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Abstract: Throughout life, the body is subjected to various mechanical forces on the organ, tissue,
and cellular level. Mechanical stimuli are essential for organ development and function. One organ
whose function depends on the tightly connected interplay between mechanical cell properties,
biochemical signaling, and external forces is the lung. However, altered mechanical properties or
excessive mechanical forces can also drive the onset and progression of severe pulmonary diseases.
Characterizing the mechanical properties and forces that affect cell and tissue function is therefore
necessary for understanding physiological and pathophysiological mechanisms. In recent years,
multiple methods have been developed for cellular force measurements at multiple length scales,
from subcellular forces to measuring the collective behavior of heterogeneous cellular networks. In
this short review, we give a brief overview of the mechanical forces at play on the cellular level in the
lung. We then focus on the technological aspects of measuring cellular forces at many length scales.
We describe tools with a subcellular resolution and elaborate measurement techniques for collective
multicellular units. Many of the technologies described are by no means restricted to lung research
and have already been applied successfully to cells from various other tissues. However, integrating
the knowledge gained from these multi-scale measurements in a unifying framework is still a major
future challenge.

Keywords: lung; force sensing; mechanotransduction

1. Introduction

Throughout life, the lung is exposed to mechanical forces. Mechanical forces play
an important role in lung development, maturation, and function and can contribute to
the pathogenesis of lung disease. Understanding lung mechanics has played a central
role in understanding lung biology and respiratory physiology [1]. The mechanical forces
in the lung include stretching, compressing, and shear stresses, as well as forces derived
from surface tension and substrate rigidity. These are generated, sensed, and responded
to at different scales—from subcellular structures to the tissue or organ level. At the
organ scale, global lung mechanics have largely been inferred from pressure, volume,
and flow relationships, as well as, very recently, digital image correlation techniques [2,3].
In recent years, novel imaging technologies, including intravital microscopy [4–6], fast
synchrotron radiation CT imaging [7–9], and magnetic resonance elastography [10,11],
have added information on tissue deformations on the macro- and micro-scale level and
added to a better understanding of the local mechanical properties in airways and alveoli.
In addition, a plethora of in vitro assays have identified the mechanical properties of
lung cells, extracellular matrix, and lung tissues and highlighted the mechanisms of the
mechanotransduction in the lung [12].

Based on these findings, many studies inferred detailed cellular responses to specific
mechanical forces. However, the actual quantification of these forces is often difficult. A
detailed understanding and characterization of the mechanical forces affecting the cellu-
lar responses is necessary to differentiate between physiological and pathophysiological
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stimuli and to better translate the findings from in vitro models to the actual in vivo situa-
tion [13]. In this short review, we give a brief overview of the mechanical forces at play on
the cellular level in the lung. We focus on the technological aspects of measuring these from
subcellular forces to measuring the collective behavior of cellular networks. We also want
to emphasize that many of the technologies described are by no means restricted to lung
research and have already been applied successfully to cells from various other tissues.

2. Forces on Lung Cells and Tissue

Mechanical forces generate stress at the subcellular and cellular level. Stresses deform
the original shape of a body or cell and are expressed in units of Pa (N/m2) [14]. The
resulting deformation can be quantified by a relative length change or a relative angle
change and is called strain. Strain has no unit. If the deformability is completely reversible,
it is called elastic deformation. The ratio of stress and strain is then the elastic or Young’s
modulus. Stiff materials have a high Young’s modulus, while soft materials have a low
modulus. Bone typically has a Young’s modulus on the order of GPa, while healthy lung
tissue has a Young’s of 1–5 kPa. When the lung becomes scarred and fibrotic, the Young’s
modulus increases manyfold and reaches values of up to 100 kPa [15].

Cell strain or stretch in the lung has received considerable attention. Many in vitro
and in vivo experiments highlighted profound effects of cell stretch on cell function. Differ-
ent cell types, including epithelial, endothelial, and mesenchymal cells, are subjected to
(continuous cyclic) cell stretch and compression in the lung. Part of the stretching forces
in the alveolus also result from the surface tension at the air-liquid interphase, which has
important effects on the alveolar micro-architecture [15]. In the alveolus, stretch stimulates
cell proliferation and differentiation during fetal lung development [16–21], stimulates
the secretion of pulmonary surfactant from alveolar type 2 cells [6,22–29], affects alveolar
barrier function [30,31] and repair mechanisms [32], among other effects. However, stretch
above the physiological range can also lead to alveolar cell and tissue damage [6,33,34], in-
creased pro-inflammatory responses [35–37], or impaired wound healing [38,39], resulting
in alveolar instability, endothelial leakage, alveolar edema, surfactant dysfunction, or tissue
remodeling. These pathological changes are associated with the pathogenesis of severe
pulmonary diseases, including acute respiratory distress syndrome (ARDS), ventilator
induced lung injury (VILI) [40–43], and fibrosis [44,45]. Similar to the alveolus, stretching or
compressing airway cells elicits multiple physiological and pathological responses. These
include establishing respiration at birth and maintaining normal breathing in adults [46],
airway constriction [46–48], pathological airway remodeling [49–51], the generation of pro-
inflammatory responses [52,53], and the development of airway hyperresponsiveness [54].
Again, the dose (magnitude of stress) determines whether the outcomes are beneficial
or detrimental.

Shear stress also plays a significant role within the lung. Shear stress is the force
exerted per cross-sectional area and leads to the deformation of cells. It results from the
movement of a fluid along a boundary. Interactions between fluid (e.g., airway surface
liquid) and a boundary (e.g., epithelial cells), together with friction between fluid molecules,
leads to a velocity gradient within the fluid and to a transfer of force onto the boundary. In
the lung, shear stress, in particular, is induced by airflow at the air–liquid interphase of
the airways. Shear stress exerted by the airflow is proportional to the changes in airway
pressure [55]. Physiological levels of shear stress impact the regulation of the airway
surface liquid [56,57], mucus secretion [58], and overall muco-ciliary clearance and enhance
the epithelial barrier function [59]. Elevated shear stress on the epithelial cell layer might
play a part in tissue damage, inflammation, and perhaps even airway remodeling [60].
In the alveoli, a special form of shear stress, interfacial stress, stimulates the secretion of
pulmonary surfactant and affects the gene expression in alveolar type 2 cells [61,62]. Apart
from shear stress transmitted by airflow in the airways, shear stress within blood vessels
and the microvasculature is significant and impacts endothelial function [63], but it also
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contributes to the pathogenesis of pulmonary arterial hypertension or proinflammatory
signaling cascades [64,65].

In recent years, forces exerted by the rigidity (stiffness) of the extracellular matrix
(ECM) have received special attention. The stiffness of the ECM is defined by its elastic
or Young’s modulus, which is the ratio of stress and strain and characterizes the ECM´s
resistance to deformation in response to applied force. The healthy lung tissue has a
Young’s modulus of 1–5 kPa which increases manyfold and reaches values of up to 100 kPa
when the lung becomes scarred and fibrotic [66]. It has been found that ECM stiffness
regulates human airway smooth muscle contraction [67]. However, ECM-dependent forces
have received particular attention due to their contribution to the pathogenesis of fibrotic
diseases [68–71]. Aberrant increases in matrix stiffness result in the activation of lung fibrob-
lasts, excessive ECM deposition, and fibrotic remodeling of the lung tissue [66], whereas
reducing stiffness can partially reverse a stiffness-induced myofibroblast phenotype [72].
In addition to its rigidity, the topography of the ECM, i.e., the architecture, geometry, size,
and organization of the matrix network, also exerts stresses in cells, leading to changes in
the cell shape or differentiation [73].

Apart from the obvious impact of mechanical forces on tissue-embedded cells that are
directly exposed to stretch, shear, or ECM-dependent mechanical signals via cell–cell, cell–
matrix, or cell–flow interactions, recent studies also highlighted the effects of mechanical
forces on the cells of the immune system [74]. In the lung, it has been demonstrated that
cyclical hydrostatic pressure initiated an inflammatory response by immune cells [75].

Excellent reviews have summarized the multiple responses to the different mechanical
forces in the lung in detail [1,70,73,76–79]. Substantial progress has also been achieved
in delineating how cells sense external physical cues and translate them into a cellular
response. While force-sensing occurs in or on the plasma membrane, forces can reach
deep in the cell interior and to the nucleus [80–82]. Specific mechano-transducing elements
on the cell surface, including cell adhesion protein complexes, primary cilia, G protein-
coupled receptors, and mechanically gated ion channels [29,83–86], have been identified
in lung cells, and progress has been achieved in deciphering signaling pathways that
ultimately result in physiological or pathophysiological cellular responses [87,88]. Part
of this progress has been achieved through the development of accurate technologies for
the precise application and investigation of the complex intracellular, intercellular, and
cell-matrix forces affecting lung development, function, and pathophysiological processes.

3. Cellular Force Measurement

In recent years, a wide range of methods have been developed to measure the me-
chanical properties of cells, forces generated by cells, and the response of cells to external
mechanical stimuli. These are divided into active and passive methods (Figure 1) [89].
When using active methods, a force is applied to a cell or cell surface, and the response
of the cell to its deformation is measured. In contrast, passive methods do not apply me-
chanical stimuli to cells but observe how cellular forces alter the cell environment. While
many methods can be upscaled for multicellular samples, the special mechanics of cell
aggregates and tissue also allows for further measurement methods [90]. To characterize
multicellular mechanics, a continuum approach can be used, where the local mechanics are
represented as the average of local volumes containing several cells [91,92].

3.1. Active Cellular Force Probing

Different approaches can be applied to exert mechanical stimuli on cells or tissues and
to measure their response. They can be divided into methods that deform only small parts
of a cell and those that deform whole cells or tissue.
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Figure 1. Overview of different methods for measuring cellular forces, organized into active and
passive methods and grouped by the suitability for single-cell or multicellular unit studies.

The measurement of the mechanics at the subcellular scale requires techniques us-
ing probes in the (sub)micrometer range. The aspiration of the cell membrane into a
micropipette can be utilized to deform parts of a cell surface (Figure 2a) [93,94]. Hereby,
stress is applied locally by a pressure gradient between the inside and outside of the mi-
cropipette. This stress leads to cellular strain: the cell membrane deforms and gets sucked
into the pipette. How much strain is induced by the applied stress is dependent on the
mechanical properties of the cell. Therefore, monitoring the cell edge inside the pipette
and knowing the applied suction pressure allows for calculating values like surface tension
to gain insight into cell cortex mechanics, the influence of motor proteins, the viscosity
of the cytoplasm of soft cells, like chondrocytes, and the elastic modulus of stiffer cells,
like endothelial cells [95]. For calculating elastic properties, it is important that the strain
induced by sucking in parts of the membrane does not lead to a permanent deformation but
is completely reversible. Micropipette aspiration can also be used to study the mechanical
properties of tissue [96,97]. Similar to single cells, the aspiration of tissue into larger pipette
tips allows for the determination of the viscosity and the elastic modulus [98,99].

In addition to inducing strain by pulling on cells, cellular mechanics can also be
studied by pushing probes into the surface of cells and measuring their response. Here
again, the local mechanical properties can be monitored. Pushing locally onto the cell
surface allows for measuring the cortex tension (convoluted with the mechanical properties
of the cytoskeleton). This can be achieved using an Atomic Force Microscope (AFM).
Starting as a method for imaging the surfaces of inorganic materials [100], AFM has found
its way into the field of biomechanics [101–103] and allows for gaining information about
the mechanical properties [104–106] and adhesion [107] of cells. Based on the idea of
measuring a force by the displacement of a spring, an AFM consists of a soft cantilever
with a small tip (Figure 2b). Using the tip, forces in the pN to nN range can be exerted
on the cell surface at sub-micrometer length scales, and the response is directly probed
under physiological conditions [108]. To measure the displacement of the tip, a laser that
reflects off the back of the cantilever onto a photodiode is used [109,110]. This allows for
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measurement in different environments, including under physiological conditions [108].
Besides being used as a tool for studying topography, AFM allows for the exerting of forces
in the pN to nN range at sub-micrometer length scales and probe response in order to
gain information about mechanical properties [104–106] and adhesion [107]. Similar to
micropipette measurements, elastic and viscous properties can be determined [111–113].

Figure 2. Schematics of active methods for measuring cellular forces and mechanical properties.
(A) In micropipette aspiration, a force is applied to a cell through suction with a micropipette
tip. Observation of the cell edge at known pressures allows for the determination of viscoelastic
properties. (B) In Atomic Force Microscopy, a cantilever with a small tip is pressed into a cell, and its
displacement is measured through a laser that reflects off its back onto a photodiode. This allows
for mapping the topography and measuring the viscoelastic properties and molecular adhesion. (C)
An optical cell stretcher consists of two opposing laser beams that create an electromagnetic field,
which exerts forces that lead to the stretching of whole cells. Cell deformation with a calibrated
system allows for the calculation of cellular elasticity. (D) Magnetic microbeads attached to a cell
surface exert torque due to a magnetic field. Similar to a macroscopic rheometer, these can be used to
determine the viscoelastic properties of the cell.

In order to measure the relative elastic modulus of cells, a cantilever with a spherical
tip can be used. Radmacher et al. [104] showed that using the Hertz model, the relationship
between the force FC on the cantilever and the Young’s modulus E of the cell is given by:

FC =
4
3

E
(1− v)

√
R δ

3
2 (1)

where R is the tip radius, υ is the Poisson ratio, and δ is the indentation. By measuring
the vertical position (distance) and the deflection of the cantilever at a known cantilever
stiffness, the force distance (FD) curves can be recorded at different positions on a cell. In
Figure 3a, an AFM height image of a mouse fibroblast is shown. The measured FD curves
for four different positions marked in Figure 3a are shown in Figure 3b. Using Equation (1),
those curves can be fitted to calculate the Young’s modulus at each position.
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Figure 3. AFM data showing the variation in stiffness of a mouse fibroblast. (A) Measured height of a mouse fibroblast,
showing the surface morphology. (B) Force distance curves taken from four different positions shown in (A).

AFM has been used to study the mechanics of different cell types [114–116] and
has helped in understanding the underlying processes in various diseases, including
cancer [117,118].

Besides AFM, other techniques, including cell pokers apparatuses [119–122] and
micro-needles [123–126], have been used to exert indentation forces on cell surfaces and
measure cellular responses. At the tissue-scale, instruments with larger tips, like optical
fibers [127] or micro-indenters [128], can be utilized. Instead of using small tips, microplates
can be used to probe the mechanical properties of cells [129,130] or cell aggregates [131].
Centrifugation of cell aggregates and, subsequently, drop shape analysis allow for the cal-
culation of surface tension at the macro-scale [132,133]. Since these techniques are perfectly
compatible with a variety of classical imaging methods, like widefield, phase contrast,
and fluorescence microscopy, applying strain locally to single cells or multicellular units
can be leveraged for analyzing biochemical, strain-dependent pathways with appropriate
labelling strategies.

Optical and magnetic tweezers allow for the possibility to exert and measure cellular
forces in the pN range, without the use of cantilevers. Since the discovery that a laser beam
can trap microscopic objects [134], optical tweezers have proven their utility in a wide range
of biological applications [135–137]. The intensity gradient in a focused laser beam allows
particles with a higher refractive index than the surrounding medium to be trapped near its
center (focus). By calibrating the trap, the necessary forces to push particles out of the trap
center can be measured. While often being used as a tool to study single molecules, such as
kinesin [138] or myosin [139], optical tweezers also provide insight into the mechanics of
larger cellular structures. Cytoskeletal transport can be investigated by introducing beads
into cells [140], and the mechanical properties of the cell membrane can be investigated
by attaching beads to the cell surface [141]. Similar to AFM techniques, a bead can be
trapped and pushed into the cell surface to measure the elastic response [142]. Additionally,
whole cells can be stretched in a setup with two opposing laser beams (Figure 2c) [143],
which allows for the determination of whole cell elasticity [144,145]. This has already been
used for the mechanical phenotyping of cells to detect malignant [146,147] or mechanical
changes of mesenchymal stem cells after doubling [148]. Optical traps have also been used
to study the cell-cell-junction stiffness in cell aggregates [149]. In addition to the optical trap,
magnetic tweezers can be used for active micro-rheology [150]. Similar to a macroscopic
rheometer, intracellular ferromagnetic microbeads are twisted in a magnetic field [151] to
determine the viscoelastic properties of the cytoplasm (Figure 2d) [152]. Beads attached to
a cell membrane have also been used to study cellular mechanotransduction [153]. At the
tissue level, large-scale methods, like magnetomotive optical coherence elastography, use
similar magnetic effects [154].
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Lasers are also used to disrupt cell–cell junctions [155] or cut through tissue [156,157].
Laser ablation of cellular structures disrupts force transmission and leads to a movement
of the surrounding tissue. From the movement of the cell edges, the cell-junction tension
can be inferred. At the macro-scale, a scalpel can also be used for dissection, instead of a
laser [158].

To investigate the cellular mechanics of cells and tissue that are under constant shear
stress, as in blood vessels or lungs, microfluidic devices [159–162] and mechanical stretch-
ers [163–166] can be used. In these devices, the cell usually experiences a shear stress,
resulting from the strained (stretched) substrate or the moving fluid. This shear stress
leads to mechanical strain of the cell. Monitoring the biochemical consequences of the
cellular strain induced by these techniques allows for the investigation of biomechani-
cal signaling pathways. Altering the substrate stiffness in mechanical stretchers adds a
further dimension to these investigations. With this, it is possible to apply constant or
cyclic forces to single cells or layers and observe cellular responses, like the activation of
mechano-sensitive piezo1 ion channels [29].

3.2. Passive Cellular Force Mapping

Passive cellular force mapping techniques use special molecules, particles, or sub-
strates, instead of actively applying forces to cells. Monitoring the cells´ adaptive behavior
and shape changes is then used to calculate the cellular mechanics.

Observing the cellular forces of adherent cells on elastic substrates requires the tracking
of substrate displacement. Initially, this was achieved by monitoring the wrinkles caused
by cellular contraction on soft silicone substrates [167]. However, the methodology and
resolution of traction force microscopy (TFM) have been significantly improved over the
years [168]. The first improvements came with the introduction of substrates with tunable
compliance and the precise measurement of substrate stiffness [169,170]. Since it is difficult
to calculate forces from the shape of wrinkles, beads were introduced to track the substrate
deformation (Figure 4a) [171,172]. With the advancement in micropatterning, substrates
could be structured, and beads could be arranged in defined arrays. This enabled the
study of cellular forces and their relation to the focal adhesion assembly [173]. Instead of
using flat substrates, it is also possible to seed cells on micropillars (Figure 4b) [174] for the
accurate tuning of the substrate stiffness [175] and precise calculation of the cellular forces
exerted on individual pillars [176]. The relation between the force F applied by a cell to
one pillar and the deflection δ is given by:

F =
3EIδ

L3 (2)

where E is the Young’s modulus, I is the moment of inertia, and L is the pillar length [174].
Figure 5a depicts a smooth muscle cell sitting on top of such a micropillar array (from Tan
et al. [174]). The fluorescently stained fibronectin allows for the calculation of the force
applied by the cells. Additional staining of focal adhesion protein vinculin (Figure 5b,
from [174]) revealed a relation between the generated force and the area of focal adhesion
staining per post (Figure 5c). Since tracking of the micropillar displacement can be chal-
lenging, improvements have been made by introducing nanoparticles for large-area and
high-precision tracking [177]. Besides seeding cells on a deformable substrate, it has also
been shown that subcellular forces created by individual adhesive contacts can be measured
by allowing adherent cells to attach to the lever of a specifically micromachined device [178].
TFM can further be used to study cell aggregates and tissue [179], and techniques have
been developed that can track forces of cells embedded in gels, which allow for the study
of stresses in three-dimensional systems mimicking physiological conditions [180]. TFM
substrates can also be incorporated into many other devices [181], including microfluidic
channels [182,183] or cell stretchers [184], and have been used to study force generation
during morphogenesis [185]. While it is difficult to track forces inside tissues due to the
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lack of a substrate, droplets have been introduced into tissues, and their deformation has
been used to determine cell-generated forces [186].
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Figure 4. Schematics of passive methods to measure cellular forces and mechanical properties. (A) Embedding fluorescent
beads in substrates with a known compliance allows for the mapping of cellular traction forces. (B) The deformation
of micropillars by cells seeded on top of them can be used to calculate discrete cellular traction forces. (C) Specifically
engineered molecular tension sensors based on Förster-Resonance-Energy-Transfer can be utilized to measure forces at
cell-substrate contacts. (D) In passive micro-rheology, the movement of beads taken up by cells, which is caused by
Brownian motion, allows for the study of the viscoelastic properties of cells.

Förster-Resonance-Energy-Transfer (FRET) has been applied to track cellular forces.
Initially, FRET-based sensors were developed as molecular tension sensors [187,188]. Since
then, they have been used to measure force transmission in cells [189] at cell–substrate [190]
and at cell–cell [191] contacts. In FRET, two fluorophores in close proximity can undergo
an efficient energy transfer when the donor is excited. The transfer rate is dependent
on the distance between the two molecules and allows for a precise measurement of
distance changes. This can be used to create artificial molecular tension sensors for TFM
(Figure 4c) [188], but it also allows for tension measurements on molecules participating
in the mechanotransduction inside cells by attaching donor and acceptor fluorophores
to specific molecules [192,193]. Here, the strain is directly measured: the FRET signal
only changes when the distance between fluorophores changes. Hence, it can be directly
measured how externally applied stress leads to internal cellular strain. Göhring et al. [194]
designed a FRET-based molecular force sensor that connects a glass-supported lipid bilayer
to a T-cell receptor (Figure 5d). The present forces lead to a stretching of the sensor, which
moves the acceptor and donor fluorophore further apart from each other and reduces the
FRET efficiency (Figure 5e).
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Figure 5. Passive cellular force sensors. (A) Confocal image of a smooth muscle cell on a micropillar substrate. Fibronectin
staining (red) allows for the calculation of cellular forces (white arrows.). (B) Immunofluorescence staining of vinculin for
the calculation of focal adhesion areas. (C) The exerted forces on each pillar in relation to the focal adhesion area per post.
(Inset) Deflection of a post due to cellular force. (D) Illustration of a Förster-Resonance-Energy-Transfer (FRET)-based force
sensor. (E) The exerted force leads to a stretching of the sensor, which results in a reduced FRET efficiency. (A–C) were
adapted with permission from [174]. Copyright (2003) National Academy of Sciences, U.S.A. (D–E) were adapted from.

Another tool to determine mechanical properties in cells is passive micro-rheology. In
contrast to its active counterpart, which uses magnetic tweezers to apply forces (see above),
passive micro-rheology uses internalized microparticles that move through Brownian
motion (Figure 4d). In these measurements, no strain or stress is actively induced in the
cells. However, if they are combined with devices like microfluidic chambers, the effect
of stress or strain on cellular mechanics can be probed. This allows for the study of the
dynamic forces inside the cytoplasm and determination of the physical properties of the
cytoskeletal network [195–199]. Passive micro-rheology can also be conducted with cells
on different substrates, including micropatterned ones [200].

While most methods use some kind of probe or sensor to test cellular responses,
novel techniques are able to directly infer forces via label-free imaging. Polarization
microscopy allows for image stress anisotropy, which leads to a differences in refractive
indices, called birefringence [201]. This can be used to study the substrate deformation
caused by cellular traction forces, but also to determine the stress anisotropy in cells [202].
Brillouin microscopy is another emerging, non-invasive imaging technique that allows
for the determination of viscoelastic properties in three dimensions [203]. It is based on
the effect that acoustic phonons have due to density fluctuations, which can interact with
light and lead to spectral changes caused by scattering. These spectral shifts reveal the
states of photons, which can be used to determine viscoelastic properties [204]. A major
advantage of this technology is that it can be applied over various scales, ranging from the
sub- (intracellular) to the multicellular/tissue scale.
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In cell aggregates and tissue, stresses can also be inferred from observing cell shapes
and curvatures at cell–cell contacts [205]. Known as force inference, this method has
improved over the years due to computational advances [206–208]. It has especially found
an application in the study of morphogenetic movements [209].

4. Outlook

The lung is one of the organs where the mechanical properties of cells and extracellular
matrix are tightly connected to the physiological function. The well-orchestrated interplay
between different cell types in the lung, together with the three-dimensional, optimized
architecture [210] poses a great challenge in terms of correlating quantitative measurements
of cellular and extracellular stress and strain and its relation to physiology. The above-
described techniques are fundamental for understanding the intricate interplay between
mechanical load, cellular deformation, matrix remodeling, and the physiological function
of the lung. So far, the techniques suffer from a low throughput and technical complexity,
and they are often restricted to individual cells or smaller cellular units. Apart from
further improving active and passive force measurement technologies, it will be of great
importance to not only understand the effect of stress and strain on individual cells, but
also to correlate these data with multi-cellular assays that also involve the extracellular
matrix [211,212]. In particular, the measurement of the strain and forces in organs or whole
organisms is urgently needed [213]. Many additional organs, like the bladder, heart, skin,
or bone, are constantly exposed to a variety of forces. These forces are strongly coupled for
function and are related to the stiffness of the tissues. Understanding and leveraging the
mechanobiological response of tissue therefore bears great potential in fields ranging from
stem cell reprogramming [214] to tissue engineering [215].
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