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Abstract

Introduction

Manganese  (Mn) transport disorders or transportopathies 
are inherited disorders leading to excess or deficiency of Mn 
and have been reported to occur as a result of mutations in 
SLC30A10, SLC39A14, and SLC39A8 genes, This review 
highlights pathogenesis, clinical presentation, and treatment 
of Mn transporter defects [Table 1]. We also intend to sensitize 
the treating clinicians and neurologists so as when to suspect 
and investigate for these disorders, including genetic testing, in 
order to initiate appropriate therapy before there is a profound 
progression of the disease process.

Manganese in health and disease
Mn is a naturally occurring essential trace metal which serves 
as a cofactor for multiple enzymes including transferases, 
lyases, hydrolases, ligases, isomerases, and oxidoreductases, 
thereby catalyzing numerous physiological processes, 
including regulation of immune function, blood sugar and 
cellular energy, reproduction, digestion, bone growth, blood 
coagulation and homeostasis, defense against reactive 
oxygen species, and neuronal and glial cell function such 
as neurotransmitter synthesis.[1‑5] Foods rich in Mn include 
legumes, seafood, leafy green vegetables, rice, nuts, whole 
grain, seeds, chocolate, tea, spices, soybean, and some fruits 
such as pineapple and acai.[4] Most dietary supplements 
and multivitamin preparations contain Mn. Occupational 
exposure to Mn occurs in activities involving mining, 
welding, battery manufacture, and with the use of fungicides 
containing the metal in its composition, such as maneb and 
mancozeb.[3,6‑10] The levels of Mn in the environment may 
also increase secondary to the use of the gasoline additive 

methylcyclopentadienyl manganese tricarbonyl  (MMT).[11] 
Drug abuse of the injectable drug methcathinone may lead 
to Mn toxicity due to the use of potassium permanganate 
in the synthesis process.[12] Mn is also present in significant 
concentrations in both neonatal and infant formulas and 
total parenteral nutrition  (TPN), which may cause Mn 
accumulation when given for prolonged periods of time.[13‑15] 
Patients with liver failure or hepatic encephalopathy can 
develop Mn toxicity as it is excreted in the bile.[14] Iron (Fe) 
deficiency, one of the most common nutritional deficiencies, 
can also hypothetically result in Mn toxicity as Fe and Mn 
compete for similar transport protein and decreased Fe levels 
might lead to an accumulation of Mn to toxic levels over 
time.[16‑18]

Search methodology
We have conducted a narrative review using PubMed database 
which was searched and all published data available on 
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inherited disorders of Manganese transport up to June 2020 
was reviewed, using the search terms “manganese transport,” 
“inherited hypermanganesemia,” “manganese homeostasis,” 
“manganese transportopathies,” and “hereditary manganese 
diseases.” All types of studies including reviews, case series, 
and case reports were included in the review. The abstracts 
were screened for relevance to the review topic.

Determinants of Mn homeostasis
The homeostasis of Mn levels in our body is crucially regulated 
through intestinal absorption and hepatobiliary secretion of the 
metal into the gastrointestinal tract.[19] The nervous system is 
the primary target for excessive Mn. Normal physiological 
Mn concentration of Mn in the human brain is estimated to 
be 5.32–14.03 ng Mn/mg protein and 15.96–42.09 ng Mn/mg 
protein is the estimated pathophysiological threshold.[20,21] 
Excessive levels of Mn are toxic causing oxidative stress, 
impaired mitochondrial function, impaired autophagy, and 
neuronal apoptosis.[22]

Understanding of in vivo Mn homeostasis has dramatically 
expanded over the past decade with the recognition of inherited 
disorders of Mn transport. The uptake of Mn2+ into the cells  is 
facilitated by a number of membrane transporters such as 
the divalent metal transporter 1  (DMT1/SLC11A2), ZRT/
IRT‑like proteins ZIP8 (SLC39A8) and ZIP14 (SLC39A14), 
the dopamine transporter  (DAT), and calcium channels’ 
choline and citrate transporters. Mn2+ is oxidized in the blood 
by ceruloplasmin to Mn3+ which binds to transferrin (Tf) and 
is subsequently internalized through transferrin/transferrin 
receptor (Tf/TfR)‑mediated endocytosis. Within the endosome, 
Mn3+ is again reduced to Mn2+ and uptake into the cytoplasm 
occurs via the DMT1 transporter. Manganese efflux and export 
from the cytosol is mediated by the membrane‑localized 
transporters ferroportin  (Fpn or SLC40A1) and the solute 

carrier family 30 member 10 (SLC30A10).[23,22,24] Within the 
cell cytosol, Mn gets shuttled via a number of organelle‑specific 
transporters.[25‑28] Iron  (Fe) competes with Mn for binding 
and uptake at a number of transporters including the Tf/TfR 
complex, DMT1, and ferroportin.[29] Recently mutations in 
several transporter proteins with affinity to Mn (i.e., ATP13A2, 
ATP13A1, DMT‑1 and Fpn) have been described and might 
have implications on Mn homeostasis on subcellular level; 
however, blood manganese levels tend to remain unaffected 
with no evidence of excessive Mn deposition.[30‑32]

Pathophysiology
Excess Mn shows predilection to accumulate in the basal 
ganglia, especially in the striatum (caudate nucleus, putamen and 
nucleus accumbens), globus pallidus (GP), and the substantia 
nigra  (SN), an intricate network of neurotransmitters.[33,34] 
Exposure to excessive Mn can lead to disruption of harmony 
among various neurotransmitter functions, causing behavioral 
alterations including hypoactivity, cognitive impairments, and 
altered sensorimotor function. These complex physiological 
imbalances lead to a distinct neurodegenerative extrapyramidal 
syndrome known as manganism. The symptoms include initial 
cognitive and psychiatric disturbances followed by a movement 
disorder resembling Parkinson’s disease with limb rigidity, 
dystonia, and a characteristic high‑stepping gait.[23,22] Mn, 
being a paramagnetic metal, leads to characteristic deposition 
and MRI brain appearances with pronounced hyperintensity 
of the globus pallidus on T1‑weighted and hypointensity on 
T2‑weighted images[35] [Figure 1].

Historical aspects
The first disorder of inherited Mn transport was reported in 
2012 leading to Mn neurotoxicity characterized by dystonia, 
in association with polycythemia and cirrhosis of the liver, 
attributable to homozygous mutations in the SLC30A10 

Table 1: Prominent characteristics of inherited defects of manganese transport

Inherited disorder Hypermanganesemia with 
Dystonia 1 (HMNDYT 1)

Hypermanganesemia with Dystonia 
2 (HMNDYT 2)

Congenital Disorder of 
Glycosylation 2N (CDG 2N)

Affected gene SLC30A10 SLC39A14 SLC39A8
Inheritance Autosomal recessive Autosomal recessive Autosomal recessive
Blood Mn level Increased Increased Decreased
Manifestations of 
neurological involvement

Dystonia, “cock walk” gait, 
spasticity, pyramidal signs.

Early onset, progressive dystonia, 
spasticity, bulbar dysfunction.

Pronounced developmental delay, 
seizures, dystonia

Cognition relatively spared Cognition relatively spared
Manifestations of systemic 
involvement

Liver disease Absent Short stature

Polycythemia Hearing impairment
Depletion of iron stores

Brain MRI changes T1-hyperintensity of the globus 
pallidus and white matter, 
pathognomonic sparing of the ventral 
pons

T1-hyperintensity of the globus 
pallidus and white matter, 
pathognomonic sparing of the ventral 
pons

Variable and nonspecific T2 
hyperintensity of the basal 
ganglia

T2-hypointensity of the globus 
pallidus

T2-hypointensity of the globus pallidus Cerebral/cerebellar atrophy

Management Chelation therapy with EDTA-
CaNa2

Chelation therapy with EDTA-CaNa2 Mn supplementation

Iron supplementation “Mn free” days Galactose



Kapoor, et al.: Inherited manganese disorders

 Annals of Indian Academy of Neurology  ¦  Volume 24  ¦  Issue 1  ¦  January-February 2021 17

gene.[36,37] Prior to this in 2008, Tuschl et al. had described 
a clinical study of a patient who was later shown to harbor 
SLC30A10 mutations. This was a 12‑year‑old female born to 
consanguineous parentage who developed gait abnormality 
and dystonia. MRI revealed Mn deposition in the basal 
ganglia, anterior pituitary, and cerebellar white matter. Liver 
biopsy revealed the presence of cirrhosis and elevated Mn 
levels. Preceding even these descriptions, Gospe et al. in 2000 
described a similar case. In 2016, another inherited disorder 
leading to hypermanganesemia was described attributable to 
SLC39A14 mutations.[38,39] This was shown to differ from the 
SLC30A10 condition by the absence of polycythemia and liver 
involvement. In 2015, mutations in SLC39A8 were reported 
to lead to Mn and Zinc (Zn) deficiency.[40,41]

H y p e r m a n g a n e s e m i a  w i t h  d y s t o n i a  1 
(HMNDYT1)‑SCL30A10 deficiency OMIM#618320
The bi‑allelic mutation in Mn transporter gene SCL30A10 
leads to the systemic accumulation and Mn neurotoxicity. 
SLC30A10 belongs to the SLC30 family of metal transporters, 
expressed at the cell membrane where they are responsible 
for efflux of Zn and Mn from the cytosol. This gene is 
specifically expressed in liver, gastrointestinal tract, and 
brain.[36] The clinical manifestations include a distinct 
syndrome of hypermanganesemia, polycythaemia, dystonia, 
chronic liver disease (ranging from asymptomatic steatosis to 
cirrhosis with liver insufficiency), and depletion of iron stores. 
Recently, Mn deposition in thyroid gland leading to reduced 

thyroxine production and hypothyroidism in mice model with 
knocked out SCL30A10 gene has been reported, giving rise to 
speculation that thyroid gland might be one of the unexplored 
targets in the disease pathology.[42]

The neurological manifestations start appearing in early 
childhood with progressive difficulty in walking and in 
conducting fine hand movements. The child soon develops 
dystonia in limbs with a characteristic high‑stepping gate, also 
described as “cock‑walk gait.” Involvement of white matter can 
cause spasticity and pyramidal tract signs. However, cognition 
tends to remain intact. A late‑onset form presenting as L‑DOPA 
unresponsive Parkinsonism in adults has also been reported.[36]

Investigations reveal dramatically raised blood Mn levels, 
usually ten times that of normal. Brain MRI shows deposition of 
Mn, evident in the basal ganglia, particularly the globus pallidus 
and striatum with pronounced hyperintensity of T1‑weighted 
imaging with or without corresponding hypointensity on 
T2‑weighted imaging.[36,37,43‑47] The additional involvement 
of the white matter occurs in the cerebrum and cerebellum, 
midbrain, dorsal pons, and medulla with a pathognomonic 
sparing of the ventral pons. The histopathological examination 
in post‑mortem sample reportedly shows severe neuronal loss 
and vacuolated myelinopathy in the globus pallidus.[46] The 
accumulation of Mn in the liver can lead to hepatotoxicity; 
however, the clinical presentation ranges from mild liver 
disease (steatosis) to severe disease (cirrhosis). The occurrence 
of polycythemia in majority of the patients has been attributed 

Figure 1: (a‑c). T1‑weighted MRI (axial section) brain showing hyperintensities in bilateral caudate, globus pallidus, and lentiform nucleus (a), dorsal 
pons with sparing of ventral pons (b), and cerebellar white matter (c). (d‑f). T2‑weighted MRI (axial section) showing hypointensities in bilateral 
basal  ganglia (d), midbrain (e), and pons (f)
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to the induction of erythropoietin gene expression via 
stabilization of the hypoxia‑inducible factor 1 alpha and a 
chemical “hypoxia.”[47] Moreover, since Mn and Fe compete 
for binding at several transporters, it leads to depletion of iron 
stores in individuals with SLC30A10 mutations who show an 
increased total iron‑binding capacity and a low ferritin.[36,37] 
Hence, there is juxtaposition of polycythemia in the setting 
of iron deficiency.

Chelating treatment with CaNa2 ethylenediaminetetraacetic 
acid  (EDTA) has been shown to effectively reduce Mn 
accumulation, ameliorate neurological symptoms, and prevent 
liver disease progression.[47] In the majority of the cases, Mn 
chelation leads to resolution of polycythemia and normalization 
of serum iron indices. However, blood Mn levels often do 
not normalize, but get stabilized.[45,48] EDTA‑CaNa2 is given 
intravenously as a 5 to 8 day course every 4 weeks with close 
monitoring of calcium and other trace metal levels such as 
zinc (Zn), copper (Cu), and selenium (Se) in order to detect 
fluctuations in serum levels.[49] Effect of this chelator on Mn levels 
can be estimated by observing reduction in T1 hyperintensity on 
MRI brain. Although chelation therapy with EDTA‑CaNa2 has 
shown promising results, the need of intravenous administration 
significantly adds to the burden of the disease. The role of orally 
administered chelators like 2, 3‑dimercaptosuccinic acid and 
d‑penicillamine in halting disease progression still remains to 
be determined.[44,50] Supplementation with iron alone has also 
been shown to improve clinical symptoms to some extent and 
reduce Mn levels.[51] However, the synergistic action of orally 
supplemented iron is hypothesized to occur in addition to 
chelation therapy. Iron can act as a competitive ligand at Mn 

transporters leading to reduction of Mn absorption, stabilization 
of Mn levels, and further clinical improvement. However, iron 
therapy warrants stringent monitoring of iron parameters with 
the aim to keep iron levels at the high end of normal without 
causing iron toxicity.[36,37,42,48] Treatment options used so far in 
inherited hypermanganesemia are outlined in Table 2.

H y p e r m a n g a n e s e m i a  w i t h  d y s t o n i a  2 
(HMNDYT2)‑ SCL39A14 deficiency
OMIM# 608736
Mutations in SCL39A14 gene leading to Mn‑induced 
neurotoxicity were first reported in the year 2016 by Tuschl 
et al.[39] SLC39A14 is a part of the solute carrier 39 family 
present at the cell membrane that has been shown to facilitate 
influx of Mn, Fe, Zn, and Cadmium into the cytosol.[52‑55] 
However, mutations leading to loss of function of this gene 
predominantly disturb Mn homeostasis, having little effect on 
other metals.[55,56] Clinical symptoms start becoming evident 
early in life and included loss of developmental milestones, 
progressive dystonia, and bulbar dysfunction. Around the 
age of 10 years, most patients develop severe, generalized 
dystonia that seems resistant to treatment, spasticity, limb 
contractures, and scoliosis and loss of locomotor abilities. 
Some patients might also show features of parkinsonism, 
such as hypomimia, tremor, and bradykinesia.[39] In contrast to 
SCL30A10 deficiency, these patients have an earlier onset of 
symptoms and absence of polycythemia and liver involvement. 
Although Mn levels are raised about 3–25 times the normal 
limit, iron indices tend to remain in a normal range. The 
absence of Mn accumulation in liver in affected individuals 
can be explained by the fact that SLC39A14 is mainly required 

Table 2: Treatment options in inherited hypermanganesemia

Treatment options Mechanism of action Dose Additional comments
NaCa2-EDTA Chelating agent which enhances 

urinary Mn excretion
1 gm/m2/day in two divided doses
Intravenous application for 5 days 
every 4 weeks

-Necessitates admission and intravenous 
administration
-Good clinical, biochemical, and imaging 
response in SLC30A10.[37]

-Variable response reported in SLC39A14 
mutations.[39]

D-Penicillamine Chelating agent 10 mg/kg per day titrated gradually 
to 20 mg/kg/ day

-Very little data. Tried by Mukhtiar et al in 3 
patients; one patient showed a relatively good 
clinical response, after initial chelation with 
EDTA.[50]

2, 
3-Dimercaptosuccininic 
acid (DMSA)

Chelating agent 30 mg/kg/day for 3 consecutive 
days then rest for 11 days (cycle of 
2 weeks)

-Oral regimen
-Designed and used by Zaki et al. in 9 
patients[44]

Para-amino salicylic 
acid (PAS)[61]

Two proposed mechanisms:
i. Chelating agent
ii. Antiinflammatory property due 
to salicylate moiety which may 
play a role in neurodegenerative 
manganism.

4-8 g sodium salt of PAS
(dissolved in 500 mL of 10% 
glucose) per day as IV drip 
infusion for 4 days and rested for 
3 days as one therapeutic course. 
Multiple courses given.

-Usually used as an antitubercular drug in 
resistant TB management
-Unlike NaCa2-EDTA which does not cross the 
blood-brain barrier, PAS can cross the BBB.
-Practical advantage as it is an oral formulation.
-Gastrointestinal tolerability may be an issue.

Iron supplementation Mn and Fe have a similar chemical 
structure, hence compete for the 
same binding protein (transferrin) 
and membrane transporter 
(DMT1).

2-3 mg/kg/day -Regular iron profile monitoring to avoid iron 
toxicity is advisable
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for Mn uptake into the liver for subsequent biliary excretion, 
and that the build‑up of Mn in the brain occurs secondary due 
to impaired hepatic uptake of the metal. Neuroimaging reveals 
MRI brain appearances identical to those seen in HMNDYT1. 
Post‑mortem examination of one affected individual had shown 
marked neuronal loss in the globus pallidus, while relative 
preservation of neurons in the caudate, putamen, thalamus, 
and cerebral cortex. Patchy loss of myelin associated with 
coarse vacuoles in the cerebral and cerebellar white matter, 
and axonal loss were also observed.[39]

Treatment with EDTA‑CaNa2 according to the protocol used 
in HMNDYT1 has been observed to be less effective with 
only marginal improvement in neurological symptoms.[39,57] 
This could be explained by the differences in disease severity. 
It seems likely in this condition, since the onset is very early 
and progression is rapid, the treatment becomes potentially 
ineffective as neurodegeneration has already reached an 
irreversible stage. In addition, the genotype might play a 
role in treatment response.[39] The two oral chelators, 2, 
3‑dimercaptosuccinic acid and d‑penicillamine, also failed to 
show a clinical response in this disorder in one patient.[57] It 
has been reported that dietary Mn restriction in the form of 2 
to 3 “Mn free days” per week might have a synergistic effect 
along with chelation therapy in improving the neurologic 
symptoms.[57] This entails the use of an Mn depleted formula 
in conjunction with a multivitamin free of Mn on the “Mn 
free” days. However, designing an Mn‑free or low Mn diet 
is challenging due to the ubiquitous occurrence of the metal 
in food items.

Congenital disorder of glycosylation 
2N (CDG2N)‑SLC39A8 deficiency (OMIM#616721)
Mutations in SLC39A8, an Mn uptake transporter, were 
first reported to cause an inherited disorder of Mn and Zn 
deficiency in the year 2015.[40,58] Patients with a bi‑allelic 
mutation leading to loss of function show an abnormal 
glycosylation pattern consistent with a type II congenital 
disorder of glycosylation. This could be attributed to the 
impaired function of Mn‑dependent enzymes such as the 
β‑1,4‑galactosyltransferase required for the galactosylation 
of glycoproteins.[40,58,59] Dysfunction of the mitochondrial 
MnSOD, another Mn dependent enzyme, can lead to Leigh‑like 
mitochondrial disease characterized by elevated CSF lactate 
and abnormal respiratory chain enzymology.[59] Systemic Mn 
deficiency causes developmental delay, intellectual disability, 
failure to thrive, short stature, dwarfism, cranial asymmetry, 
seizures, hypotonia, dystonia, strabismus, and deafness. 
Characteristically, blood Mn levels are low. MRI brain imaging 
is nonspecific, showing cerebellar and/or cerebral atrophy in 
majority of the patients and hyperintensity of the basal ganglia 
on T2‑weighted MR imaging in some patients.[59]

Oral Mn supplementation appears to be an effective treatment 
strategy. It has shown to cause improvement in the locomotor 
function and hearing along with normalization of Mn‑dependent 

enzyme functions.[60] Initial galactose priming to normalize 
glycosylation pattern has not shown to be as effective as the 
resolution of Mn deficiency by supplementation. However, 
regular monitoring of blood Mn levels and brain MRI changes 
are imperative to avoid Mn toxicity in these patients.[60]

Conclusions

In this review, we have summarized the key features of 
inherited Mn defects. The discovery and knowledge about 
the inherited disorders of Mn metabolism has improved our 
understanding about the intricate Mn homeostasis in the 
human body. Since these inherited Mn transporter defects 
form an important differential diagnosis in children with 
unexplained developmental delay or a movement disorder, 
determination of blood Mn level can serve as a simple and 
cost‑effective screening test in the routine neurological 
work‑up of such patients with supportive ancillary features. 
Diagnostic clues of Mn toxicity include the constellation of 
dystonia, Parkinsonism, polycythaemia, and liver disease, and 
abnormal brain MRI findings in the form of T1 hyperintensities 
in the basal ganglia in the case of hypermanganesemia. Early 
diagnosis is crucial to identify the disorder, initiate appropriate 
treatment, and avoid irreversible disease progression.
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