
ORIGINAL RESEARCH
published: 26 August 2021

doi: 10.3389/fcvm.2021.709741

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 August 2021 | Volume 8 | Article 709741

Edited by:

Joy Lincoln,

Medical College of Wisconsin,

United States

Reviewed by:

Kristyn Simcha Masters,

University of Wisconsin-Madison,

United States

Ernesto Greco,

Sapienza University of Rome, Italy

*Correspondence:

Yan Liu

liuyan_ivy@126.com

Ke Yang

ykk_ykkk@126.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Heart Valve Disease,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 14 May 2021

Accepted: 23 July 2021

Published: 26 August 2021

Citation:

Xiao F, Zha Q, Zhang Q, Wu Q,

Chen Z, Yang Y, Yang K and Liu Y

(2021) Decreased Glucagon-Like

Peptide-1 Is Associated With Calcific

Aortic Valve Disease: GLP-1

Suppresses the Calcification of Aortic

Valve Interstitial Cells.

Front. Cardiovasc. Med. 8:709741.

doi: 10.3389/fcvm.2021.709741

Decreased Glucagon-Like Peptide-1
Is Associated With Calcific Aortic
Valve Disease: GLP-1 Suppresses the
Calcification of Aortic Valve
Interstitial Cells
Fan Xiao 1†, Qing Zha 1†, Qianru Zhang 1†, Qihong Wu 2, Zhongli Chen 2, Ying Yang 3,

Ke Yang 2* and Yan Liu 1*

1Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai,

China, 2Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai,

China, 3Department of Endocrinology, The Second People’s Hospital of Yunnan Province, Kunming, China

Objectives: This study explores the concentration and role of glucagon-like peptide-1

(GLP-1) in calcific aortic valve disease (CAVD).

Background: Calcific aortic valve disease is a chronic disease presenting with aortic

valve degeneration and mineralization. We hypothesized that the level of GLP-1 is

associated with CAVD and that it participates in the calcification of aortic valve interstitial

cells (AVICs).

Methods: We compared the concentration of GLP-1 between 11 calcific and 12 normal

aortic valve tissues by immunohistochemical (IHC) analysis. ELISA was used to measure

GLP-1 in serum of the Control (n = 197) and CAVD groups (n = 200). The effect of

GLP-1 on the calcification of AVICs and the regulation of calcific gene expression were

also characterized.

Results: The GLP-1 concentration in the calcific aortic valves was 39% less than that

in the control non-calcified aortic valves. Its concentration in serum was 19.3% lower

in CAVD patients. Multivariable regression analysis demonstrated that GLP-1 level was

independently associated with CAVD risk. In vitro, GLP-1 antagonized AVIC calcification

in a dose- and time-dependent manner and it down-regulated RUNX2, MSX2, BMP2,

and BMP4 expression but up-regulated SOX9 expression.

Conclusions: A reduction in GLP-1 was associated with CAVD, and GLP-1 participated

in the mineralization of AVICs by regulating specific calcific genes. GLP-1 warrants

consideration as a novel treatment target for CAVD.

Keywords: glucagon-like peptide-1, calcific aortic valve disease, calcification, aortic valve interstitial cells, age

INTRODUCTION

Glucagon-like peptide-1 (GLP-1), a hormone of 30 amino acids, is derived from proglucagon (1).
It can increase insulin’s sensitivity in regulating blood glucose (2), which is an effect that partially
reverses aging-related degenerative disease (3). Calcific aortic valve disease (CAVD) is a common
and chronic heart valve disease (4) that exhibits aortic valve thickening and calcification (5).

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2021.709741
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2021.709741&domain=pdf&date_stamp=2021-08-26
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:liuyan_ivy@126.com
mailto:ykk_ykkk@126.com
https://doi.org/10.3389/fcvm.2021.709741
https://www.frontiersin.org/articles/10.3389/fcvm.2021.709741/full


Xiao et al. GLP-1 Associated With CAVD

Calcific aortic valve disease involves chronic inflammatory
responses (6), lipid accumulation (7, 8), extracellular matrix
rebuilding (9, 10), and osteogenic-related gene activation (11, 12).
Glucagon-like peptide-1 has shown benefits on cardiovascular
function in both preclinical and clinical studies (13–15).
Furthermore, a 5-week infusion of GLP-1 (2.5 pmol/kg/min)
added to standard therapy in patients with heart function of
New York Heart Association class III/IV improved the LV
ejection fraction in both diabetic and non-diabetic patients (16).
However, the relationship between GLP-1 and CAVD has not
been elucidated.

Valve interstitial cells (VICs) are heterogeneous cells
that present various phenotypes (myofibroblasts, fibroblasts,
and smooth muscle-like cells) and they participate in the
physiological function of the aortic valve (17). For instance, the
risk factors for CAVD evoke osteogenic signaling, which turn
innate quiescent valve interstitial cells (qVICs) into activated
valve interstitial cells (aVICs) and facilitate them to differentiate
into osteoblastic valve interstitial cells (obVICs) (4, 18, 19).
Glucagon-like peptide-1 suppresses vascular smooth muscle cell
(VSMC) mineralization by reducing osteogenic gene expression
and activating arterial calcification (20). The phenotypic changes
in VICs are the main cytological events leading to aortic valve
calcification; however, whether GLP-1 regulates the phenotype
of VICs is unknown.

In this work, we hypothesized that GLP-1 is differentially
regulated in the serum and tissue of CAVD patients and that its
concentration is associated with aortic valve calcification.

MATERIALS AND METHODS

Patients
We performed a retrospective study on 200 aortic valves
with calcific degeneration (CAVD) and 197 without calcific
degeneration between January 2013 and August 2014 in
patients recruited from the database of Shanghai Rui Jin
Hospital who underwent echocardiographic screening.
According to recommendations of the American Society of
Echocardiography during hospitalization and patients entered
into the screening procedure (21), and underwent standard
transthoracic echocardiography and Doppler flow imaging.
Calcific aortic valve disease was defined as opaque leaflets with
focal areas of mild thickening and increased stiffness with or
without an elevated peak trans-aortic valve flow velocity (≥2.0
m/s) (22) (Figure 1). Patients with a history of rheumatic disease,
endocarditis, or an inflammatory disease were excluded. Detailed
medical and family histories were recorded, and fasting blood
samples were collected during physical check-up. The diagnosis
of type 2 diabetes, hypertension, and coronary artery diseases
(CAD)was made according to corresponding criteria of the
American Diabetes Association (23), hypertension (24), and
CAD (25) guidelines.

Human aortic valves with calcification were obtained from
11 patients who underwent valve replacement. Aortic valve
leaflets were collected from the explanted hearts of 12 patients
undergoing heart transplantation as normal aortic valves. The
study protocol was approved by the Ethics Committee of Ruijin

FIGURE 1 | A representative echo image of non-CAVD (upper) and CAVD

(bottom).

Hospital, Shanghai Jiaotong University School of Medicine, and
written informed consent was obtained from all patients.

Reagents and Antibodies
A High Sensitivity GLP-1 Active ELISA Kit (Cat# EZGLPHS-
35K, Millipore, MA, USA) was used to measure GLP-1 in
serum. Recombinant GLP-1 peptide (Human, Cat #SCP0153), a
3,3′-Diaminobenzidine Liquid Substrate System (Cat# D3939),
an Alkaline Phosphatase Diethanolamine (ALP) Activity Kit
(Cat# AP0100), Alizarin Red S (Cat# A5533), and a Masson
Stain Kit (Cat# HT15) were purchased from Sigma-Aldrich
(MO, USA). Primary antibodies were used to detect GLP-1
(Cat# ab22625, Abcam, MA, USA), RUNX2 (Cat# 12556, Cell
Signaling Technology, MA, USA), MSX2 (Cat# ab69058, Abcam,
MA, USA), SOX9 (Cat# 82630, Cell Signaling Technology,
MA, USA), BMP2 (Cat# ab14933, Abcam, MA, USA), BMP4
(Cat# ab39973Abcam, MA, USA), and β-actin (Cat# 4970,
Cell Signaling Technology, MA, USA) in immunohistochemical
(IHC) or immunoblot assays. The secondary antibodies were
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horseradish peroxidase (HRP)-conjugated anti-rabbit antibodies
(Cat# 7074, Cell Signaling Technology, MA, USA) or Alexa Fluor
594- or Alexa Fluor 488-conjugated anti-rabbit antibodies (Cat#
R37119 or Cat# A27034, Thermo Fisher Scientific, NY, USA).
Fetal bovine serum (FBS, Cat# 16000044), DMEM:F12 culture
medium, penicillin, and streptomycin were from Gibco BRL
(NY, USA).

Primary Aortic Valve Interstitial Cell Culture
Human aortic valve leaflets from the explanted hearts were
gathered to culture the primary aortic valve interstitial cells
(AVICs) (26). Briefly, valve leaflets were subjected to collagenase
digestion and gently scraped to expose the endothelial layer. The
leaflets were then cut into microscopic pieces (1–2 mm2) and
cultured in DMEM:F12 (1:1) supplemented with 20% FBS, L-
glutamine (2 mmol/L), penicillin (100 U/ml), and streptomycin
(100µg/ml). Cells were grown with 5% CO2 at 37◦C. Upon
reaching 80% confluency, the AVICs were passaged using
trypsin-EDTA. AVICs between passage 3 and 8 were used
for experiments.

Immunohistochemistry
Human calcific (n = 11) and non-calcific aortic valves (n =

12) were used for histological and immunochemical analysis.
Samples were fixed in 4% paraformaldehyde overnight and cut
into serial cryosections (5µm thickness). Sections were used for
hematoxylin and eosin (H&E) staining, Alizarin Red S staining,
and Masson trichrome staining. Glucagon-like peptide-1 in the
valves was detected by IHC using anti-GLP-1 antibody (1:50).
After incubation with HRP-conjugated secondary antibodies
(1:100), sections were incubated with 3,3′-diaminobenzidine.

The sections of primary AVICs were used for
immunofluorescence analysis. The cells were immune-stained
with anti-RUNX2 (1:50), anti-MSX2 (1:50), anti-SOX9 (1:50),
anti-BMP2 (1:50), or anti-BMP4 (1:50) for 12 h at 4◦C and
incubated with Alexa Fluor 549- or Alexa Fluor 488-conjugated
secondary antibody (1:1,000).

In vitro Calcification of AVICs
Primary AVICs were isolated from the human aortic valve. Aortic
valve interstitial cell calcification was induced in osteogenic
medium containing DMEM and supplemented with 15% FBS,
50 mg/ml ascorbate-2-phosphate, 10 nM dexamethasone, and
10mM β-glycerol phosphate (27). The culture medium was
changed every 48–72 h, and the cells were harvested for 3
weeks. Aortic valve interstitial cell calcification was determined
by Alizarin Red S staining. The cells were washed in distilled
water and then exposed to freshly prepared 2% Alizarin
Red S (pH to 4.1–4.3) for 5min (red/orange as positive
staining). For quantitative analysis of Alizarin Red S staining,
the dye was released from the cell matrix by incubating
with cetylpyridinium chloride for 15min. The released dye
was quantified by spectrophotometry at 540 nm. Alkaline
Phosphatase Diethanolamine activity was determined using the
spectrophotometric measurement of the p-nitrophenol level in
the AVICs (28). The amount of Alizarin Red S staining and ALP
activity were normalized to the total amount of cellular protein.

TABLE 1 | Baseline characteristics of aortic valves obtained from patients.

Variable Non-CAVD

(n = 12)

CAVD

(n = 11)

p

Age, years 62 (58–66) 72 (65–77) <0.01

BMI, kg/m2 26 (24–27) 23 (21–25) 0.02

Male, n (%) 10 (83) 10 (91) NS

Smoking status, n

(%)

2 (17) 3 (27) NS

Alcohol

consumption, n (%)

1 (8) 3 (27) NS

Hypertension, n (%) 8 (67) 7 (64) NS

CHD, n (%) 12 (100) 11 (100) NS

DM, n (%) 3 (25) 0 (0) NS

SBP, mmHg 141 (129–156) 131 (115–143) NS

DBP, mmHg 80 (71–88) 72 (58–78) NS

Fasting glucose,

mmol/L

4.96 (4.12–5.94) 5.40 (4.88–5.88) NS

HbA1c, % 6.5 (5.8–7.0) 5.7 (5.5–6.0) 0.03

TG, mmol/L 1.77 (1.06–2.48) 1.35 (0.69–1.96) NS

TC, mmol/L 4.07 (3.03–4.81) 4.59 (3.37–5.55) NS

HDL-c, mmol/L 0.88 (0.67–1.06) 1.08 (0.94–1.26) 0.04

LDL-C, mmol/L 2.55 (1.60–3.44) 2.78 (1.77–3.17) NS

Lp(a), g/L 0.21 (0.07–0.30) 0.30 (0.10–0.31) NS

BUN, mmol/L 5.17 (4.33–5.80) 6.55 (4.20–8.20) NS

SCr, µmol/L 83.08 (78–91) 104.55

(76.00–123.00)

NS

eGFR, ml/min 84.18 (81.25–89.88) 67.89 (52.70–88.60) NS

Cystatin, mg/L 1.10 (0.89–1.20) 1.39 (1.14–1.72) 0.04

Ca, mmol/L 2.22 (2.13–2.32) 2.18 (2.07–2.31) NS

P, mmol/L 1.17 (1.09–1.29) 0.99 (0.85–1.14) 0.02

Aortic valve area,

cm2

– 0.74 ± 0.07 –

Aortic mean

gradient, mmHg

– 47 ± 3 –

Glucose lowering

therapy, n (%)

3 (25) 0 (0) NS

Statins, n (%) 11 (92) 11 (100) NS

Continuous variables are presented as the median (25th−75th percentile), and categorical

variables are expressed as n (%). For continuous variables, Mann-Whitney U-tests were

performed to assess differences. Differences in proportions were analyzed by 2 × 2

chi-square tests.

Quantitative Real-Time PCR
Total RNA was extracted as described above. Briefly, 5 µg of
total RNA was reverse-transcribed into cDNA using a reverse
transcription system (Promega, WI, USA). PCR amplification
was performed with Power SYBR Green PCR Master Mix
(Applied Biosystems, CA, USA) in a StepOne system (Applied
Biosystems). The oligonucleotides used in quantitative real-time
PCR analysis are listed in Supplementary Table 1. The gene
expression levels were normalized to beta-actin, and the data
were analyzed with StepOne software v2.1 (Applied Biosystems).

Western Blot
Cells were lysed with the ProteoJET Mammalian Cell Lysis
Reagent (Fermentas, MD, USA) to extract cytoplasmic proteins.
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FIGURE 2 | The distribution of GLP-1 in aortic valves with or without calcification. Human aortic valves with calcification (n = 11) that underwent valve replacement

operation and without calcification (n = 12) undergoing heart transplantation were assessed by histological and immunochemical analysis. (A) Sections were stained

with hematoxylin and eosin, Alizarin Red S, and Masson trichrome staining. IHC stains of GLP-1 and counterstained with hematoxylin. The results of the Non-CAVD

valves (left line) are shown at 100× magnification, and the results of CAVD (right line) are shown at 20× magnification. (B) The concentration of GLP-1 detected by

IHC was determined by assessing its staining with Image-Pro Plus 6.0. The results are shown as the integrated optical density (IOD)/area. The Non-CAVD (n = 12)

and CAVD valves (n = 11) are representative of three independent experiments, and five different fields in each section were detected (the P-value was control valves

compared with CAVD).

Equal amounts of protein extracts were subjected to 10%
SDS/PAGE and blotted onto a poly (vinylidene difluoride)
membrane. The membrane was blocked and probed overnight
at 4◦C with antibodies against RUNX2 (1:1,000), MSX2
(1:1,000), SOX9 (1:100), BMP2 (1:500), BMP4 (1:500),
and β-actin (1:2,000), followed by incubation with HRP-
conjugated secondary antibodies (1:5,000) for 1 h at room
temperature. Blots were developed using an ECL detection
system (Millipore, MA, USA). Each image was captured
and the intensity of each band was analyzed with Quantity
One (Bio-Rad).

Statistical Analysis
We performed statistical analyses with SPSS software (version
20). All tests were two-tailed, and a p-value of <0.05 was
regarded as statistically significant. Demographic and clinical
characteristics were compared between the CAVD and
non-CAVD groups. Fisher’s exact test was employed for
categorical variables, and a two-independent-samples t-test
or Wilcoxon rank-sum test was employed for numerical
variables to evaluate between-group differences. To analyze
risk factors for CAVD, candidate variables were decided a
priori by referral to previous reports. Using these variables,
we performed multivariable logistic regression analyses
with a backward stepwise selection procedure. Odds ratios
(ORs) and 95% CIs were calculated. For ALP and ALZ,
repeated-measures ANOVA with the group as a fixed
factor was employed to compare the differences between
two groups.

RESULTS

Distribution of GLP-1 in Calcific Aortic
Valve
Based on the histological analysis, the calcific aortic valve
exhibited structural thickening, mineralization and ECM
remodeling (Figure 2A) and the demographic and clinical
characteristics of the study participants were summarized in
Table 1. The IHC analysis showed that GLP-1 was mainly evenly
distributed in the rich region of VICs of control aortic valves,
but GLP-1 was prominently distributed in the non-mineralized
areas of calcific aortic valves (Figure 2A). The integrated optical
density (IOD) of the GLP-1 level was calculated in 12 control
valves and 11 calcific aortic valves. Compared with the control
valves, the concentration of GLP-1 decreased in the calcific aortic
valves by 39% (CAVD: 5,606± 750.4; vs. Control valves: 9,170±
695.9; P = 0.0042) (Figures 2A,B).

GLP-1 Regulates Calcification of AVICs
Based on the GLP-1 concentration of patients’ serum in this
study (Table 2), we treated AVICs with different doses of GLP-1
to identify the effect of GLP-1 on calcification in vitro. Alizarin
Red S staining showed that the osteogenic medium (used in
the Controls) induced AVIC mineralization, but a higher dose
(25–100 pmol/L) of GLP-1 reversed the calcification of AVICs
(Figure 3A). The Alizarin Red S dilution results [Control= 213.5
± 9.248 µg/mg; GLP-1 (12.5 pmol/L)= 203.7± 7.535 µg/mg vs.
Control, P = 0.318; GLP-1 (25 pmol/L) = 176.3 ± 5.754 µg/mg
vs. Control, P = 0.033; GLP-1 (50 pmol/L) = 149.7 ± 7.632
µg/mg vs. Control, P = 0.007; GLP-1 (100 pmol/L) = 101.7 ±
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TABLE 2 | Clinical characteristics of the control and CAVD groups.

Control

(n = 197)

CAVD

(n = 200)

P

Age, yrs 59.02 ± 8.59 74.14 ± 7.67 <0.001

Male, n (%) 111 (56.3) 123 (61.5) NS

Body mass index, kg/m2 24.65 ± 3.39 25.13 ± 3.46 NS

Active smokers, n (%) 59 (29.9) 48 (24.0) NS

Alcohol, n (%) 27 (13.7) 18 (9.0) NS

Hypertension, n (%) 127 (64.5) 154 (77.0) 0.008

Diabetes, n (%) 63 (32.0) 61 (30.5) NS

Coronary heart disease, n

(%)

134 (68.0) 177 (88.5) <0.001

Systolic blood pressure,

mmHg

77.07 ± 11.70 74.42 ± 11.43 0.023

Diastolic blood pressure,

mmHg

131.49 ± 17.73 139.78 ± 20.68 <0.001

Fasting glucose, mmol/L 5.48 ± 1.86 5.52 ± 2.21 NS

HbA1c, % 6.21 ± 1.167 6.38 ± 1.23 NS

Triglycerides, mmol/L 1.78 ± 1.13 1.56 ± 0.86 0.025

Total cholesterol, mmol/L 4.08 ± 1.06 3.91 ± 1.19 NS

LDL, mmol/L 1.13 ± 0.26 1.07 ± 0.29 0.044

HDL, mmol/L 2.39 ± 0.88 2.32 ± 0.98 NS

Lipoprotein(a), g/L 0.12 (0.20) 0.14 (0.30) 0.026

γ-Glutamyl

transpeptidase, U/L

19.00 (20.00) 21.00 (14.00) NS

Blood urea nitrogen,

mmol/L

5.06 ± 1.29 6.03 ± 2.40 <0.001

Creatinine, mmol/L 74.07 ± 16.07 86.38 ± 24.25 <0.001

eGFR(CKD-EPI), mL/min 90.39 ± 17.62 72.29 ± 18.23 <0.001

Peak aortic transvalvular

velocity, m/s

2.10 ± 0.21 2.14 ± 0.22 NS

Systolic pulmonary artery

pressure, mmHg

34.81 ± 2.25 35.21 ± 1.98 NS

Aortic valve mean

gradient, mmHg

4.51 ± 1.01 4.72 ± 1.12 NS

Metformin, n (%) 35 (17.8) 28 (14.0) NS

Statin, n (%) 163 (82.7) 167 (83.5) NS

GLP-1, pmol/L 14.00 (9.68) 11.29 (6.75) <0.001

Values are expressed as the mean ± SD, number (%), or median (interquartile range).

CAVD, calcific aortic valve disease; HDL, high-density lipoprotein; LDL, low-density

lipoprotein; NS, not significant.

8.950 µg/mg vs. Control, P = 0.001] and the activation of ALP
[Control=605.5 ± 20.53 U/mg; GLP-1 (12.5 pmol/L) = 595.7 ±
18.26 U/mg vs. Control, P= 0.513; GLP-1 (25 pmol/L)= 519.5±
12.73 U/mg vs. Control, P = 0.002; GLP-1 (50 pmol/L) = 358.7
± 17.94 U/mg vs. Control, P = 0.001; GLP-1 (100 pmol/L) =
218.3 ± 12.41 U/mg vs. Control, P < 0.001] also showed that
GLP-1 reduced AVIC calcification in a dose-dependent manner
(Figures 3B,C).

In vitro, the AVICs were calcified over various periods from
7 to 21 days to mimic the process of aged-induced calcification.
For further affirming GLP-1 regulated calcification of AVICs
with time, we also treated AVICs with 100 pmol/L GLP-1 to
identify the time-dependent effect of GLP-1 on calcification from

7 to 21 days. Alizarin Red S staining showed that the extent
of calcification rapidly and significantly increased with the time
extension (7 days = 129.0 ± 9.2 µg/mg, 14 days = 161.0 ± 6.4
µg/mg, and 21 days= 218.5± 7.6 µg/mg compared with 7 days:
P < 0.01); however, GLP-1 significantly weakened this tendency
(respectively, 79.0 ± 7.1, 91.3 ± 10.8, and 108.3 ± 10.5 µg/mg
compared with the same groups without GLP-1 treatment: P <

0.01) (Figures 4A,B). Compared with the Control groups (7 days
= 350.8 ± 28.2 U/mg, 14 days = 495.8 ± 37.2 U/mg, 21 days =
624.8 ± 40.9 U/mg, compared with 7 days: P < 0.01), a similar
effect of GLP-1 with age (GLP-1: 7 days = 147.2 ± 21.3 U/mg,
14 days= 174.3± 19.1 U/mg, and 21 days= 212.8± 26.5 U/mg
compared with same groups without GLP-1 treatment: P < 0.01)
was demonstrated in the ALP activation test (Figure 4C).

GLP-1 Regulated Calcification-Related
Gene Expression
Many genes participated in AVIC mineralization, RUNX2 (29),
MSX2 (30), and SOX9 (31) act as nuclear transcription factors to
regulate downstream gene transcription. For example, the target
genes BMP2 and BMP4 (32) promoted calcification of AVICs.
Thus, we tested whether GLP-1 inhibited AVIC calcification by
regulating the expression of these genes. First, themRNA levels of
RUNX2, MSX2, SOX9, BMP2, and BMP4 were detected by real-
time PCR. Glucagon-like peptide-1 decreased the transcription
of RUNX2 by 62% (Control = 1.01 ± 0.02 vs. GLP-1 = 0.38 ±

0.04, P < 0.01),MSX2 by 54% (Control = 1.00 ± 0.02 vs. GLP-1
= 0.46 ± 0.06, P < 0.01), BMP2 by 46% (Control = 1.00 ± 0.01
vs. GLP-1 = 0.54 ± 0.06, P < 0.01), and BMP4 by 59% (Control
= 1.01 ± 0.03 vs. GLP-1 = 0.41 ± 0.02, P < 0.01) but increased
SOX9 2.01-fold (Control= 1.00± 0.02 vs. GLP-1= 2.01± 0.14, P
< 0.01) (Figure 5A). Second, the distributions of RUNX2, MSX2,
SOX9, BMP2, and BMP4 were identified by immunofluorescence
in AVICs. RUNX2, MSX2, and SOX9 were located in the nucleus;
BMP2 and BMP4 were expressed throughout the cells. GLP-1
also reduced the levels of RUNX2, MSX2, BMP2, and BMP4 but
induced SOX9 (Figure 5B). Finally, the concentrations of these
proteins were measured by western blot and analyzed by the IOD
value (ratio of proteins/β-actin). GLP-1 decreased the expression
of RUNX2 by 49% (Control = 2.21 ± 0.09 vs. GLP-1 = 1.12 ±

0.17, P < 0.01), MSX2 by 53% (Control = 1.75 ± 0.08 vs. GLP-1
= 0.83 ± 0.07, P < 0.01), BMP2 by 57% (Control = 1.38 ± 0.13
vs. GLP-1 = 0.60 ± 0.10, P < 0.01), and BMP4 by 48% (Control
= 1.70 ± 0.09 vs. GLP-1 = 0.89 ± 0.16, P < 0.01) but increased
SOX9 1.98-fold (Control= 0.90± 0.13 vs. GLP-1= 1.78± 0.13,
P < 0.01) (Figure 5C).

Clinical Characteristics and GLP-1 Level in
Serum of Non-CAVD and CAVD Groups
Previous results showed the concentration of GLP-1 decreased
in valves of CAVD patients. In vitro, GLP-1 reversed
mmineralization of AVICs with dose- and time-dependent
manner, and GLP-1 downregulated pro-calcification genes
expression but upregulated anti-calcification genes expression.
The serum of CAVD (n = 200) and non-CAVD (n = 197) were
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FIGURE 3 | GLP-1 inhibits AVIC calcification. In osteogenic medium, the primary AVICs were incubated with increasing doses (12.5, 25, 50, and 100 pmol/L for 21

days) of GLP-1. The group without the GLP-1 treatment was used as a control (Con). (A) Alizarin Red S was used to stain the calcification cells. The pictures were

taken using Image-Pro Plus 6.0. Alizarin Red S staining is shown at 400× magnification. (B) Quantification of Alizarin Red S staining. (C) Quantification of ALP

activation in AVICs. The dye was extracted and quantified as described in the Methods section (n = 6, mean ± SD, *P < 0.05, **P < 0.01 compared with Con).

FIGURE 4 | GLP-1 postpones the age-induced mineralization of AVICs. To determine the effect of GLP-1 on age-induced mineralization in AVICs, primary AVICs were

cultured for 7, 14, and 21 days in osteogenic medium plus GLP-1 (100 pmol/L) or not. The group without the GLP-1 treatment was used as a control (Con). (A)

Alizarin Red S stained the calcification cells, and the pictures were taken using Image-Pro Plus 6.0. Alizarin Red S staining is shown at 400× magnification. (B)

Quantification of Alizarin Red S staining. (C) Quantification of ALP activation in AVICs. The dye was extracted and quantified as described in the Methods section (n =

6, mean ± SD, **P < 0.01 compared with Con; #P < 0.05, ##P < 0.01 compared with 7-day culture; @P < 0.05, @@P < 0.01 compared with 14-day culture).
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FIGURE 5 | GLP-1 regulates the expression of calcification-related genes. The primary AVICs were stimulated with or without GLP-1 (100 pmol/L) for 21 days in

osteogenic medium. The group without the GLP-1 treatment was used as a control (Con). (A) RUNX2, MSX2, SOX9, BMP2, and BMP4 were detected by real-time

PCR. (B) The protein expression and location of RUNX2, MSX2, SOX9, BMP2, and BMP4 were determined by immunofluorescence analysis. RUNX2, MSX2, and

SOX9 were assessed using Alexa Fluor 488-conjugated secondary antibody (Green); BMP2 and BMP4 were assessed using Alexa Fluor 549-conjugated secondary

antibody (Red). (C) RUNX2, MSX2, SOX9, BMP2, and BMP4 were detected by western blot. The results are representative of three independent experiments.

Real-time PCR (A) and western blot (C) quantified as relative units (genes or proteins/β-actin) (n = 3, mean ± SD, **P < 0.01 compared with Con).

collected to analysis the relationship of GLP-1 concentration
and CAVD.

The demographic and clinical characteristics of the study
participants were summarized in Table 2. Compared with the
non-CAVD group, the patients in the CAVD group had a higher
age range (non-CAVD: 59.02 ± 8.59 years vs. CAVD: 74.14
± 7.67 years; P < 0.001), percentage of hypertension (non-
CAVD: 64.5% vs. CAVD: 77.0%; P= 0.008), and rate of coronary
heart disease (non-CAVD: 68.0% vs. CAVD: 88.5%; P < 0.001).
There were no significant difference in sex, body mass index
(BMI), active smoking, alcohol, percentage of diabetes, fasting
glucose, HbA1c or γ-glutamyl transpeptidase between the two
groups. The diastolic blood pressure was significantly higher
in the CAVD group (Non-CAVD: 131.49 ± 17.73 vs. CAVD:
139.78 ± 20.68; P < 0.001), but the systolic blood pressure was
significantly lower (Non-CAVD: 77.07 ± 11.70 vs. CAVD: 74.42
± 11.43; P = 0.023). Calcific aortic valve disease patients had
higher lipoprotein (A) [Non-CAVD: 0.12 (0.20) vs. CAVD: 0.14
(0.30); P = 0.026] and lower triglycerides [Non-CAVD: 1.78
± 1.13 vs. CAVD: 1.56 ± 0.86; P = 0.025] and LDL (Non-
CAVD: 1.13 ± 0.26 vs. CAVD: 1.07 ± 0.29; P = 0.044), but not
total cholesterol or HDL. Renal and blood urea nitrogen (Non-
CAVD: 5.06 ± 1.29 mmol/L vs. CAVD: 6.03 ± 2.40 mmol/L;
P < 0.001), creatinine (Non-CAVD: 74.07 ± 16.07 mmol/L vs.
CAVD: 86.38 ± 24.25 mmol/L; P < 0.001), and eGFR (CKD-
EPI) (Non-CAVD: 90.39 ± 17.62 ml/min vs. CAVD: 72.29
± 18.23 ml/min; P < 0.001) exhibited significant pathogenic
propensity changes. No significant difference was observed in

terms of the medication treatment between the Non-CAVD and
CAVD groups.

Serum Similar to the IHC result for calcific aortic valves,
serum GLP-1 was significantly reduced in the CAVD group
[Non-CAVD: median = 14.00 pmol/L (25th−75th percentile
9.34–19.02 pmol/L; range 0.38–39.37 pmol/L) vs. CAVD: median
= 11.29 pmol/L (25th−75th percentile 8.17–14.92 pmol/L; range
0.05–31.93 pmol/L), P < 0.001] (Table 2).

GLP-1 as an Independent Factor for CAVD
Based on the multivariable regression analysis, age (OR =

1.255; 95% CI 1.199–1.313), fasting glucose (OR = 0.824;
95% CI, 0.702–0.968), HbA1c (OR = 1.542; 95% CI, 1.171–
2.031), HDL (OR = 0.142; 95% CI, 0.045–0.443), BUN (OR
= 1.270; 95% CI, 1.032–1.563), and GLP-1 (OR = 0.889; 95%
CI, 0.844–0.936) were independently associated with CAVD
risk (Model 1 in Table 3). When the GLP-1 quartile (median
= 12.31 pmol/L, 25th−75th percentiles 8.68–16.73 pmol/L;
range 0.05–39.37 pmol/L) in the Non-CAVD and CAVD
groups was included in Model 2 (baseline characteristics of the
Non-CAVD and CAVD groups according to GLP-1 level, see
Supplementary Table 2), the association between age, fasting
glucose, HbA1c, HDL, BUN, and CAVD remained significant.
Compared with the lowest quartile, the OR-values of the
other quartiles decreased from 0.818 to 0.115. However, only
the highest quartile (OR = 0.115; 95% CI, 0.045–0.291) was
significantly associated with lower risk of CAVD (Model 2 in
Table 3).
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Age represented a remarkable risk factor for CAVD and it
presented the largest difference from the Non-CAVD group in
this study. Therefore, the interaction between GLP-1 quartile
and age as covariates was analyzed by multivariable regression
analysis. In this analysis, age, fasting glucose, HbA1c, HDL, and
BUN remained independent risk factors associated with CAVD.
Compared with the lowest quartile, higher GLP-1 reduced the
aged-induced risk of pathogenesis from 0.996 to 0.966 (Table 4).
Only the fourth quartile (OR = 0.966; 95% CI, 0.953–0.980) was
significantly associated with CAVD (Table 4).

DISCUSSION

Although some clinical, genetic, and animal studies have
led to a partial understanding of CAVD, truly important
advancements in the disease management (such as optimal
diagnosis and treatment strategies) remain out of reach. This
area of study thus requires further investigations, especially
regarding endogenous protective factors. In this study, we found
that GLP-1, a negative independent risk factor, was decreased
in aortic valve and serum of CAVD patients. Glucagon-like
peptide-1 is also associated with reduced the odds of CAVD
and inhibited AVIC mineralization by regulating calcification
related-genes. Thus, GLP-1 exhibited protective characteristics to
antagonize CAVD.

The present study found that age, hypertension, systolic
blood pressure, diastolic blood pressure, CAVD, triglycerides,
LDL, lipoprotein (A), blood urea nitrogen, creatinine, and eGFR
(CKD-EPI) (as pathogenic factors) significantly differed between
the Non-CAVD and CAVD groups (Table 2). Among these
indicators, age (33), hypertension (4), blood pressure (4), CAD
(34), lipoprotein (A) (35), and renal function (36) have been
reported to participate in and show pathogenicity associated
with CAVD. However, there has been little research regarding
the protective factors of CAVD. For these reasons, we focused
on GLP-1, which has beneficial effects and is associated with
LV diastolic function (37), heart rate (38), cardiac remodeling
(39), blood pressure (38), lipid profile (40), and cardiovascular
disease independent of adiposity or diabetes (41). Notably, the
role of GLP-1 had not been reported in CAVD. We found that
the level of GLP-1 was not only decreased in the serum of the
CAVD group (Table 2) but was also reduced in calcified aortic
valves (Figure 2). Thus, GLP-1 may be associated with CAVD;
as expected, multivariable regression analysis found that GLP-
1 was a negative independent factor for CAVD (OR = 0.922;
95% CI, 0.887–0.958) (Table 3) and significantly weakened the
odds risk of CAVD. These results indicate that the variation in
GLP-1 concentration affects CAVD. To determine the influence
of GLP-1 concentration on CAVD, GLP-1 concentration was
divided into quartiles. The patients with the highest quartile of
GLP-1 showed the lowest rate of CAVD (31.3%, P < 0.001;
Supplementary Table 2), and the highest quartile showed a
significantly strong negative correlation with CAVD risk (OR =

0.115; 95% CI, 0.045–0.291), which demonstrated that a high
dose of GLP-1 exerted an antagonistic effect on the odds risk
of CAVD (Table 3). Thus, GLP-1 is a novel protective factor

negatively associated with CAVD, and decreases in GLP-1 lead
to the progressive calcification of the aortic valve.

Glucagon-like peptide-1 is an incretin hormone that is
secreted into the serum by enteroendocrine L-cells (distal
ileum and colon) and K-cells (duodenum and jejunum) (42);
however, we found GLP-1 in non-mineralized aortic valve
regions with or without calcified lesions, which indicates that
GLP-1 was secreted from intestinal cells and recruited to the
aortic valve to influence the function of AVICs. Glucagon-
like peptide-1 localizes to interstitial spaces and tissues to
regulate metabolic diseases, such as diabetes and obesity (43,
44); GLP-1 also regulates cell functions to protect against
cardiovascular disease. In vitro and in vivo atherosclerosis studies
demonstrate that GLP-1 promotes vasodilatation and suppresses
the inflammatory response in endothelial cells, inhibits lipid
uptake and inflammatory activity in macrophages, and represses
the proliferation of smooth muscle cell (SMCs) to prevent
atherosclerosis progression (45). In arterial calcification, similar
to bone formation, VSMCs differentiate to the osteoblastic
phenotype to play a key role in arterial calcification; however,
GLP-1 inhibits osteoblastic differentiation and calcification in
human VSMCs (20). There are several similarities between
CAVD and arterial calcification; however, AVIC heterogenization
and mineralization are key components of the cytopathology
in CAVD, and these components differ from those in arterial
calcification. In this study, the level of GLP-1 decreased by
19.3% in CAVD serum (Table 2) and 39% in calcified aortic
valve (Figure 2), which indicated that a reduction in GLP-1 in
the aortic valve caused AVIC calcification. However, whether
GLP-1 can reverse CAVD by regulating AVIC osteoblastic
differentiation and calcification was not known. To investigate
this, we added various doses of GLP-1 to AVICs during
the standard process of calcification. Glucagon-like peptide-1
significantly attenuated the density of Alizarin Red S and
the activation of ALP at higher doses (Figure 3), which
demonstrated that GLP-1 could attenuate CAVD by preventing
the mineralization of AVICs. Considering this plus the results
of Table 3, we hypothesized that high GLP-1 weakens the risk of
CAVD. Our results indicate that GLP-1 inhibits the calcification
of AVICs to exert its protective function in CAVD.

Calcific aortic valve disease is a chronic degenerative
disease that has multiple risk factors, including diabetes (46),
hypertension (4), dyslipidemia (36), and kidney disease (47). The
Multi-Ethnic Study of Atherosclerosis (MESA) found that non-
Hispanic whites had the highest frequency of CAVD, followed
by Hispanics and blacks, which indicates that CAVD presents
racial differences (48). Our study in a Chinese population found
that age, fasting glucose, HbA1c, HDL, BUN, and GLP-1 were
independent risk factors for CAVD, which indicates that age,
diabetes, dyslipidemia and renal insufficiency were associated
with CAVD in a Chinese population.
Although multiple pathogenic factors take part in CAVD,
age is an important and irreversible risk factor and has the
strongest correlation with CAVD (48). A previous study showed
that more than 50% of patients with aortic valve calcification
were older than 75 years, whereas severe stenosis was found
in 2–3% of this elderly population (49). And some reports
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TABLE 3 | Multivariable regression analysis for the risk of CAVD.

Variable B S.E. OR (95% CI) P

Model 1 Age 0.227 0.023 1.255 (1.199–1.313) <0.001

Fasting

glucose

−0.193 0.082 0.824 (0.702–0.968) 0.018

HbA1c 0.433 0.14 1.542 (1.171–2.031) 0.002

HDL −1.954 0.582 0.142 (0.045–0.443) 0.001

BUN 0.239 0.106 1.270 (1.032–1.563) 0.024

GLP-1 −0.118 0.027 0.889 (0.844–0.936) <0.001

Constant −14.442 1.831 <0.001

Model 2 Age 0.235 0.024 1.265 (1.207–1.325) <0.001

Fasting

glucose

−0.21 0.083 0.810(0.689–0.953) 0.011

HbA1c 0.422 0.142 1.525 (1.154–2.016) 0.003

HDL −2.027 0.597 0.132 (0.041–0.424) 0.001

BUN 0.214 0.107 1.239 (1.005–1.527) 0.045

GLP-1a <0.001

GLP-1a

(8.69–12.31)

−0.201 0.418 0.818 (0.361–1.855) 0.631

GLP-1a

(12.32–16.73)

−0.821 0.436 0.440 (0.187–1.034) 0.06

GLP-1a

(16.74–39.37)

−2.162 0.474 0.115 (0.045–0.291) <0.001

Constant −15.333 1.905 <0.001

Variable(s) entered in Model 1: Age, Male, Body mass index, Active smoker, Alcohol,

Hypertension, Systolic blood pressure, Diastolic blood pressure, Diabetes, Fasting

glucose, HbA1c, Coronary heart disease, Triglycerides, Total cholesterol, LDL, HDL,

Lipoprotein(a), γ-glutamyl transpeptidase, Blood urea nitrogen, Creatinine, eGFR (CKD-

EPI) and GLP-1. GLP-1a was transformed by dividing GLP-1 into quartiles. GLP-1a was

a categorical variable in the model, with the lowest quartile (0.050–8.785) as a reference

category. Variable(s) entered in Model 2: Age, Male, Body mass index, Active smoker,

Alcohol, Hypertension, Systolic blood pressure, Diastolic blood pressure, Diabetes,

Fasting glucose, HbA1c, Coronary heart disease, Triglycerides, Total cholesterol, LDL,

HDL, Lipoprotein(a), γ-glutamyl transpeptidase, Blood urea nitrogen, Creatinine, eGFR

(CKD-EPI), GLP-1a. B: unstandardized B coefficient.

shown with aged, AVICs can form calcium node (50). In our
experiments, we found in extended-duration in vitro calcification
culture, the mineralization level of AVICs increased (Figure 4).
These results illustrate that age plays a key role in CAVD
mineralization. Moreover, we previously found an effect of
GLP-1 on neuroprotection via its reversal of age-induced
neurodegeneration, such as that in Alzheimer’s and Parkinson’s
diseases (51).We observed that GLP-1 not only inhibited
mineralization but also reduced time-dependent calcification in
AVICs from 7 to 21 days (Figure 4). These results demonstrate
that the leading risk factor of CAVD may can be attenuated
by GLP-1.

RUNX2, MSX2, SOX9, BMP2, and BMP4 are important
proteins related to calcification. RUNX2 is an osteogenic
and chondrogenic transcription factor that is regulated in
multiple manners (52). RUNX2 is upregulated in atherosclerotic
calcification and endochondral mineralization programs (29).
Hydrogen peroxide activates osteogenic Cbfa1/RUNX2 (53) and
MSX2/Wnt signaling (30), thereby enhancing mineralization.
Miller et al. also found that both of these regulatory cascades

TABLE 4 | Multivariable regression analysis for the risk of GLP-1 interacting with

Age in CAVD.

Variable B S.E. OR (95% CI) P

Age 0.251 0.026 1.285 (1.222–1.351) <0.001

Fasting glucose −0.222 0.084 0.801 (0.679–0.944) 0.008

HbA1c 0.437 0.143 1.549 (1.170–2.050) 0.002

HDL −2.071 0.601 0.126 (0.039–0.409) 0.001

BUN 0.221 0.108 1.247 (1.010–1.540) 0.040

GLP-1a * Age <0.001

GLP-1a (8.69–12.31) * Age −0.004 0.007 0.996 (0.983–1.009) 0.550

GLP-1a (12.32–16.73) * Age −0.013 0.007 0.987 (0.974–1.000) 0.055

GLP-1a (16.74–39.37) * Age −0.034 0.007 0.966 (0.953–0.980) <0.001

Intercept −16.334 1.962 <0.001

GLP-1a was transformed by dividing GLP-1 into quartiles. GLP-1a was a categorical

variable in the model, GLP a * age as an interaction term with the lowest quartile (0.05–

8.68) by age as a reference category. Variable(s) entered in multivariable regression

analysis: age, male, body mass index, active smoker, alcohol, hypertension, systolic

blood pressure, diastolic blood pressure, diabetes, fasting glucose, HbA1c, coronary

heart disease, triglycerides, total cholesterol, LDL, HDL, Lipoprotein(a), γ -glutamyl

transpeptidase, Blood urea nitrogen, creatinine, eGFR (CKD-EPI), GLP-1a by age. B:

unstandardized B coefficient.

were activated in calcifying human aortic valves (54). Acharya
et al. (31) demonstrated that Notch1 maintains SOX9 expression
to inhibit osteogenic mineralization in AVICs. BMP2 and BMP4
increase the secretion of OPN by upregulating ALP, resulting
in the degradation of tissue pyrophosphate (32). Glucagon-like
peptide-1 attenuates osteoblastic differentiation and calcification
by inhibiting ALP, osteocalcin (OC), and RUNX2 in human
VSMCs (20), but whether GLP-1 regulates the expression of
MSX2, SOX9, BMP2, and BMP4 remains unknown. As we
observed in this study, GLP-1 decreased the expression of
RUNX2, MSX2, BMP2, and BMP4 but increased the expression
of SOX9 in AVICs (Figure 5), which were first suggested a
relationship between GLP-1 and these genes in the AVIC
calcification process. These results indicate that GLP-1 reversed
mineralization in AVICs via two pathways, first by inhibiting
the expression of osteogenic genes and second by promoting the
expression of anti-osteogenic genes. These results indicate that
GLP-1 reversed mineralization in AVICs via two pathways, first
by inhibiting the expression of osteogenic genes and second by
promoting the expression of anti-osteogenic genes.

This study showed that the level of GLP-1 decreased in both
the local calcific aortic valve and in the serum of CAVD patients
and that this decrease was associated with age. This indicated
that GLP-1 could have value in predicting the occurrence and
development of CAVD.

STUDY LIMITATIONS

In this study, we examined the role of GLP-1 in CAVD;
however, some in vivo experiments and details of the molecular
mechanism were lacking. We found HDL and fasting glucose
to be negative independent risk factors associated with CAVD.
HDL has anti-oxidative and anti-inflammatory properties, but
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the role of HDL in CAVD is not clear. Interestingly, our study
found that fasting glucose was associated with a reduced risk of
CAVD and that high glucose reversed AVIC calcification (data
not shown); however, the mechanisms of these effects remain
unknown. HDL and fasting glucose in CAVD will be investigated
in further studies. Moreover, as a single center cross-sectional
study with retrospective characteristic, it might be susceptible
to center biases or recall bias. Also, as a retrospective study,
the study only indicated associations but not formulate causal
relationships. Although we took multiple clinical important
cofounders into consideration, it might be possible that unknown
potential factors may be missed and it might interfere in our
findings. Finally, CAVD was only assessed by echocardiography.
Cardiac computed tomography is also another useful approach
to quantify aortic valve calcium burden. Finally, although we
carefully controlled for the major known confounders, unknown
factors may still have interfered in our findings.

Therefore, the results remained to be further confirmed
in larger sample size study with prospective randomized
controlled designs.

CONCLUSION

Valve tissue and serum from CAVD patients were characterized
with lower level of GLP-1. Clinical and cellular evidence suggests
that GLP-1 participates in the pathological calcification of the
aortic valve. Calcific aortic valve disease is highly prevalent
in the elderly, and there are currently no absolute effective
treatments to reverse its progression. This study reveals some
novel characteristics of GLP-1 and its potential therapeutic value
for CAVD.
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