performance of Our IPM
Kaplan-Meier survival analysis and receiver operating
characteristic (ROC) analyses were used to evaluate the accuracy
of our IPM. To verify if the forecast of the prognostic model is
independent of the conventional clinical features, multivariate Cox
analysis after univariate selection were performed based on
TCGA-OV dataset and GSE9891 dataset. Only samples with
entire clinical information were subjected in this study.
RESULTS

Immune Scores Are Significantly
Associated With Immune Infiltration in OV
One of the reassuring approaches for the treatment of OV has
been immunotherapy. To raise the efficacy of anti-tumoral
Frontiers in Oncology | www.frontiersin.org 3
immunotherapy, a fundamental factor must be taken into
account is the microenvironment of the tumor. This is due to
its composition that is largely comprised of immunosuppressive
cell types that promote immune escape that also weaken the
antitumor immunity (9, 24, 25). Numerous studies (12, 26, 27)
have confirmed an immune score generated by the ESTIMATE
algorithm was a reliable index to evaluate the concentration of
the TIICs. As the TCGA database provided our access to the
clinical characteristics and gene expression profiles of 388
ovarian cancer patients, we could confirm the performance of
immune score in OV. The distribution of our immune scores
occurred from -1,781.66 to 2529.21 based on the ESTIMATE
algorithm. Then, we determined the ability of the immune score
to forecast the infiltration of immune cells in OV by utilizing the
recently reported CIBERSORT, which could evaluate the fraction
of 22 kinds of TIICs. Figure 1A summarizes the outcome
achieved from 388 OV patients. As is shown in Figure 1B,
fractions of immune cells varied significantly among high and
low immune score groups (based on the median value 411.13).
Compared with low immune score groups, high immune score
groups contains a higher proportion of T cells CD8 (P
value=0.000), T cells CD4 memory activated (P value=0.000),
T cells regulatory (Tregs) (P value=0.001), Monocytes (P
value=0.005), Macrophages M1(P value=0.000), Macrophages
M2 (P value=0.006) and Dendritic cel ls resting (P
value=0.001), while B cells naïve (P value=0.038), Plasma cells
(P value=0.015), Macrophages M0 (P value=0.044) and
Dendritic cells activated (P value=0.001) were lower (Table 1).
The quantity of immune cells differs across the groups. Hence,
the proportional differences amongst the TIICs may serve as a
representation of an essential immune characteristic that sets the
two groups apart. Additionally, the weak to moderate correlation
of the various subpopulations of tumor-infiltrating lymphocytes
were evident (Figure 1C). Correlations were analyzed between
the immune scores and the immune cell infiltration level based
on the table matrix (the density of 6 types of immune cells in all
TCGA samples) downloaded from TIMER (https://cistrome.
shinyapps.io/timer/). Immune scores showed a moderate to
strong correlation with tumor-infiltrating immune cells
(Figure 1D). Above all, immune score developed by Yoshihara
et al. is a reliable indicator of immune infiltration. On one hand,
in the groups with high immune scores, the local immune
signature may present a stronger immune phenotype. On the
other hand, a weaker immune infiltration is seen in groups with
low immune scores.
Identification of Immune-Related
Differentially Expression Genes With
Prognostic Value Between Tumor and
Normal Tissues in OV
To unveil the OV profiles’ association with immune scores, we
executed a differential expression analysis occurring in both high
and low immune score groups (|log2 FC| > 1 and FDR<0.05)
using the “limma” package. Volcano plots (Figure 2A) reveal the
unique gene expression profiles of patients under the low and
high immune score groups. To outline the potential function of
March 2021 | Volume 11 | Article 647273
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the DEGs, we performed functional enrichment analysis of the
1049 up-regulated or down-regulated genes in high immune
score group. As expected, top gene ontology (GO) terms
identified included T cell activation, leukocyte migration,
leukocyte cell−cell adhesion, regulation of T cell activation,
regulation of lymphocyte activation, regulation of leukocyte
proliferation (Figure 2B), which suggest that these genes
significantly relate to immune signal transduction. Thus, we
Frontiers in Oncology | www.frontiersin.org 4
specified differentially expression genes between high and low
immune score groups as immune-related genes for further study.
“Limma” package also helps us to recognize genes that are
differentially expressed in tumor and normal tissues. As is
shown in Figure 2C, 10594 differentially expression genes were
obtained (|log2 FC| > 1 and FDR<0.05). Among the 10594 DEGs
investigated, 528 are immune-related genes (Figure 2D). Then,
we tried to gauge the prognostic predictive ability of these
A

B

D

C

FIGURE 1 | The landscape of immune infiltration in low and high immune score OV patients. (A) Relative fractions of immune cells in high and low immune score
groups. (B) The proportion of different types of immune cells in high and low immune score groups. High immune score groups contains a higher proportion of
T cells CD(P value=0.000), T cells CD4 memory activated (P value=0.000), T cells regulatory (Tregs) (P value=0.001), Monocytes (P value=0.005), Macrophages M1
(P value=0.000), Macrophages M2 (P value=0.006) and Dendritic cells resting (P value=0.001), while B cells naïve (P value=0.038), Plasma cells (P value=0.015),
Macrophages M0 (P value=0.044) and Dendritic cells activated (P value=0.001) were lower. (C) Correlation matrix of all 22 immune cell proportions. (D) Correlations
between immune score and immune infiltrating level of 6 types of immune cells.
March 2021 | Volume 11 | Article 647273
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immune-related DEGs and performed our analysis using the
univariate Cox regression, which discovered the significant
association of 59 out of 528 immune-related DEGs to overall
survival (Figure 2E). P value<0.05 was set as the cut-off value.
Table 2 exhibits genes that first report in OV.

Characteristics of 59 Immune-Related
Prognostic Genes
“External side of plasma membrane”, “T cell activation” and
“chemokine activity” were most frequently enriched in GO terms
among cellular components, biological processes and molecular
functions. Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis were most significantly associated with cytokine-
cytokine receptor interaction (Figure 3A). To study possible
molecular mechanisms corresponding to the clinical significance
of our prognostic immune-related genes, we assessed the
regulatory mechanisms of these genes. Figure 3B shows our
examination of 318 expression profiles of transcription factors
(TFs). From this, we determined 95 differentially expressed genes
between tissues from OV and normal ovary. Out of these 95 TFs,
5 were linked to the overall survival of patients with ovarian
cancer tissue at p-value<0.05 (Figure 3C). Based on these 5 TFs
and 59 prognostic genes that are immune-related, we created a
regulatory network. We established the cut-off value to be at a
correlation score of greater than 0.3 and P-value<0.001. As is
shown in Figure 3D, the intense illustration by the TF-based
regulatory schematic of the regulatory connections amongst
these prognostic immune-related genes is evident. FOXP3 is a
key TF that has a positive correlation with high-risk immune-
related genes (HR>1). Meanwhile, EGR2 is significantly
correlated with low risk immune-related genes (HR<1).
Frontiers in Oncology | www.frontiersin.org 5
Construction of Immune Prognostic Model
The results of the multivariate Cox regression analysis enabled us
to establish a prognostic signature to classify the patients with
ovarian cancer into two groups with discrete clinical outcomes
depending on their risk score. The formula is: risk score=
[Expression level of CXCL9 * (-0.01752)] + [Expression level of
VCAN * (0.02584)]. We computed for each patient’s risk score
and categorized them according to the level of risk according to
the optimal cut off point provided by the X-tile software. 0.180 was
served as the cutoff value to classify the OV patients into high and
low risk groups. Figures 4A, B shows the risk score of the publicly
available samples and the expression of included genes. Survival
curve (Figure 4C) reveals that patients with a lower risk score had
a higher overall survival than their counterparts (P<0.001). The
time independent ROC (Figure 4D) shows a good performance of
our immune prognostic model, the area under the ROC curve was
0.666 at 0.5 year, 0.670 at 1 year, 0.658 at 3 year and 0.703 at 5 year.
In addition, the multivariate Cox analysis (Table 3) revealed that
our IPM is an independent predictor for prognosis of OVs
(HR=2.844, P<0.001).

Validation of Performance of IPM
in GEO Cohort
To evaluate whether the performance of IPM was robust, we
downloaded another OV cohort (GSE8191) from GEO database
as test cohort, which includes 285 OV patients. According to risk
scores calculated by the same formula and the optimal cutoff
point (0.510), patients in train cohort were grouped into high-
risk and low-risk group. As is shown in Figures 4E–H, people
assigned into low-risk group had an obviously favorable
prognosis than which assigned into high-risk group (P=0.003).
TABLE 1 | Relative proportion of 22 types of immune cells in high and low
immune score groups.

Immune cell type Low immune score
(%)

High immune score
(%)

P
values

B cells naive 2.78% ± 3.03% 2.24% ± 2.38% 0.483
B cells memory 0.13% ± 0.35% 0.50% ± 1.35% 0.461
Plasma cells 4.84% ± 5.98% 4.52% ± 5.97% 0.857
T cells CD8 4.98% ± 5.48% 9.27% ± 6.50% <0.001
T cells CD4 naive 0.17% ± 1.19% 0.05% ± 0.64% 0.386
T cells CD4 memory
resting

18.08% ± 7.02% 17.69% ± 6.24% 0.584

T cells CD4 memory
activated

0.21% ± 0.97% 0.91% ± 2.14% 0.001

T cells follicular helper 3.69% ± 2.85% 3.06% ± 2.20% 0.240
T cells regulatory (Tregs) 4.97% ± 2.88% 5.53% ± 3.08% 0.326
T cells gamma delta 0.19% ± 1.06% 0.19% ± 0.66% 0.364
NK cells resting 0.45% ± 1.00% 0.56% ± 1.26% 0.907
NK cells activated 4.15% ± 2.97% 4.37% ± 3.33% 0.807
Monocytes 1.55% ± 2.10% 2.95% ± 4.14% 0.011
Macrophages M0 24.82% ± 15.08% 16.44% ± 11.96% 0.001
Macrophages M1 7.07% ± 4.15% 9.05% ± 4.20% 0.008
Macrophages M2 13.37% ± 6.09% 17.19% ± 6.86% 0.001
Dendritic cells resting 0.25% ± 1.05% 1.22% ± 2.27% <0.001
Dendritic cells activated 4.80% ± 6.88% 1.24% ± 2.53% 0.003
Mast cells resting 1.66% ± 3.62% 1.42% ± 1.86% 0.056
Mast cells activated 1.47% ± 2.42% 1.01% ± 2.34% 0.164
Eosinophils 0.17% ± 0.50% 0.08% ± 0.39% 0.141
Neutrophils 0.20% ± 0.53% 0.50% ± 1.10% 0.001
TABLE 2 | First reported immune microenvironment- related genes in OV.

Gene Symbol logFC FDR HR P value

ANKRD22 2.950 0.000 0.871 0.012
CD3D 2.314 0.000 0.933 0.029
CD3G 2.097 0.000 0.694 0.007
COL26A1 3.723 0.000 1.010 0.002
CRISPLD2 -2.519 0.000 1.036 0.000
ETV7 1.885 0.000 0.938 0.032
GBP5 1.516 0.000 0.903 0.009
GJB2 2.093 0.000 1.010 0.045
KCNE4 -1.765 0.000 1.134 0.014
KRTDAP -3.876 0.000 1.015 0.012
MAFA 3.469 0.000 1.103 0.037
MZB1 2.032 0.000 0.967 0.046
NKAIN1 2.423 0.000 1.199 0.001
OR2I1P 6.265 0.000 0.906 0.016
PLA2G2D 3.725 0.000 0.803 0.003
PLPPR3 1.758 0.009 1.130 0.002
PRB3 3.729 0.000 1.082 0.042
S1PR4 1.786 0.000 0.806 0.045
SLAMF7 2.638 0.000 0.909 0.015
SLC35D3 3.600 0.000 1.334 0.017
SLC38A8 1.553 0.000 1.149 0.003
TESPA1 -2.817 0.000 0.450 0.033
TNFSF13B 2.562 0.000 0.951 0.041
WFIKKN2 -7.555 0.000 1.137 0.041
March
 2021 | Volum
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logFC, log fold change (tumor tissues vs. normal tissues). FDR, false discovery rate.
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Meanwhile, the AUC of IPM at 0.5, 1, 3, and 5 years was 0.722,
0.679, 0.622, and 0.556 respectively. In multivariate Cox analysis
(Table 4), IPM is also an independent predictor for prognosis of
OVs (HR=1.774, P=0.006), along with Figo stage (HR=1.748,
P=0.006) and age (HR=1.027, P=0.007).

Immune Landscape Between the Low-
and High-Risk OV Patients
Combining the CIBERSORT methodology with gene expression
profiling acquired from TCGA database, we evaluated the
variations among low and high-risk OV patients in terms of
the immune infiltration of 22 different kinds of immune cells.
Figure 5A shows the results of immune landscape obtained from
202 OV patients after filtering (20). Within and between groups,
the proportion of immune cells in OV varies (Figure 5A,
Frontiers in Oncology | www.frontiersin.org 6
Table 5). Low risk groups share a higher fraction of Plasma
cells (P<0.001), T cells CD8 (P<0.001), T cells CD4 memory
activated (P<0.001), T cells regulatory (P=0.045), T cells gamma
delta (P=0.026) and Macrophages M1 (P<0.01). The proportions
of different types of immune infiltrating cells were weakly to
moderately correlated (Figure 5B). In addition, the outcome of
correlation analysis between risk score and the abundance of
immune infiltrating cells was exhibited in Figure 5C. The density
of B cells, CD4+ T cells, CD8+ T cells, neutrophil cells, dendritic
cells in OV were significantly associated with risk score. Thus,
the results suggest that our IPM could serve as a predictor of the
level of immune infiltration. Also, the heterogeneity and
abnormality of immune infiltration amongst OV patients are
possible prognostic indicators and targets for immunotherapy,
which may also have vital clinical relevance.
A

B

D

C E

FIGURE 2 | Identification of immune-related prognostic expressed genes in OV. (A) Genes with differential expression between the low and high immune score
groups. (B) Top GO terms which DEGs between high and low immune score groups enriched. (C) Genes with differential expression between tumor and tumor
adjacent tissues. (D) Among 10594 up-regulated or down-regulated in tumor tissue, 528 are immune-related genes. (E) The Hazard ratios of identifying immune-
related prognostic genes.
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Recent studies reported that tumor cells acquire escape
mechanisms to evade host immunity in the tumor
microenvironment. The immune checkpoints play a significant
role topromote tumor enhancement by tumor immunosuppressive
effects (28). Some prominent immune checkpoints could serve as a
biomarker for predicting the efficacy of immunotherapy (29).
Frontiers in Oncology | www.frontiersin.org 7
Therefore, we calculated the Pearson’s correlation between
expression of several prominent immune checkpoints (CTLA−4,
LAG−3, PD−1, TIGIT and TIM-3) and risk score (Figure 6A). The
results showed that patients’ risk score was significantly negative
correlated to expression of immune checkpoints (P<0.05) and the
expression of immune checkpoints are positively correlated
A

B C

D

FIGURE 3 | Characteristics of 59 immune-related prognostic genes. (A) Top GO terms and KEGG pathways enriched by IRPG. (B) Volcano plots reveal
differentially expressed transcript factors (TFs) between tumor and adjacent tissues. (C) The Hazard ratios of identified TFs with prognostic value. (D) TF-based
regulatory schematic.
March 2021 | Volume 11 | Article 647273
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between themselves. In addition,we access the expressionofCTLA-
4, LAG-3, PD-1, TIGIT and TIM-3 in high-risk and low-risk
groups. As is shown in Figure 6B, the expression of CTLA-4, PD-
1, TIGIT and TIM-3 in low-risk groups was significantly higher
than in high-risk groups.
Different Pathways Enriched in High-Risk
and Low-Risk Groups
In this study, we used the GO analysis to study the biological
impacts of the IPM. For the low and high-risk groups of OV
Frontiers in Oncology | www.frontiersin.org 8
patients, 340 genes were differentially expressed (Figure 6C) (|log2
FC| > 1 and FDR<0.05). These genes were determined to be
associated with the risk scores and underwent the GO analysis for
the specification of their possible biological implications (FDR<
0.0001). The results revealed the underlying mechanism of the
genes associated with risk score, which primarily play a role in
lymphocyte differentiation, activation and proliferation of the
immune system. The pathway enriched included T cell
differentiation, T cell activation, regulation of T cell activation,
regulation of mononuclear cell proliferation, and regulation of
lymphocyte proliferation (Figures 6D, E).
A E

B F

C G

D H

FIGURE 4 | The performance of our IPM in TCGA and GEO cohort. (A, E) Rank of risk score and distribution of groups. (B, F) The expression of included genes,
CXCL9 and VCAN. (C, G) Survival curve of risk score. Patients with a higher risk score had a higher overall survival than their counterparts. (D, H) The time
independent ROC.
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DISCUSSION

We acknowledge that in the context of immunotherapies,
research on the importance of immune-related biomarkers and
clinical prognosis has become increasingly prevalent (30, 31).
Previous studies revealed that recurrent ovarian cancer patients
could have some significant immune subset of patients really
suitable to have immune therapeutic option when secondary
cytoreduction is impossible (32, 33). However, specific
investigations on the whole profiling of related genomes that
delve into tumor-infiltrating immune cells related genes that are
relevant to ovarian cancer have yet to be executed. This extensive
and cohesive analysis of immune-related genes in ovarian cancer
improves our appreciation for their clinical relevance while it
highlights possible molecular mechanisms.

Many previous study have applied ESTIMATE algorithm to
various types of cancer, including breast cancer (11), colon
cancer (12), gastric cancer (13) and brain cancer (14).
However, the utility of OV has not been studied in detail. In
this study, to validate its performance in OV, we estimated the
difference of immune infiltration between high and low immune
score groups and discovered that the proportion of subtypes of
Frontiers in Oncology | www.frontiersin.org 9
immune cells is obviously varied. In correlation analysis based on
TIMER reanalyzes gene expression data, immune score
moderately to strongly correlates to immune infiltration level.
Although the prognostic value is not significant, immune score
calculated by ESTIMATE algorithm is still a reliable predict
factor of immune infiltration level and significantly relates to the
subtypes of immune microenvironment cells.

Then by the comparison the gene expression data of tumor vs.
normal tissues andhighvs. low immunescore tissues,we extracteda
list of immune-related genes and demonstrated that they were
significantly concerned in human immune response and regulation
of lymphocytes, as shown in enrichment analysis of GO terms.
Then, we identified genes with prognostic value among them using
univariate Cox analysis. Importantly, a few of these genes were first
reported in OV, which could serve as potential biomarkers for OV
patients and provide a new landscape for immunotherapy. To
discover the fundamental mechanisms at the molecular level that
corresponds to the possible clinical significance, we established a
network mediated by TF to identify vital TFs that could regulate
genes we identified as immune-related prognostic genes. In this
network, FOXP3 and EGR2 were notably acknowledged. Previous
immunological researches have revealed that FOXP3 and EGR2
serve as transcript factors that play important roles in regulation of
lymphocyte function. Study of breast cancer suggested that FOXP3
function as a key tumor suppressor through the up-regulation of
CXCR4 and down-regulation of CXCL12, which thereby stimulate
cell migration (34). Furthermore, FOXP3, is acknowledged as a
major and specificmarker of Tregs, the cellular expression ofwhich
is correlated with suppressive activities. EGR2 is highly correlated
members of the Egr zinc finger transcription factor family with
significant function in regulating the self-tolerance of lymphocytes
and the differentiation of T cells and NKT cells (35–37). Above all,
TABLE 3 | Associations with overall survival and clinicalopathologic
characteristics in TCGA patients using COX regression.

Clinical characteristics HR 95%Cl
(low)

95%Cl
(high)

P value

Age (continuous) 1.022 1.01 1.035 <0.001
Radiation therapy (Yes vs. No) 1.293 0.18 9.295 0.798
Pharmaceutical therapy (Yes vs.
No)

0.544 0.314 0.941 0.03

Histological grade (High vs. Low) 1.214 0.817 1.803 0.338
Risk score (continuous) 2.82 1.773 4.486 <0.001
Multivariate analysis
Age (continuous) 1.024 1.011 1.037 0.000
Pharmaceutical therapy (Yes vs.
No)

0.421 0.242 0.735 0.002

Risk score (continuous) 2.844 1.810 4.468 0.000
TABLE 4 | Associations with overall survival and clinicalopathologic
characteristics in GEO patients using COX regression.

Clinal characteristics HR 95%Cl(low) 95%Cl(high) P value

Histological subtype (serous vs.
others)

0.115 0.016 0.823 0.031

Age (continuous) 1.026 1.006 1.046 0.011
Figo stage (III&IV vs. I&II) 2.144 1.487 3.093 0.000
Histological grade (High vs. Low) 1.337 0.975 1.835 0.072
Platin treatment (Yes vs. No) 3.204 1.015 10.118 0.047
Taxol treatment (Yes vs. No) 0.737 0.492 1.103 0.138
Neoadjuvant treatment (Yes vs.
No)

1.495 0.726 3.079 0.275

Risk score (continuous) 1.679 1.129 2.497 0.011
Multivariate Cox analysis
Histological subtype (serous vs.
others)

0.172 0.024 1.246 0.081

Age (continuous) 1.027 1.007 1.048 0.007
Figo stage (III&IV vs. I&II) 1.748 1.176 2.596 0.006
Platin treatment (Yes vs. No) 2.755 0.856 8.866 0.089
Risk score (continuous) 1.774 1.176 2.677 0.006
TABLE 5 | Relative proportion of 22 types of immune cells in high and low risk
score groups.

Immune cell type Low risk group
(%)

High risk group
(%)

P
values

B cells naive 2.05% ± 1.90% 2.55% ± 2.72% 0.631
B cells memory 0.48% ± 1.54% 0.42% ± 1.10% 0.477
Plasma cells 7.57% ± 6.50% 3.40% ± 5.41% <0.001
T cells CD8 11.48% ± 6.99% 6.81% ± 5.76% <0.001
T cells CD4 naive 0.03% ± 0.25% 0.01% ± 0.08% 0.541
T cells CD4memory resting 16.07% ± 6.08% 18.62% ± 5.96% 0.004
T cells CD4 memory
activated

1.48% ± 2.59% 0.42% ± 1.41% <0.001

T cells follicular helper 3.38% ± 2.10% 2.88% ± 2.26% 0.084
T cells regulatory (Tregs) 6.02% ± 3.36% 5.06% ± 2.83% 0.045
T cells gamma delta 0.31% ± 0.75% 0.08% ± 0.42% 0.026
NK cells resting 0.38% ± 0.83% 0.64% ± 1.35% 0.322
NK cells activated 4.68% ± 3.38% 4.07% ± 3.30% 0.207
Monocytes 1.92% ± 2.14% 2.96% ± 4.27% 0.167
Macrophages M0 14.22% ± 8.89% 20.63% ± 14.26% 0.006
Macrophages M1 10.37% ± 4.11% 7.81% ± 4.14% <0.001
Macrophages M2 15.76% ± 5.33% 16.45% ± 7.39% 0.803
Dendritic cells resting
Dendritic cells activated
Mast cells resting

0.84% ± 1.58% 1.03% ± 2.29% 0.288
0.68% ± 2.14%
1.36% ± 1.67%

2.64% ± 4.75%
1.42% ± 2.36%

0.001
0.300

Mast cells activated 0.54% ± 1.48% 1.48% ± 2.84% 0.004
Eosinophils 0.11% ± 0.56% 0.10% ± 0.36% 0.072
Neutrophils 0.26% ± 0.50% 0.51% ± 1.14% 0.312
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the coexpression and differential expression based regulatory
networks of transcript factors and immune-related prognostic
genes we constructed may provide a great help to direct future
mechanism analysis.

Considering that the immune score could not significantly
predict the clinical outcome, thus we focused on constructing a
prognostic signature based on these immune-related prognostic
genes and produced an IPM that is 2-gene-based, which could
assess OV patients that are at a high risk of developing poor
prognoses in the future. In fact, CXCL9 and VCAN, which
constitute our IPM has been described as the promising therapy
target.CXCL9 is an IFN-g-inducible chemokine aswell as oneof the
main ligands for CXCR3 (38). The increasing expression level of
Frontiers in Oncology | www.frontiersin.org 10
CXCR3 could accelerate the accumulation of tumor
microenvironment (TEM) cells by helping TEM cells rapidly
migrating into inflamed tissues (39). Another previous study
revealed a close association between the CXCL9 and CCL5
expressions in OV and other cancers. Their coexpression, which
had a phenotype that was molecularly immunoreactive, is
correlated with the TEM cells (40). VCAN is an enormous matrix
comprised of proteoglycan with activities classified as
immunoregulatory. It amasses in the tumors’ extracellular matrix
(41). Also, it is known for its contribution toward inflammations
that are either cancerous or non-cancerous through its stimulation
of inflammatory mediators derived by leukocytes (42, 43).
Moreover, it influences immunodeficiency through the
A

C

B

FIGURE 5 | Immune landscapes of the low- and high-risk OV patients. (A) The proportion of different types of immune cells in high and low risk groups. Low-risk
groups share a higher fraction of Plasma cells (P<0.001), T cells CD8 (P<0.001), T cells CD4 memory activated (P<0.001), T cells regulatory (P=0.045), T cells
gamma delta (P=0.026) and Macrophages M1 (P<0.01). (B) Correlation matrix of all 22 immune cell proportions. (C) Correlations between risk score and immune
infiltrating level of 6 types of immune cells.
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dysfunction of dendritic cell (DC) (44). The infiltration of theT-cell
is promoted by the versikine and matrikine that were derived from
VCAN. The process involved the regulation of a unique DC subset,
known as the Batf3-dependent dendritic cells, which is vital for the
migrating of effector T cell (45), reaction to numerous modes of
Frontiers in Oncology | www.frontiersin.org 11
immunotherapy (46–48), and antitumor immunity mediated by
the T cell (49, 50). Additionally, the literature on colorectal cancer
and multiple myeloma recommends the antagonistic feature of
versikine towards the tolerogenic actions of the whole VCAN.
Hence, this could generate a promising antitumor strategy (51, 52).
A B

C

D E

FIGURE 6 | Enrichment analysis of the immune prognostic model. (A) Correlation between expression of several prominent immune checkpoints and risk scores.
(B) Comparison of the expression of selected immune checkpoint in high and low risk groups. (C) Heatmap of differentially expressed genes in high and low risk
groups. (D) Circular plot of the biological processes enriched for the immune genes. (E) GO enrichment analysis.
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Thehighdensityof tumor-infiltrating immunecells is associated
with positive clinical prognosis and enhanced response rates to
checkpoint inhibitor therapy, which is a main form of presentation
immunotherapy for cancer (53). Here, we evaluated the proportion
of different types of TIICs, immune infiltrating level and the
expression of immune checkpoint in low- and high-risk group to
identify the difference of immune mechanisms between low- and
high-risk scores and possible use of our IPM to immunotherapy in
ovarian cancer. The results indicated that low risk score OVs
contained a higher fraction of T cells regulatory (Tregs), T cells
CD8, Macrophages M1, T cells CD4 memory activated than high
risk score patients. The immune score is negatively correlated to the
infiltration level of B cell, CD4+ T cell, CD8+ T cell, neutrophil and
Dendritic. Interestingly, the expression of several prominent
immune checkpoints (CTLA-4, PD-1, TIGIT, TIM-3) is also
higher in low risk score groups. CD8+ T cell is a main kind of
effector cell in antitumor immune response, the important role of
which in suppressing tumor has been publicly recognized (54).
Tregs are involved in cancers andmanyother autoimmunediseases
and also be known as the immunosuppressive subset of CD4+ T
cells that maintain the immune homeostasis by suppressing the
function of T cells (55). The various types of effector lymphocytes
are suppressed by Tregs migrating into the inflammatory site (56).
Thus, Tregs also expresses a function similar to immune
checkpoints. The outcome suggested that low risk score patients
suffer a stronger immunosuppress, although with a higher overall
survival and ahigher level of immune infiltration.Thus, in our IPM,
the risk score was consistency with the antitumor ability of TIICs,
revealing that the favorable prognosis of the low-risk patients may
be caused by the higher proportion of immune effecter cells and a
higher level of immune infiltration than high-risk patients. The
expression of immune checkpoint is one of the most effective
predictors of response rates to immunotherapy (57). Thus,
compared with high-risk patients, these outcomes also indicate
the increased benefits of the checkpoint inhibitor therapy toward
low-risk patients, thereby further improving overall clinical
outcomes for OV patients.

The GO terms enrichment analysis of differentially expressed
genes between high and low risk groups revealed the difference of
local immune signature between these two groups. 29 Genes
most up-regulated in low risk groups significantly enriched in 5
immune-related pathways, including T cell activation, regulation
of T cell activation, regulation of lymphocyte activation,
leukocyte cell-cell adhesion and regulation of leukocyte
proliferation. Additionally, the expression of CTLA-4, TIGIT
and PDCD1 is significantly higher in low risk groups, suggesting
that patients in the low risk group suffering a stronger
Frontiers in Oncology | www.frontiersin.org 12
immunosuppress. These results are consistent with our
previous discovery, namely low risk score is associated with
higher immune infiltration level and intense immunosuppress.

Our study provides new insights into the OV immune
microenvironment by mining a list of novel immune
microenvironment-associated genes. Furthermore, we develop
a straightforward 2 gene-based immune-related prognostic
models that reflect the overall immune landscape and have
independent prognostic significance for OV patients. However,
our study has some limitation. First, transcriptional changes are
also the main contributors to functional alterations (58). When
the studies are founded on genomic alterations, these are not
representative of the overall situation. Second, as samples from
TCGA (n=388) and GEO (n=285) of our study were relatively
small, larger sample size data are needed for verification.
Additionally, our retrospective study produced results that
need to be further verified by prospective studies.
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