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Abstract: The NMDA receptor is a Ca2+-permeant glutamate receptor which plays key roles in health
and disease. Canonical NMDARs contain two GluN2 subunits, of which 2A and 2B are predominant
in the forebrain. Moreover, the relative contribution of 2A vs. 2B is controlled both developmentally
and in an activity-dependent manner. The GluN2 subtype influences the biophysical properties of
the receptor through difference in their N-terminal extracellular domain and transmembrane regions,
but they also have large cytoplasmic Carboxyl (C)-terminal domains (CTDs) which have diverged
substantially during evolution. While the CTD identity does not influence NMDAR subunit specific
channel properties, it determines the nature of CTD-associated signalling molecules and has been
implicated in mediating the control of subunit composition (2A vs. 2B) at the synapse. Historically,
much of the research into the differential function of GluN2 CTDs has been conducted in vitro by over-
expressing mutant subunits, but more recently, the generation of knock-in (KI) mouse models have
allowed CTD function to be probed in vivo and in ex vivo systems without heterologous expression
of GluN2 mutants. In some instances, findings involving KI mice have been in disagreement with
models that were proposed based on earlier approaches. This review will examine the current
research with the aim of addressing these controversies and how methodology may contribute to
differences between studies. We will also discuss the outstanding questions regarding the role of
GluN2 CTD sequences in regulating NMDAR subunit composition, as well as their relevance to
neurodegenerative disease and neurodevelopmental disorders.

Keywords: NMDA receptor; carboxyl (C)-terminal domain (CTD); neurodevelopment; excitotoxicity;
neurodegeneration

1. Introduction

N-methyl-d-aspartate receptors (NMDAR) are cation-passing channels gated by the
principal excitatory neurotransmitter glutamate which play a crucial role within the central
nervous system (CNS) [1,2]. They are permeable to the flow of Ca2+, K+ and Na+, with
Ca2+ being integral to mediating many of the consequences of NMDAR activity, including
the intracellular signalling cascades that govern synaptic modification, activity-dependent
development, and neuroprotective signalling. Additionally, inappropriate activation of
NMDARs forms an important role in part of the pathological processes underpinning exci-
totoxic cell death and synaptotoxicity in both acute and chronic neurological disorders [3–5].
NMDARs are heterotetramers consisting of two obligate GluN1 subunits and two GluN2
subunits (GluN2A-D). Expression of GluN2 subunits is regionally localised, with GluN2A
and GluN2B being predominant in the forebrain, GluN2C expressed in the cerebellum
and GluN2D in the midbrain [1,2]. The identity of the GluN2 subunits contributes to
many of the biophysical properties of the receptor, including agonist affinity, channel open
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probability, and deactivation kinetics [2,6]. The GluN2 subunits have distinct temporal
patterns of expression, compared to GluN2A, GluN2B expression begins earlier in the
embryonic brain and maintains high levels of expression during early postnatal develop-
ment before becoming mainly restricted to the forebrain [7]. After the first two postnatal
weeks GluN2A steadily increases, becoming abundant throughout the entire adult CNS.
This developmental shift in subunit expression allows for greater GluN2A representation
and creates a population of both diheteromeric GluN12-GluN2A2 and GluN12-GluN2B2
NMDARs as well as triheteromeric GluN12-GluN2A-GluN2B NMDARs [1,2].

The consequences of NMDAR activation do not rely solely on the influx of ions,
but also involve interactions between the NMDAR and several signalling molecules and
complexes [8]. The binding sites for these signalling/scaffolding proteins are found within
the ~600 amino acid sequence that makes up the GluN2A and GluN2B CTD (CTD2A and
CTD2B) [9]. While GluN2 subunits are well conserved in the N-terminal and transmembrane
regions, their CTDs have diverged much more, allowing CTD identity to differentially
influence the recruitment of signalling complexes and downstream signalling, trafficking,
and the functional diversity of NMDAR signalling [10]. However, there are still outstanding
questions as to how CTD identity influences key processes such as activity-dependent
changes to NMDAR composition, outcome to excitotoxic insult and its role in chronic
neurodegenerative states, as well as its contribution to neurodevelopmental disorders. We
will attempt to summarise these questions, both where fresh studies are required and also in
areas where there are apparent disagreements in the field.

2. The Role of the CTD in Developmental and Activity-Dependent Changes in
NMDAR Subunit Composition

The subunit composition of NMDARs changes over the course of development and in
response to changes in sensory experience [11–15]. The visual cortex (VC) of rodents has
proven to be a particular area of focus in observing activity-dependent changes to subunit
composition owing to the ease at which sensory input to the VC can be manipulated. From
studies in rats, it has been demonstrated that dark rearing either from birth or during
the critical period reduces the levels of GluN2A at the synapse, resulting in a reduction
in the ratio of GluN2A to GluN2B (2A:2B ratio) [14,15]. Interestingly, dark reared rats
exhibit a rapid increase in GluN2A following 2 h re-exposure to light, suggesting that
NMDAR subunit composition, and as such the 2A:2B ratio, can be bidirectionally modified
by activity [14,15]. Therefore, the control of this ratio requires a cellular mechanism that can
distinguish between GluN2A and GluN2B and selectively incorporate/remove subunits as
required within either a developmental or activity-dependent context.

One model for exchanging GluN2B for GluN2A proposes a series of phosphorylation
events at a site on the CTD2B [16,17]. NMDAR activity mediates activation of CaMKIIα lead-
ing to the formation of a trimolecular complex consisting of GluN2B/CaMKIIα/Casein ki-
nase 2 (CK2). This association of CK2 with GluN2B leads to phosphorylation of serine-1480
(S1480) on CTD2B. Phosphorylation of S1480 leads to disrupted association of membrane-
associated guanylate kinase (MAGUK) proteins at the CTD2B PDZ ligand and a subsequent
reduction in phosphorylation at Y1472 within the YEKL endocytic motif, due to the fact
that MAGUKs ordinarily recruit the Y1472 kinase Fyn. These events are suggested to
lead to lateral diffusion of GluN2B to extrasynaptic sites via a non-PDZ interaction with
SAP102 before they are internalised by AP-2 mediated endocytosis, which recognises YEKL
when Y1472 is unphosphorylated [16–18]. However, this model was based on experiments
involving ectopic overexpression of mutant subunits, potentially altering the relative sto-
ichiometry of CTD2B and CaMKIIα or other signalling components that may affect the
results. Subsequently, a KI mouse model with a non-functional CaMKIIα binding site
(GluN2B∆CaMKII) was generated that had normal synaptic levels of GluN2A in the adult
hippocampus suggested that mutating the CaMKIIα binding site may at most delay the
developmental subunit shift [19]. Moreover, an independently made second KI mouse
with a non-functional CaMKIIα binding site (GluN2B∆CaMKII) showed that the CaMKIIα
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site was not required for normal developmental increases in 2A:2B ratio [20]. However,
this study only tested the role of CaMKIIα site in developmental subunit changes and as
such did not rule out the possibility that this site may be important in activity-dependent
subunit changes. The same study also utilised a KI mouse model with the CTD of GluN2A
replaced by that of GluN2B (GluN2A2B(CTR)) [10] and found that changes to the NMDAR
composition in the cortex and hippocampus during development was normal and so do
not require GluN2A and GluN2B to have distinct CTDs [20].

Interestingly, while the above study shows that the CTD of GluN2A can be swapped
for that of GluN2B with no impairment of GluN2A surface expression, recent studies
suggested that in the context of the CTD2A, certain residues may be functionally important
for surface expression of GluN2A. Work by Mota Vieira et al. [21] and Yong et al. [22]
aimed to functionally characterise the epilepsy- associated variant GluN2A-S1459G and
identified S1459 as a CaMKIIα phosphorylation site controlled in a development and
activity-dependent manner whose mutation impaired interactions with SNX27 and PSD95
as well as GluN2A surface expression when ectopically expressed in cultured neurons.
Generation and characterisation of a GluN2A-S1459G KI mouse would further strengthen
the case for this phosphorylation event being functionally important for activity-dependent
and/or developmental surface expression of GluN2A.

Overall, there are two theories here by which subunit composition shifts during de-
velopment. The studies which propose the involvement of key CTD phosphorylation
events are based predominantly in vitro using heterologous expression of mutant receptors,
and as such would benefit from in vivo studies involving KI mice. The in vivo mod-
els used thus far have argued against a critical role for the CaMKIIα site of CTD2B and
subsequent phosphorylation changes proposed by in vitro models. If it is the case that
phosphorylation events are not crucial, what are the molecular mechanisms that underpin
this change? It is an under-appreciated fact that even in the adult mouse the forebrain
contains far more GluN2B than GluN2A [23]. The dramatic increase in GluN2A during
development, alongside flat or falling levels of GluN2B can at first glance appear like a
subunit “switch”—a term that is often used. However, by exploiting KI mice with recipro-
cal exchange of GluN2 CTDs it was demonstrated that GluN2B levels are around 5-times
greater than GluN2A [23]. This means that increased GluN2A insertion is likely to be
the main driver of 2A:2B ratio changes since removal of GluN2B on its own would have
little effect on the ratio unless very large reductions in GluN2B were involved. Indeed, the
2A:2B ratio has been shown to change developmentally with little or no change to GluN2B
levels [20]. This argues against CTD2B-dependent removal of GluN2B being biologically
important. The reason why this modest level of GluN2A (even in the adult) has such a
strong effect on NMDAR currents (as evidenced by sensitivity to GluN2A antagonists or
reduced sensitivity to GluN2B antagonists [24,25]) is that GluN12-GluN2A2 diheteromeric
NMDARs have a higher open probability than GluN12-GluN2B2 diheteromeric NMDARs
and, moreover, GluN12-GluN2A-GluN2B triheteromeric NMDARs more closely resemble
GluN12-GluN2A2 NMDARS than GluN12-GluN2B2 NMDARs with regard to their bio-
physical properties [26]. If removal of GluN2B plays a limited role in the developmental
change of 2A:2B ratio and insertion of GluN2A is more important, then what of the role of
CTD2A? Since the developmental 2A:2B ratio shift occurs normally in GluN2A2B(CTR) mice
where both GluN2B and GluN2A have the same CTD (CTD2B) [20] then CTD2A-dependent
events cannot be critical for GluN2A surface delivery. Since GluN2A expression at the
mRNA and protein level increases at the same developmental stage as the 2A:2B ratio
increases, it could be that this is the only change required, coupled with normal turnover
of synaptic proteins.

Experience/activity dependent changes in 2A:2B ratio represent a different situation,
studied in most depth in the VC. If sensory deprivation (e.g., dark rearing) causes the 2A:2B
ratio to fall, and rise again upon re-exposure to light, then these dynamic changes arguably
do require a mechanism for recognising GluN2A-containing NMDARs in instances where
they are lost/gained on a timescale incompatible with receptor turnover and changes in
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GluN2A gene expression (GluN2A transcription can be controlled by synaptic activity to
influence slower-acting changes [27]). Investigations into such ‘recognition’ mechanisms
will require further analysis of current KI mouse models as well as new ones, potentially
with more targeted mutations in CTD2A or other cytoplasm-facing regions (i.e., the loops
that link the membrane spanning domains).

3. GluN2A/2B CTD Mutations Associated with Neurodevelopmental Disorders

Genome sequencing studies have identified over 200 neuropathology associated vari-
ants in GRIN genes, with a large proportion of these variants being found in GRIN2A
and GRIN2B (Figure 1). As may be expected, most of these variants are found within
the highly conserved amino binding domain (ABD) and transmembrane domains (TMD),
however, ~20% of these variants occur within the CTD (reviewed by [28]). Mutations are
being discovered at a faster rate than the labour-intensive functional characterisation of
these CTD variants, but some variants associated with autism spectrum disorder (ASD),
intellectual disability (ID) and epilepsy have been studied in detail.
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Figure 1. Schematic showing the locations of heterozygous missense, nonsense and frameshift
mutations in GRIN2A (glutamate receptor ionotropic NMDA 2A) and in GRIN2B (NMDA 2B) that
have been identified in people with neurodevelopmental disorders. The extreme extracellular
amino terminus of these subunits contains allosteric modulation sites. The region between the N
terminus and the M1 domain, plus the extracellular loop between the M3 and M4 domains, encode
the glutamate-binding domain. The M2 domain features many side chains that point towards the
receptor channel pore and dictate ion permeability. Finally, the long cytoplasmic carboxy-terminal
domain is involved in receptor targeting and coupling to downstream signalling complexes. Figure
based on refs. [21,29–52].
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Liu et al. [41] characterised an autism associated GluN2B mutant occurring in the
CTD of GluN2B (S1415L human, S1413L rodent). Rat hippocampal neurons transfected
with mutant GluN2B showed a 30% reduction in receptor surface expression compared
to GluN2B WT. In addition, GluN2B S1413L-expressing neurons also showed a reduction
in spine density. From this it would appear that the CTD2B plays an important role in
the trafficking of GluN2B to the synaptic membrane which when impaired may lead to
a reduction in dendritic spines. For CTD2B mutations in which trafficking deficits and
morphological changes are observed, there is some question as to whether differences in
morphology occur as a result of the loss of intracellular signalling linked to the CTD2B

or whether these changes are simply a consequence of altered NMDAR at the synapse.
Using chimeric mouse models with reciprocally swapped CTDs, Keith et al. [53] found that
replacing CTD2A for CTD2B in GluN2A results in longer total dendritic path, average apical
length, and total basal length relative to WT mice. They observed no difference between
WT and a model replacing CTD2B for CTD2A in GluN2B, and importantly, replacing the
ABD or TMD of GluN2A for that of GluN2B had no effect on morphology. As such, these
results indicate that CTD2B-specific intracellular signalling pathways are a key regulator
in dendritic morphology, raising the possibility that deficits in CTD2B signalling may
contribute to altered development in ASD/ID. Future studies probing the potential role of
the S1423L variant on dendritic complexity and spine morphology will help to shed light
on the role of CTD2B signalling in ASD/ID neurodevelopment [41].

Mutations in GRIN2A are commonly associated with developmental delay and epilep-
tic phenotypes [38,54]. While these mutations predominantly occur in the ABD or TMD
resulting in functional changes to the subunits, a number of epilepsy-associated variants
have also been identified within the CTD2A [21,38,39]. In addition to the NMDAR mediated
Ca2+ influx that is required for the induction of plasticity, there is also some evidence to sug-
gest that GluN2 CTD identity influences synaptic plasticity induced by different patterns
of activity [10]. Therefore, mutations that either affect trafficking of the GluN2A subunit or
that alter key interaction sites have the potential to impair synaptic plasticity. However,
seemingly counterintuitively, mutations in the CTD2A that enhance trafficking also neg-
atively impact plasticity. Li et al. [40] recently characterised a rare ID associated variant
in the GluN2A subunit. The mutation, K879R, was found to occur within an endoplasmic
retention signal motif and resulted in enhanced cell surface expression. The increased
expression of GluN2A led to deficits in synaptic transmission both in GluN2A_K879R
mouse hippocampal CA1 neurons and in K879R KI mice. Additionally, KI mice exhibited
impairments in the induction of LTP and LTD as well as deficits in learning and memory.
This suggests the importance of a carefully controlled balance of GluN2A levels, or 2A:2B
ratio. It also suggests that any therapeutic approaches should avoid the potentially severe
impacts of over-correcting GluN2A deficits.

As mentioned previously different GluN2 subunits influence the biophysical proper-
ties of NMDARs. The relatively faster deactivation kinetics of GluN2A-containing NM-
DARs relative to GluN12-Glun2B2 NMDARs allows for GluN2 subunit composition to
modify Ca2+ influx in response to synaptic input and as such the downstream consequences
such as the induction of LTP vs. LTD. Furthermore, it has been observed that altering synap-
tic activity leads to changes in neural function that influences the subsequent induction
of synaptic plasticity—so called “metaplasticity” (reviewed thoroughly elsewhere [55,56]).
As such, control of the 2A:2B ratio in response to synaptic input has been proposed as
one of the mechanisms by which neuronal activity is kept within a functional range in
response to changing levels of activity. Considering the potential role of NMDAR subunit
composition in homeostatic regulation of activity, it could be suggested that mutations
in GRIN2A promote epileptic phenotypes through either a reduction or loss of function
of the GluN2A subunit itself, e.g., caused by mutations that affect agonist binding and
channel properties, or through a reduction in subunit expression at the synapse. The result
of any of these mutations would lead to reduction in GluN2A activity, thereby leading to an
impaired homeostatic ability of circuits and the facilitation of hyper-excitability. However,
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it should also be noted that a loss of excitatory drive from inhibitory interneurons and
subsequent disinhibition as a result of a loss of GluN2A function may also contribute to
hyper-excitability. Indeed, it was recently shown that enhancing GluN2A activity in both
excitatory and inhibitory interneurons with the use of the positive allosteric modulator
(PAM) GNE-0723 reduced epileptiform activity in mouse models of Alzheimer’s disease
(AD) and Dravet syndrome [57]. Overall, it appears that the 2A:2B ratio is important in
mediating seizure susceptibility. Specifically, a decrease in this ratio favours increased
seizure susceptibility. In the hippocampus both a decrease in GluN2A expression [58]
and upregulation of GluN2B [59] have been implicated in contributing to seizure patho-
genesis. In addition, selective blockade of GluN2B has been shown to reduce seizure
susceptibility [60,61] and dextromethorphan induced convulsive behaviours [62]. How-
ever, it remains unclear whether the beneficial effect of modifying the relative activity of
GluN2A/2B is solely the result of restoring homeostatic balance or whether subunit specific
signalling pathways are also involved. Crucially, there is currently no evidence to suggest
that CTD-dependent effects mediate the subunit-specific effect on seizure pathogenesis.

As advances in the technology make it easier to generate genetic models for GRIN2A
variants, the challenge shifts to assessing the face validity of these models. For example, a
recent study generated a KI mouse for a de novo heterozygous GRIN2A variant identified in
a patient with ID and epileptic encephalopathy (S644G) [63]. Mice homozygous for S644G
unexpectedly died of a lethal seizure during the third postnatal week, but heterozygous
mice had a normal lifespan and exhibited neither behavioural seizures nor epileptiform ac-
tivity. They did, however, exhibit both an increased seizure susceptibility and an increased
seizure resistance in response to different electroconvulsive threshold testing, highlighting
the biological complexity of GRIN2A involvement in epileptic encephalopathy [63]. There-
fore, while mouse models provide a valuable opportunity to probe the cellular and circuit
level consequences of GRIN2A mutations, care should be taken when translating findings
across species.

Overall, understanding the molecular consequences of GRIN2A and GRIN2B mu-
tations may provide an opportunity for targeted therapeutic strategies. Indeed, several
preclinical pharmacological studies have highlighted the potential for the use of both
negative allosteric modulators (NAMs) and PAMs in treating gain of function and loss of
function GRIN variants, respectively [64–67]. However, it is important to consider that al-
losteric modulators may be influenced by intracellular factors such as the phosphorylation,
ubiquitination and palmitoylation states of CTDs. This was highlighted in a recent study
in which it was demonstrated that GluN2 deletions robustly altered the activity of both
PAMs and NAMs, likewise, agents altering phosphorylation state and intracellular Ca2+

levels were also observed to produce receptor-specific and compound specific changes to
PAM activity [68]. Therefore, further studies investigating the metabotropic influence of
CTDs on the activity of allosteric modulator will be a crucial step in paving the way to
developing appropriate treatment strategies for aberrant NMDAR activity.

4. A Critical Role for CTD Interactions in Acute Excitotoxicity

It has been observed that when neurons are subject to sustained elevated glutamate,
cell death occurs [69]. In the 1980s, it was observed that excessive Ca2+ influx through
NMDARs is a key mediator in the neuronal death observed in response to glutamate
exposure [70]. Moreover, Tymianski et al. [71] demonstrated that the route of entry, specif-
ically via NMDARs, was more important than overall Ca2+ load. This finding was later
expanded on by Sattler et al. [72] who confirmed that lower Ca2+ influxes through NMDARs
produced greater lethality when compared to high Ca2+ influx via other Ca2+ permeant
channels. As such, these findings suggest that there is either functional and/or physi-
cal coupling of NMDARs to Ca2+-responsive mediators of cell death signalling. Of note
however, physiological patterns of synaptic NMDAR activity are known to be protec-
tive leading to the classic bell-shaped curve model for neuronal response to NMDAR
activity [73,74]. However, beyond simple level of activity mattering, the question remained
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as to whether NMDAR subunit compositional diversity influences the consequence of
NMDAR activation, particularly via the divergent CTDs of GluN2A and GluN2B. GluN2A
and GluN2B containing NMDARs are both capable of mediating excitotoxicity; however,
there is evidence to suggest that CTD identity may influence the tendency to couple to
either pro-death or pro-survival signalling pathways (Figure 2). Of note, there is also
emerging evidence for the presence of ion flux independent excitotoxicity. Recently, it
has been reported that NMDARs form a signalling complex with Src kinase and Panx1 in
response to NMDAR ligand binding without activation of their ion conduction pore [75].
Furthermore, disruption of this signalling complex was observed to be neuroprotective
both in vitro and in vivo [75]. This is somewhat controversial as it disagrees with many of
the existing studies regarding the ion flux dependent nature of excitotoxicity. Regardless
of this, as ion flux-independent mechanisms appear to involve NMDAR recruitment of
signalling complexes it would be of interest to establish the role of GluN2 CTD specific
interactions in this proposed mechanism for excitotoxicity.
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Figure 2. Schematic showing some of the proposed mechanisms underpinning CTD specific and
location specific downstream consequences of acute excitotoxicity. At synaptic sites activation of
GluN2A containing NMDARs (green) promotes expression of CREB and pro-survival genes and
inhibits the PTEN pathway shut-off of pro-survival genes. Synaptic GluN2B containing NMDARs
(yellow) may mediate pro-survival or pro-death signalling depending on the level of glutamate.
When faced with excitotoxic glutamate levels preferential GluN2B/PSD95/nNOS coupling promotes
NO mediated shut off of CREB, oxidative stress and subsequent cell death. Direct coupling of CTD2B

to mitochondrial proteins may also facilitate Ca2+ overload and mitochondrial dysfunction (potential
but unconfirmed pathway; ?). At extrasynaptic sites physical and functional coupling of both CTD2A

and CTD2B with TRPM2 and 4 may result in enhanced extrasynaptic NMDAR activity to promote
cell death. Therefore, it is possible that a hierarchy exists in which a combination of both composition
and location determines the downstream consequences of NMDARs.
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Previously, it has been demonstrated that GluN2A containing NMDARs are linked
to intracellular signalling cascades that promote the activation of neuroprotective tran-
scription factors such as cAMP response element-binding protein (CREB) and a reduction
in the expression of genes such as phosphatase and tensin homolog (PTEN), which is
involved in pathological processes associated with neuronal injury [76,77]. In contrast,
GluN2B containing NMDARs have been shown to couple with signalling pathways that
supress CREB-dependent survival pathways [78]. However, it is important to note that the
CTD2B can also mediate signalling that is neuroprotective. For instance, the GluN2B-PTEN
signalling pathway has also been shown to enhance the expression of Dysfunction of
PTEN-induced kinase 1 (PINK1) which potentiates GluN2A and its pro-survival signalling
pathways [79].

In addition to the preferential recruitment of pro-death vs. pro-survival signalling
mediated by GluN2 CTD identity, there is also evidence to suggest that location rather
than composition alone is a key determinant in whether pro-death signalling pathways
are preferentially activated. For instance, it has been demonstrated that extrasynaptic NM-
DARs preferentially promote CREB inactivation and mitochondrial dysfunction whereas
activation of their synaptic counterparts does not induce mitochondrial dysfunction and
instead induces protective CREB-dependent gene expression in a nuclear Ca2+-dependent
manner [3,78,80–85]. Interestingly, this distinction between extrasynaptic and synaptic
NMDARs persists during developmental time points where GluN2B is predominant, sug-
gesting that location is a significant factor in determining the downstream consequences
of NMDAR activation [86,87]. Overall, a combination of both identity and location are
likely to be important in determining the downstream consequences of NMDAR activation,
although it will be of benefit in the future to validate key findings in human neuronal
models of excitotoxicity including strategies to alter synaptic-extrasynaptic balance [88,89].

4.1. GluN2B Mediated Excitotoxicity through PSD95-nNOS Pathway

Using the novel GluN2A2B(CTR) and GluN2B2A(CTR) KI models Martel et al. [90] ob-
served that GluN2A2B(CTR) mice showed enhanced NMDA induced excitotoxicity com-
pared to WT. Interestingly, it was also found that GluN2B2A(CTR) mice showed a reduction
in the vulnerability of forebrain neurones to excitotoxic levels of Ca2+ influx through the
NMDAR both in vivo and in vitro. Thereby suggesting that GluN2B may preferentially
couple to pro-death signalling pathways. Indeed, when examining the mechanistic basis
for GluN2 CTD subtype specific differences, it was observed that GluN2B2A(CTR) mice
exhibited both a prolonged phosphorylation of CREB and a reduction in coupling to ni-
tric oxide (NO) production in response to excitotoxic conditions. NO can supress CREB
phosphorylation at high levels [91–93], it is produced when NMDAR-mediated Ca2+ influx
activates nitric oxide synthase, which is recruited to the NMDAR signalling complex via
PSD95 association with CTD2B [91]. Therefore, the findings by Martel et al. [90] suggest
that CTD2B may preferentially couple to this PSD95/nNOS pathway to promote cell death.

In light of the failure of conventional NMDAR antagonists in stroke trials [94], there
is a need for more finely tuned interventions that can target specific pro-death signalling
interactions without impairing physiological functioning of NMDARs. The generation of a
cell-permeable mimetic peptide of the GluN2B-PSD95 PDZ domain, known as NA-1 (also
known as TAT-NR2B9C), that was designed to reduce coupling of nNOS to GluN2B via
PSD95 produced a lot of optimism owing to its neuroprotective effects in stroke models
in rodents and monkeys [91,95]. However, following on from a successful phase II trial
for safety and efficacy for iatrogenic micro-strokes during cerebral aneurysm repair, it
has since failed human clinical [96,97]. However, an exploratory analysis did reveal a
potential drug–drug interaction between NA-1 and the usual care thrombolytic alteplase
that may nullify the treatment effect of the former [96]. This observation requires further
investigation, but it leaves some hope for the therapeutic benefit of NA-1.
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4.2. The Role of Extrasynaptic Specific Physical and Functional Coupling in Excitotoxicity

It has been suggested that extrasynaptic specific protein(s) coupling to the NMDAR
promotes pro-death signalling pathways. Yan et al. [98] identified a physical interaction
between extrasynaptic NMDARs and TRPM4 that they demonstrated as being vital in
facilitating excitotoxicity. The use of small molecule NMDAR/TRPM4 interaction interface
inhibitors was observed to provide robust protection against cell death in vivo and in vitro
as well as inhibiting excitotoxicity-mediated transcriptional changes and mitochondrial
dysfunction. Since proteomic data from mouse and human cortex and hippocampus
indicates that TRPM4 is absent at the synapse, this study proposes that NMDAR-TRPM4
interactions may offer some explanation as to the differences in the response of synaptic vs.
extrasynaptic NMDARs during increased Ca2+ load. Similarly, it has also been observed
that TRPM2 ion channels functionally couple with extrasynaptic NMDARs to enhance
excitotoxicity in mouse models of ischaemic brain injury [99]. Trpm2 knock-out (KO) mice
exhibited a reduced infarct volume and an improved neurological performance compared
to WT mice following middle cerebral artery occlusion (MCAO), which is in agreement
with observations made previously in these KOs [100]. Furthermore, it was found that
Protein kinase C gamma (PKCγ) was readily coimmunoprecipitated with anti-TRPM2 in
brain lysates and that this interaction was increased following MCAO [99]. Considering
that PKCγ has been shown to regulate NMDAR surface trafficking [101,102], this study
suggests that TRPM2-NMDAR interactions may exacerbate excitotoxicity by increasing the
surface expression of extrasynaptic NMDARs, enhancing extrasynaptic NMDAR activity
thereby promoting cell death.

Both studies observe a reduction in cell death following uncoupling of their respective
TRPM channels, suggesting that uncoupling of either would to be sufficient to reduce
cell death. This implies that both TRPM2 and 4 are required for extrasynaptic mediated
cell death, potentially with one interaction mediating increased levels of extrasynaptic
NMDARs and the other mediating location specific potentiation of extrasynaptic NMDAR
responses. Interestingly, both studies demonstrated that TRPM2 and TRPM4 interac-
tion sites are present on both CTD2A and CTD2B. This coupled with the observation by
Martel et al. [90] that swapping the CTD2B with that of CTD2A reduces but does not abolish
excitotoxicity, further suggests that CTD identity may be an additive factor to the influence
of location (synaptic vs. extrasynaptic) on excitotoxicity.

4.3. DAPK1 Interactions at CTD2B Do Not Mediate Excitotoxic Cell Death

While earlier work by Tu et al. [103] suggested a role for death-associated protein
kinase 1 (DAPK1) mediated phosphorylation of CTD2B Ser-1303 (s1303) in the pro-death
signalling that occurs during excitotoxicity, subsequent studies have failed to reproduce
these findings. Indeed, it has since been observed that excitotoxicity persists even in the
absence of DAPK1, in vivo and in vitro, and moreover, s1303 phosphorylation does not
differ between neuronal cultures from DAPK1−/− and DAPK1+/+ mice during either
basal or excitotoxic conditions [104]. In agreement with this, another study using GST-
fusion proteins with the CTD of GluN2B as a phosphorylation substrate for CaMKIIα
and DAPK1 found that phosphorylation of s1303 is four orders of magnitude weaker
by DAPK1 compared to CaMKIIα and therefore s1303 is a poor substrate for DAPK1
phosphorylation [105] (Table 1). Based on these finding, CTD2B-CaMKIIα interaction
would appear to be a better candidate mechanism in CTD2B mediated excitotoxic cell death.
If this were to be the case, one would predict that mice such as the GluN2B∆CaMKII mouse,
which possess a mutated CaMKIIα binding site, would exhibit a reduction in cell death
when compared to their WT counterparts. In agreement with this, Buonarati et al. [106]
demonstrated that ∆CaMKII mice (L1298A/R1300Q) exhibit reduced hippocampal cell
death following an in vivo cardiac arrest/cardiopulmonary resuscitation model (CA/CPR).
Crucially, while the ∆CaMKII mutation abolished CaMKIIα binding at CTD2B, no affect
was observed for DAPK1. Therefore, based on the current evidence, it would appear that
CTD2B-DAPK1 binding is not a key mediator of excitotoxic cell death.
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Table 1. Summary of findings from DAPK1 studies.

Model Treatment Findings Study

HEK293 Coexpression of GluN1/GluN2B
and constitutively active DAPK1

↑ GluN1/GluN2B peak amplitude of
receptor currents

↑ S1303 phosphorylation
[103]

DAPK1+/+ cortical neurons OGD
↑ S1303 phosphorylation

↑ amplitude of extrasynaptic NMDA
mediated currents and Ca2+ transients

[103]

DAPK1+/+ cortical neurons
Bath application of NMDA

(20 µM and 50 µM) and OGD No change in s1303 phosphorylation [104]

DAPK1−/− cortical neurons OGD No change in s1301 phosphorylation [103]

DAPK1−/− in vivo MCAO ↓ infarct volume as measured by
TTC staining [103]

DAPK1−/− in vivo MCAO No change to infarct volume as
measured by H-E staining [104]

DAPK1+/+ in vivo CA/CPR No change in s1303 phosphorylation [105]

Note: an up arrow indicates an increase; a down arrow indicates a reduction or decrease.

When looking for an explanation for contradictory findings between the initial study
and subsequent studies, attention falls to the methodology. Tu et al. [103] demonstrated
a neuroprotective effect by using a peptide mimetic of S1303, Tat-NR2BCT, to uncouple
CTD2B-DAPK1 interaction. However, McQueen et al. [104] found that the Tat-NR2BCT acts
as a potent NMDAR antagonist and hypothesised that this was due to the peptide binding
near the Mg2+ site. In agreement with this, they found that Tat-NR2BCT acted as an open
channel blocker. Therefore, this may account for the neuroprotective qualities previously
observed. In addition, the study by Tu et al. [103] also used a 2,3,5-Triphenyl tetrazolium
chloride (TTC) stain as a measure for brain infarct volume. TTC is a water-soluble dye
that is reduced by mitochondrial enzymes, as such it reflects metabolic consequences of
ischaemia that may occur independently of cell death [107,108]. Therefore, the reduced
infarct volumes observed in response to DAPK1 deletion may reflect reduced metabolic
damage rather than cell death. In agreement with this, it was concluded by a recent meta-
analysis of the literature that while inhibition of DAPK1 does reduce the gradual loss to
neuronal function and structural integrity (i.e., degeneration) following cerebral hypoxic
ischaemia, it does not alter the immediate cell death observed in response to ischaemia [109].
Therefore, while DAPK1 may play a role in the mechanisms that lead to the impairment of
neuronal function following ischaemia, other pathways mediate ischaemic cell death.

4.4. Role of GluN2A and GluN2B in Tissue-Type Plasminogen Activator Mediated Neuroprotection

Recent evidence also suggests a role for subunit identity in differentially mediating
the downstream consequences of non-conventional NMDAR binding proteins. Tissue-type
plasminogen activator (tPA) is a serine protease involved in the breakdown of blood clots,
as such, it is used in the early stage treatment of ischaemic stroke in order to aid the
breakdown of clots and restore blood flow. Previously it has been demonstrated that tPA
interacts with the ABD of GluN1 to promote a selective increase in the surface dynamics of
extrasynaptic NMDARs resulting in the promotion of NMDAR-mediated calcium influx
and excitotoxicity [110]. However, tPA interaction with GluN2A containing NMDAR
has been shown to promote neuroprotective signalling, an effect which is ameliorated by
blocking either GluN2A or synaptic NMDARs [111,112]. Bases on the previous assumption
that GluN2B is enriched at extrasynaptic sites, this finding seemed to indicate differential
roles for tPA interaction with GluN2A and GluN2B in mediating neuroprotection and pro-
death signalling, respectively. However, current evidence suggests that GluN2 composition
may not be drastically different between synaptic and extrasynaptic sites [90,113–115], again
suggesting that the main driving force in the loss of neuroprotection is the activation of
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extrasynaptic-specific pathways, with subunit composition possibly providing an additive
effect. Interestingly, a recent study demonstrated that the two-chain form of tPA (tc-tPA)
recruits GluN2B containing NMDARs in a MET receptor tyrosine kinase dependent manner
to drive the down regulation of extrasynaptic GluN2B and promote neuroprotection [116].
It is therefore possible that the downstream consequences of tPA interaction with NMDARs
depend on a combination of factors including NMDAR location, composition, and the form
of tPA involved (single vs. two chain form). Of note, tc-tPA was also observed to reduce
CTD2B phosphorylation [116], as such it would be of interest to probe the role of the CTD
in tAP mediated neuroprotection using both ∆CaMKII and CTD KI mouse models.

5. Role of CTD2B in Alzheimer’s Disease?

The role of CTD signalling in chronic neurodegenerative disease is an area of particular
interest, especially with regard to AD. In the AD brain, as the disease progresses, mitochon-
drial dysfunction and subsequent bioenergetic failure, glutamate release from inflammatory
cells and astrocytes, and a reduction in astrocytic glutamate transporter expression may all
facilitate the loss of glutamate homeostasis, leading to a rise in ambient glutamate [117–119].
As opposed to the rapid cell death that is observed during acute excitotoxicity, this chronic
increase in ambient glutamate may act as a low-level, gradual excitotoxic insult that pro-
gressively impairs synaptic integrity and eventually leads to cell death [118]. Furthermore,
the tonic activation of extrasynaptic NMDARs exacerbates the situation by promoting
amyloid-precursor protein (APP) processing [120,121]. Given that there is evidence to
suggest that CTD identity influences coupling to pro-death vs. pro-survival signalling in
acute excitotoxicity, it is important to question whether CTD identity similarly influences
signalling pathways in neurodegeneration.

5.1. Role of CTD2B in Ionotropic and Metabotropic Dependent Pathways in AD

The downstream consequences of NMDAR activation have been robustly demon-
strated to rely on Ca2+ influx via NMDARs, either through increasing intracellular Ca2+

or by activation of Ca2+ dependent enzymes associated with NMDAR CTDs. However,
in recent years there has been some evidence to suggest that at least some consequences
of NMDAR activation may be mediated by ion-flux independent metabotropic pathways
(reviewed by [122]). So far, it has been demonstrated that ion-independent conformational
changes of the CTD alter protein binding in response to NMDA activation in both synaptic
plasticity and Aβ pathology [123–126]. In the context of AD, CTD2B has been implicated as
being important in both enhanced ionotropic-dependent pro-death pathways as well as
Aβ dependent metabotropic pathways [124].

Using a mouse model expressing a truncated form of tau, ∆Tau74, Ittner et al. [127]
demonstrated that tau interaction with the SRC kinase Fyn is crucial in determining its
localisation at the PSD. Furthermore, they found that localisation of Fyn at the PSD via its
interactions with tau led to phosphorylation of the Y1472 site on the CTD2B resulting in
a strengthening of the interactions between CTD2B and PSD95. As discussed previously,
the interaction between CTD2B and PSD95 is thought to play a crucial role in pro-death
signalling, and as such Ittner et al. [127] suggest that tau-Fyn phosphorylation of CTD2B

contributes to tau pathology by increasing stability of the NMDARs at the PSD and coupling
to excitotoxic downstream signalling pathways (Figure 3A).

In contrast to the findings of Ittner et al. [127], it has also been demonstrated that
CTD2B-PSD95 interaction may be protective in Amyloid beta (Aβ) pathology. By using
organotypic hippocampal slices infected with viral vector containing CT100 (beta-secretase
cleavage product of APP) and PSD95 it has been observed that increased interaction of
CTD2B and PSD95 may stabilise NMDARs resulting in NMDAR induced potentiation that
acts to compensate for Aβ induced depression. GluA1 KO mice fail to exhibit potentiation
in PSD95 overexpression slices, thereby demonstrating that PSD95 mediated potentiation
requires GluA1. On the other hand, expressing CT100 was still able to mediate depression,
however, this depression was abolished by coexpressing PSD95. Taken together, this
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suggests that PSD95 overexpression blocks Aβ induced depression independently of
its ability to potentiate synaptic transmission [124]. From this it was hypothesised that
the protective effect of PSD95 may be achieved by constraining the conformation of the
CTD such that signalling pathways that promote depression are blocked. Using FRET-
FLIM assay, they demonstrated that over expression of PSD95 prevents the reduced FRET
efficiency observed in the presence of CT100, and interestingly, it was also observed that
overexpression of PSD95 blocked the loss of FRET interaction between GluN1 and protein
phosphatase 1 (PP1) [124]. Therefore, they propose a mechanism by which over-expression
or increased endogenous expression of PSD95 stabilises CTD2B conformation to prevent
Aβ interaction with PPI that promotes synaptic weakening (Figure 3B).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 3. Schematic showing the contrasting mechanisms proposed for the CTD2B in tau and Aβ 
pathology. (A) Interaction between tau and Fyn mediates Fyn localisation to the PSD where it phos-
phorylates Y1472. Phosphorylation of Y1472 leads to stronger GluN2B/PSD95 coupling resulting in 
increased GluN2B containing NMDAR stability at the PSD and recruitment of pro-death signalling 
pathways. (B) Enhanced GluN2B/PSD95 coupling either by overexpression of PSD95 or enhancing 
endogenous expression stabilises the conformation of the CTD2B, preventing Aβ interactions with 
PPI that result in depression and subsequent weakening of synapses. 

In contrast to the findings of Ittner et al. [127], it has also been demonstrated that 
CTD2B-PSD95 interaction may be protective in Amyloid beta (Aβ) pathology. By using 
organotypic hippocampal slices infected with viral vector containing CT100 (beta-secre-
tase cleavage product of APP) and PSD95 it has been observed that increased interaction 
of CTD2B and PSD95 may stabilise NMDARs resulting in NMDAR induced potentiation 
that acts to compensate for Aβ induced depression. GluA1 KO mice fail to exhibit poten-
tiation in PSD95 overexpression slices, thereby demonstrating that PSD95 mediated po-
tentiation requires GluA1. On the other hand, expressing CT100 was still able to mediate 
depression, however, this depression was abolished by coexpressing PSD95. Taken to-
gether, this suggests that PSD95 overexpression blocks Aβ induced depression inde-
pendently of its ability to potentiate synaptic transmission [124]. From this it was hypoth-
esised that the protective effect of PSD95 may be achieved by constraining the confor-
mation of the CTD such that signalling pathways that promote depression are blocked. 
Using FRET-FLIM assay, they demonstrated that over expression of PSD95 prevents the 
reduced FRET efficiency observed in the presence of CT100, and interestingly, it was also 
observed that overexpression of PSD95 blocked the loss of FRET interaction between 
GluN1 and protein phosphatase 1 (PP1) [124]. Therefore, they propose a mechanism by 
which over-expression or increased endogenous expression of PSD95 stabilises CTD2B 

conformation to prevent Aβ interaction with PPI that promotes synaptic weakening  
(Figure 3B). 

Figure 3. Schematic showing the contrasting mechanisms proposed for the CTD2B in tau and
Aβ pathology. (A) Interaction between tau and Fyn mediates Fyn localisation to the PSD where it
phosphorylates Y1472. Phosphorylation of Y1472 leads to stronger GluN2B/PSD95 coupling resulting
in increased GluN2B containing NMDAR stability at the PSD and recruitment of pro-death signalling
pathways. (B) Enhanced GluN2B/PSD95 coupling either by overexpression of PSD95 or enhancing
endogenous expression stabilises the conformation of the CTD2B, preventing Aβ interactions with
PPI that result in depression and subsequent weakening of synapses.

These two studies present two different potential roles for CTD2B-PSD95 interactions
in the pathology of AD, opposing in nature. The evidence of both a beneficial and detri-
mental role for CTD2B-PSD95 in AD raises many questions, for instance, is one mechanism
dominant over the other? That is to say, would the beneficial effect of uncoupling CTD2B-
PSD95 on tau pathology produce an overall therapeutic effect despite possibly exacerbating
Aβ pathology? Another question is whether there are specific time points of the disease
pathology in which targeting CTD2B-PSD95 interactions would be most beneficial? For
instance, while enhancing CTD2B-PSD95 interactions might provide some therapeutic effect
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in early stages of the disease, it may prove detrimental when there is a loss of glutamate
homeostasis, potentially contributing to local synaptotoxicity or neuronal loss.

5.2. Implications for Astrocytic NMDA Subunits in AD?

As alluded to previously, AD possesses a complex pathology that involves dysfunction
of both neurons and glia. Moreover, as NMDARs have also been shown to be expressed in
astrocytes [128,129] this yields the possibility that NMDAR activation may contribute to
pathological changes observed to astrocytic function. For instance, GluN2C is expressed by
astrocytes in the majority of the telencephalon [130,131] and GluN2A has been observed
to be expressed in hippocampal astrocytes [132]. Moreover, it was recently demonstrated
that astrocytic GluN2A expression is increased in post-mortem brain tissue taken from AD
patients [132]. While the exact role of astrocytic NMDARs in disease pathology remains un-
clear, there is some evidence to suggest that these receptors can mediate both protective and
pathological processes. Previous in vitro studies have found that exposure of neuron astro-
cyte co-cultures to NMDA promotes an increase in the antioxidant capacity of neurons [133]
whereas overexposure to NMDA disrupts astrocytic homeostatic function [134,135]. This
yields the interesting possibility that the level of astrocytic NMDAR expression and/or
subunit composition and CTD identity dependent signalling may contribute to the patho-
logical processes observed in AD and other neurodegenerative disorders in which glial
dysfunction is a component. As such, further research is needed to uncover the mechanisms
by which astrocytic NMDAR activation may contribute to disease pathology.

6. Contribution of CTD2A and CTD2B in Other Disease Pathologies?

As well as AD, there is also evidence to suggest that GluN2 CTD identity contributes
to pathology in a wide range of diseases. In the case of Parkinson’s disease (PD), it has been
observed that rat models mimicking both early and advanced stage PD exhibit increased
synaptic GluN2A, resulting in an increased 2A:2B ratio and plasticity deficits [136,137].
Interestingly, the use of permeable protein mimetics to modulate CTD2A MAGUK binding
was found to restore synaptic plasticity and reduce motor impairments [136]. This suggests
that CTD2A may serve as a potential therapeutic target in PD, however, as dopaminergic
denervation appears to be important in driving subunit compositional changes it would
also be of interest to establish the mechanisms by which this occurs.

GluN2 subunit composition has also been implicated in Huntington’s disease (HD). Of
note, it has been observed across multiple species that the striatum exhibits higher levels of
GluN2B relative to other brain regions [138–141]. Moreover, an increase in GluN2B at ex-
trasynaptic sites on medium-sized spiny striatal neurons has been observed to contribute to
phenotype onset [142,143] in a model of HD where synaptic/extrasynaptic NMDAR balance
influences the inclusion and toxicity of mutant huntingtin [144]. This may suggest that both
GluN2 subunit identity and location influence the progression of HD pathology, however.
further investigation is required to establish the contribution of CTD2B mediated signalling.

Impaired NMDAR-mediated neurotransmission has been proposed as one of the
contributing factors in schizophrenia (SZ) pathology, owing to the observation that psy-
chomimetic compounds can transiently replicate SZ symptomology by blocking NMDAR
neurotransmission [145,146]. Genetic evidence also points to a role for disrupted NMDAR
signalling in SZ. For instance, GRIN2A has been implicated as a risk gene for SZ by a recent
genome wide association study [147]. In addition, exome sequencing has revealed several de
novo SZ associated mutation in both the GRIN2A and GRIN2B genes, several of which occur
in the CTD [42,49]. However, it remains to be seen whether these de novo CTD mutations
are causative in SZ. If they do indeed contribute to the pathogenesis of SZ, the question
then becomes by what means? Do these mutants disrupt key CTD dependent signalling
pathways or do they simply impair trafficking and therefore synaptic NMDAR content.
Robust characterisation of these variants will be required to address these key questions.
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7. Concluding Remarks

Studies are starting to shed light on the role of NMDAR CTDs in both neurodevelop-
ment, acute excitotoxicity, and neurodegeneration. However, despite this, many questions
remain unanswered. For instance, while evidence suggests that CTDs are not required
for developmental NMDAR compositional changes, the role of CTD sequences in activity-
dependent compositional changes remains to be ascertained. Future work using both
currently available KI mouse models and KO models of putatively important phospho-
rylation sites is needed to shed light on the vital mechanisms underpinning this process.
Additionally, if the CTD is identified as important in this mechanism then the next task
would be to identify how CTD sequences control subunit removal and insertion at the
synapse, and whether this process is dependent on phosphorylation events, CTD specific
signalling cascades, or whether stability in response to changing activity is different between
subunits owing to the recruitment of different protein complexes by distinct CTDs. A
better understanding of the mechanisms involved in activity-dependent changes will set the
groundwork for identifying how these processes may be aberrant in neurodevelopmental
disorders. In the meantime, it would also be beneficial to functionally characterise some of
the many CTD variants that have already been identified in ASD, ID and epilepsy patients.

While this review mainly focuses on GluN2A and GluN2B CTDs, it is important to
note that there is also evidence to suggest a role for the influence of GluN2C and GluN2D
in neuronal survival and cell death (reviewed by [148]). Both in vitro and In vivo evidence
suggests a critical role for GluN2D in NMDA-induced excitotoxicity [149–151]. This sug-
gests that GluN2D, much like GluN2B, may preferentially couple to pro-death signalling
pathways to mediate cell death in brain regions where GluN2D is expressed. Therefore,
it would be of great interest to establish the involvement, if any, of the GluN2D CTD in
GluN2D mediated excitotoxicity. Finally, as a goal of understanding the role of GluN2 CTDs
in pathophysiology is to identify potential therapeutic targets, it is important to understand
how post translational modification of the CTD influences the efficacy of therapeutic drugs.
It has already been demonstrated that phosphorylation and palmitoylation state of the CTD
can influence the sensitivity of NMDARs to pharmacological intervention [68,152]. There-
fore, establishing how particular disease states may influence post translational modification
of the CTD will be important in developing optimal therapeutic strategies.
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