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Abstract. Protein import to the nucleus is a signal- 
mediated process that exhibits saturation kinetics. We 
investigated whether signal bearing proteins compete 
with U2 and U6 snRNPs during import. When in- 
jetted into Xenopus oocytes, saturating concentrations 
of P(Lys)-BSA, a protein bearing multiple nuclear lo- 
calization signals from SV40 large T-antigen, reduce 
the rate of [t:sI]P(Lys)-BSA and of [mI]nucleoplasmin 
import, consistent with their competing for and shar- 

ing the same limiting component of the import appara- 
tus. In contrast, saturating concentrations of P(Lys)- 
BSA do not reduce the rate of HeLa [32p]u2 snRNP 
assembly or import. The import of U6 snRNP is also 
competed by P(Lys)-BSA. We conclude that U2 snRNP 
is imported into oocyte nuclei by a kinetic pathway 
that is distinct from the one followed by P(Lys)-BSA, 
nucleoplasmin, and U6 snRNP. 

N 
'UCLEAR t r anSpor t  is necessary not only for house- 

keeping cellular functions such as mRNA expres- 
sion, ribosome assembly, and the biogenesis of the 

nucleus itself, but also for the regulation of gene expression 
during the cell cycle, in development, and in response to a 
changing environment. The bidirectional nature of nuclear 
transport is unique. Shuttling proteins cross the nuclear 
envelope repeatedly (Borer, 1989) or, in the case of ribo- 
somal proteins, first in and then out as ribosomal subunits. 
Analogously, U snRNAs are exported and then, after assem- 
bly into U snRNPs, are reimported (Zieve and Sauterer, 
1990). 

The centerpiece of this process is the nuclear pore com- 
plex (NPC) 1 (Dingwall and Laskey, 1986; Newport and 
Forbes, 1987; Gerace and Burke, 1988; GoMfarb, 1989). 
The transporter assembly, located in the middle of the NPC, 
is the predominant site of karyophile binding and contains 
a nuclear localization signal (NLS)-triggered transport chan- 
nel that can dilate to pass larger karyophiles (Akey and 
Goldfarb, 1989; Akey, 1990). Besides mediating NLS de- 
pendent import and RNA/RNP export, the NPC contains a 
,x,100-/~,-diameter pore, the nuclear pore, which allows the 
passive diffusion of microinjected inert macromolecules 
such as branched dextrans (Peters, 1986). It had been as- 
sumed that smaller nuclear proteins could use this pore to 
enter the nucleus. However, recent evidence indicates that 
instead they do not diffuse through the nuclear pores but are 
complexed by factor(s) in the cytoplasm and must, therefore, 
use a receptor-mediated import pathway (Breeuwer and Gold- 
farb, 1990). Curiously then, although the sievelike proper- 

1. Abbreviations used in this paper: M3G, trimethyi guanosine; NLS, nu- 
clear localization signal; NPC, nuclear pore complex. 

ties of the nuclear envelope are well confirmed, not a single 
physiologically relevant macromolecule has been shown to 
traverse the nuclear envelope by diffusion (Peters, 1986). 
Without known exception, therefore, nuclear transport is a 
tightly regulated process. 

The export of tRNA (Zasloff, 1983) and 40S and 60S 
ribosomal subunits (Khanna-Gupta and Ware, 1989; Bataill6 
et al., 1990), and the import of karyophilic proteins (Gold- 
farb et al., 1986) have been shown by kinetic criteria to be 
receptor-mediated processes. While translocation across the 
nuclear envelope appears to require metabolic energy (Rich- 
ardson et al., 1988; Newmeyer and Forbes, 1988), initial 
transport intermediates probably form in the absence of ATP 
(Newmeyer and Forbes, 1988; Richardson et al., 1988; 
Akey and Goldfarb, 1989; Newmeyer and Forbes, 1990; 
Breeuwer and Goldfarb, 1990). These intermediates may in- 
volve the activity of various cytoplasmic and nuclear NLS 
binding proteins that have been put forward as putative trans- 
port receptors (Adam et al., 1989; Yamasaki et ai., 1989; 
Silver et al., 1989; Lee and Melese, 1989; Li and Thomas, 
1989; Benditt et al., 1989). 

A number of specific examples of regulated import are 
known. In Tetrahymena, where the protein composition of 
the micronucleus and macronucleus differ, these two nuclei 
exhibit distinct capabilities to import certain microinjected 
karyophilic proteins (White et al., 1989). Another case of 
nuclear discrimination occurs for the Drosophila protein 
dorsal. In the fertilized embryo, after the migration of nuclei 
to the periphery of the syncytium, dorsal becomes localized 
to ventral nuclei but remains excluded from dorsal nuclei 
(Rushlow et al., 1989; Steward, 1989; Roth et al., 1989). 
Some karyophilic proteins exhibit delayed entry into nuclei 
during development (Dreyer and Hausen, 1983; Borer et al., 
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1989). For example, c-myc is cytoplasmic in Xenopus laevis 
oocytes but later accumulates in nuclei that form after fertil- 
ization (Taylor et al., 1986; Gusse et al., 1989). 

An interesting class of proteins reside in the interphase 
cytoplasm until, in response to an extracellular signal, they 
migrate, sometimes reversibly, into the nucleus. This class 
includes cAMP dependent protein kinase, NF-rB enhancer 
binding protein, and the glucocorticoid receptor (Nigg, 
1990). The mechanism of regulation for most, if not all, of 
these examples is probably the regulated association and dis- 
sociation of a complex between the karyophile and a karyo- 
phile-specific cytoplasmic anchor or NLS masking factor. 
When released from the complex, the karyophile then asso- 
ciates with the cell's nuclear transport apparatus. In fact, the 
probable anchoring or signal masking proteins have been 
identified for the dorsal protein (Hunt, 1989) as well as for 
several of the other aforementioned examples (Nigg, 1990). 

U snRNPs are a unique class of macromolecular com- 
plexes that are assembled in the cytoplasm and function in 
the nucleus. The U1-5 snRNPs are each composed of a small 
nuclear RNA, transcribed by RNA pol II, and a number of 
common Sm proteins (with the exception of U3) and, in cer- 
tain cases, U snRNP-specific proteins (Luhrmann, 1988; 
Reddy and Busch, 1988; Bach et al., 1989). The Sm proteins 
assemble onto a consensus single stranded region of Sm-type 
U snRNAs that is required for both assembly, import (Mattaj 
and De Robertis, 1985), and cap trimethylation (Mattaj, 
1986). Hamm et al. (1990) have suggested that the Sm bind- 
ing site and the tfimethylguanosine cap (M3G) of U1 
snRNA together comprise a bipartite nuclear targeting sig- 
nal (see Fischer and Liihrmann, 1990). U6 snRNP, which 
is transcribed by RNA pol III, contains a 5' gamma-mono- 
methyl triphosphoguanosine cap (Singh and Reddy, 1989) 
and, instead of a consensus Sm protein binding site, a single- 
stranded region that may function analogously (Hamm and 
Mattaj, 1989; Hamm et al., 1990). 

In the present study, we provide kinetic evidence that U2 
snRNP employs a novel nuclear import pathway. These ex- 
periments were performed in Xenopus oocytes using P(Lys)- 
BSA (BSA cross-linked with synthetic peptides based on the 
SV40 large T-antigen nuclear localization signal), nucleo- 
plasmin (a major oocyte nuclear protein), and U2 and U6 
snRNAs isolated from Hela cells. We found that import of 
both nucleoplasmin and U6 snRNA is competed by saturat- 
ing concentrations of P(Lys)-BSA. Importantly, however, 
saturating concentrations of P(Lys)-BSA did not inhibit the 
rate or extent of U2 snRNP import. By this criterion, there- 
fore, U2 snRNP uses a novel kinetic pathway. 

Materials and Methods 

Proteins 
Nucleoplasmin was purified from Xenopus/aem's oocytes and P(Lys)-BSA 
was prepared using RNase-free BSA (Boehringer-Mannheim Diagnostics, 
Inc., Houston, TX) as described by Breeuwer and Goldfarb (1990). Syn- 
thetic peptides were provided by Dr. John Wester of Syntex Research. 

Iodination of Proteins 
P(Lys)-BSA and nucleoplasmin were iodinated using Chloramine T. Pro- 
teins were brought to 28 #1 125 mM Na2HPO4, pH 7.5, at a concentration 
of 2.5 #g/t~l. 10 p3 of 1 #g/t~l Chloramine T was combined with 0.2 mCi 
Na[l~l] (Pharmacia Fine Chemicals, Piscataway, NJ), and the mixture was 
incubated with the protein for 15 s at ambient temperature. 5 ~1 of saturated 

L-cysteine was added to stop the labeling reaction and the sample was col- 
lected from a 5.0 ml sephadex G-25 column equilibrated with 25 mM 
Na2HPO4, pH 7.5. Labeled proteins were washed and concentrated in cen- 
tricon 30 filtration units (Amicon Corp., Danvers, MA). The specific activ- 
ity of labeled proteins was 500-2,000 cpm/ng. 

Isolation of HeLa U2 and U6 snRNA 
HeLa cells were grown in T75 flasks in DME (Gibco Laboratories, Grand 
Island, NY) supplemented with 10% FBS (Hyelone Laboratories, Logan, 
UT), 50 U/ml penicillin, and 50 #g/ml streptomycin at 37°C in 5% 
CO2. Cells were dislodged with trypsin-EDTA (Gibco Laboratories), 
pelleted by low speed centrifugation, and washed with phosphate-free 
Hank's Salts. Pelleted cells were resuspended at a density of 2-4 x l0 s 
cells/ml in MEM (Gibco Laboratories) without phosphate, supplemented 
with 10% dialyzed FBS (Gibco Laboratories). Cells were labeled with 10 
mCi [32p]orthophosphate at 37°C for 16-24 h. Labeled cells were pelleted 
by low speed centrifugation and washed with cold PBS (0.9% NaCI, 10 mM 
Na2HPO4, pH 7.5). Ceils were lysed in 5 ml 7 M urea, 2% SDS, 5 mM 
EDTA, 300 mM NaC1, 20 mM Tris-HC1 (pH 7.5), 1 mg/ml proteinase K. 
Protein was digested by incubation at 50"C for 1 h. After extraction with 
phenol/chloroform and chloroform, total nucleic acids were precipitated 
with 2.5 vol ethanol. DNA was removed by spooling with a closed 
microcapillary tube, and the remaining RNA was pelleted by centrifugation 
in an SS-34 rotor (Dupont, Wilmington, DE) at 8,000 rpm for 30 rain at 
4°C. RNA pellets were resuspended in 100/zl formamide loading buffer 
(85 % formamide, 0.5 x TBE, 0.1% SDS), heated at 950C for 5-10 rain, and 
then chilled on ice. RNA was electrophoresed through 8 % acrylamide, 7 M 
urea, Ix TBE gels at 25-30 mAmps constant current for 1.5 h. RNA was 
located by autoradiography and regions of the gel containing U2 snRNA, 
U6, 5S, and tRNA were excised, crushed, and incubated overnight at am- 
bient temperature in 300 #1 0.3 M NH,Ac, 1 mM EDTA, 0.1% SDS. RNA 
was collected by low speed centrifugation through silanized glass wool and 
its concentration was determined by absorbance at 260 run. The specific ac- 
tivity was determined by scintillation counting. After extraction with phe- 
nol/chloroform and chloroform, the RNA was precipitated in 0.3 M NaAc 
and 2.5 vol ethanol with 20--40 #g carder yeast Phe-tRNA. RNA was pel- 
leted by centrifugation at 14,000 g for 30 rain at 4°C, washed with 70% 
ethanol, and resuspended in distilled water. 

Microinjection of Xenopus Oocytes 
Stage 6 oocytes were obtained from Xenopus laevis females by partial 
ovariectomy. Individual oocytes were defollicniated and maintained in OR-2 
(Zasloff, 1983) at ambient temperature before microinjection. 50 nl of sam- 
ple was injected equatorially, and the oocytes were incubated in OR-2 at 
ambient temperature for indicated times. The final intracellular concentra- 
tions of injected material are indicated in the figure legends. To quantitate 
transport of iodinated proteins, oocytes were fixed in 20% TCA. Nuclei 
were separated from oocytes and radioactivity in single nuclei and 
cytoplasms was quantified with a multi gamma counter (1261; LKB Instru- 
ments, Inc., Gaitbersburg, MD). To quantitate RNA transport, oocytes 
were enucleated in 50 mM NaAc (pH 5.2), nuclei and cytoplasms were 
pooled separately, and were solubilized in 7 M urea buffer and digested with 
0.1 tzg/td proteinase K at 50"C for 30-60 min. After phenol/chloroform ex- 
traction, RNA was precipitated with 2.5 vol ethanol. Nuclear and cytoplas- 
mic RNA was pelleted at 14,000 g for 30 min at 4°C, washed with 70% 
ethanol, and resuspended in 20-40 #1 formamide loading buffer. Samples 
were heated at 95°C for 5-10 min, chilled on ice, and electrophoresed 
through 8% acrylamide, 7 M urea, 1X TBE gels at 25-30 mAmps for 
1.5 h. Gels were dried and bands were located by autoradiography. Bands 
were excised and radioactivity quantified by scintillation counting (Eco- 
scint; National Diagnostics, Inc., Manville, NJ). 

Immunoprecipitation 
Anti-Sm mouse monoclonal 7.13 antibodies were conjugated to protein 
A-sepharose beads with 10 /~g rabbit anti-mouse IgO in LNET40 (150 
mM NaC1, 1 mM EDTA, 20 mM Tris-HCl, pH 8.0, 0.1% NF-40) at 4°C. 
Anti-P(Lys) antiserum (Goldfarb et al., 1986) was conjugated directly to 
protein A-sepharose in LNET40. Oocyte nuclei, isolated in 50 mM NaAc, 
pH 5.2, or whole oocyte extracts were prepared in 500 #120 mM Tris-HC1, 
pH 7.5, 20 mg/ml heparin, 1 mM EDTA, and incubated with the beads with 
rotation at 4°C overnight. Beads were washed three times with 1.0 ml 
LNET40. Bound U snRNP antigen was released with 300 #17 M urea buffer 
at 950C for 10 min. Released U snRNP proteins were digested with 0.1 
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mg/ml proteinase K at 50°C for 20 min and phenol/chloroform extracted. 
RNA was ethanol precipitated and processed for gel electrophoresis as de- 
scribed above. Bound P(Lys)-BSA antigen was released in 50/~1 Laemmli 
sample buffer at 950C for 10 min. 

Results 

HeLa U2 snRNA Accumulates in the Nuclei of  
Xenopus Oocytes 

The cytosol of Xenopus oocytes contains large stores of un- 
complexed U snRNP proteins that are normally recruited 
by U snRNAs transcribed and exported later in develop- 
ment (Mattaj, 1988). These oocyte U snRNP proteins will 
spontaneously assemble onto microinjected U snRNA 
(De Robertis et al., 1982). Uncomplexed U snRNP proteins 
are also present in the cytosol of somatic tissue culture cells 
(Sauterer et al., 1988). Initially we characterized the kinetic 
import properties of HeLa U2 snRNA and several other 
small RNAs after their microinjection into the cytoplasm of 
Xenopus oocytes. Our results are consistent with those 

reported by De Robertis et al. (1982). 32p-labeled HeLa U2, 
U1, 5.8S, 5S, and tRNA were microinjected into oocyte 
cytoplasms and their nucleocytoplasmic distributions as a 
function of time analyzed by gel electrophoresis and autora- 
diography (Fig. 1 A). The extent of import was quantified 
by excision and scintillation counting of the U2, 5S, and 
tRNA bands from these gels (Fig. 1 B). U1 and U2 snRNA 
and to a lesser extent 5S RNA accumulated in nuclei while 
5.8S RNA and tRNA were excluded (Fig. 1, A and B). After 
20 h, ~70% of injected U2 snRNA localized to the nucleus 
(Fig. 1 B). The total counts retrieved from the U2 bands 
were relatively constant throughout the time course, indicat- 
ing that the molecule is stable in both the cytoplasm and nu- 
cleus (data not shown). 

Competition between Two Karyophilic Proteins 

P(Lys)-BSA (~90 kD) is comprised of BSA conjugated with 
12-17 NLS peptides (Goldfarb et al., 1986). The synthetic 
peptide P(Lys) is a useful tool because it contains only the 

Figure 1. Accumulation of small RNAs in Xenopus oocyte 
nuclei. (,4) 32P-labeled HeLa U2 and U1 snRNA, 5S 
RNA, and tRNA were mixed and injected into the 
cytoplasm of Xenopus oocytes. Nuclear (N) and cyto- 
plasmic (C) RNA isolated from groups of five oocytes in- 
cubated for the indicated time were analyzed by denatur- 
ing acrylamide gel electrophoresis and autoradiography. 
(B) Qnantitation of small RNA nuclear accumulation. 
Bands were excised from denaturing acrylamide gels, 
scintillation counted, and percent nuclear localization de- 
termined. Each point is the mean of three groups of five 
oocytes. The error bars indicate the SEMs. Error bars for 
tRNA transport are included but are very small. 
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Figure 2. P(Lys)-BSA competition of ['251]P(Lys)-BSA and ['~I]- 
nucleoplasmin nuclear import. (.4) [t~I]P(Lys)-BSA was injected 
into the cytoplasm of Xenop~ oocytes to a cellular concentration 
of 0.3/~M alone (closed squares) or with 5/~M (open diamonds) 
or 25/~M (closed diamonds) uniabeled P(Lys)-BSA. Nuclei and 
cytoplasms from "IU.A-fixed oocytes were separated and [t2sI]P- 
(Lys)-BSA in each fraction was determined. Each point is the mean 
of 10-15 oocytes, t-tests were done on all pairs of values for each 
time. Differences were statistically significant between all pairs ex- 
cept 5 and 25 #M at 15 min and 0.3 and 5 #M at 3 h. (B) [m25I]- 
nucleoplasmin was injected into Xenopus oocytes with 5 #M P- 
(Lys)-BSA (closed d/amonds), 25 #M P(Lys)-BSA (open triangles), 
or 25/~M BSA (closed squares) and processed as in A. Each point 
is the mean of 10-15 oocytes. T-tests indicate statistically signifi- 
cant differences between [nSI]nucleoplasmin import in the pres- 
ence of BSA and import in the presence of either 5 or 25/~M P(Lys)- 
BSA at every data point. 

minimal T-antigen NLS and would not be expected to bind 
cellular factors other than those specifically involved in nu- 
clear transport. Similar peptides have been employed as 
affinity reagents to identify putative transport receptors 
(Adam et al., 1989; Yarnasaki et al., 1989; Silver et al., 
1989; Lee and Melese, 1989; Li and Thomas, 1989; Benditt 
et al., 1989). P(Lys)-BSA accumulates in the nuclei of oo- 
cytes (Goldfarb et al., 1986), a variety of vertebrate tissue 
culture ceils (Lanford et al., 1986; Chelsky et al., 1989; 
Lanford et al., 1990), and Tetrahymena (White et al., 1989). 
The import of P(Lys)-BSA into oocyte nuclei occurs with a 
Km apparent of ~ 2  ~,M and a Vm~ of ~200  molecules 

pore -t rain-' (Goldfarb et al., 1986). Fig. 2 A shows that 
the rate, but not the extent, of [t2sI]P(Lys)-BSA import is 
influenced by 5/~M P(Lys)-BSA. 25/~M P(Lys)-BSA sig- 
nificantly reduced its import. These kinetics are consistent 
with the saturation of a limiting transport component. In 
similar time course experiments, 5 #M and 25 #M P(Lys)- 
BSA reduced the rate of [12SI]nucleoplasmin import ahnost 
to background levels (Fig. 2 B). The initial rate but not the 
final extent of [12q]nucleoplasmin import was also measur- 
ably competed by 2 #M P(Lys)-BSA (not shown). Thus 
increasing concentrations of P(Lys)-BSA increasingly inhibit 
the import of both [t25I]P(Lys)-BSA and [~25I]nucleoplasmin. 
By this criterion, then, both P(Lys)-BSA and nucleoplasmin 
share a limiting component of the transport apparatus. Al- 
though we were unable to directly saturate nucleoplasmin 
import, the competition studies presented here, together 
with results from other laboratories (Finlay et al., 1989), 
supports the dogma that the nuclear import of native cellular 
proteins is receptor mediated. 

P(Lys)-BSA Does Not Compete the Import 
of U2 snRNA 

The effect of increasing concentrations of P(Lys)-BSA on the 
import of [125I]P(Lys)-BSA, [~2q]nucleoplasmin, and [321)]_ 
122 snRNA is presented as the percent reduction in import 
relative to uncompeted transport at 45 rain (Fig. 3). Interest- 
ingly, in this and other experiments, P(Lys)-BSA exhibits a 
lower K~ apparent for [nq]nucleoplasmin than for [t25I]P- 
(Lys)-BSA import. Although these two proteins associate 
with the same limiting component, they apparently do so 
with different affinities (see below). Significantly, the import 
of [32p]u2 snRNA at 45 rain is unaffected by concentrations 
of P(Lys)-BSA that are sufficient to almost completely abol- 
ish the import of [t25I]P(Lys)-BSA and [125I]nucleoplasmin 
(Fig. 3). Fig. 4 A shows a time course of [32P]U2 snRNA 
import in the presence of either 20 /~M BSA or 20 /~M 
P(Lys)-BSA. In this experiment, to confirm that saturation 
of the P(Lys)-BSA pathway had been achieved, [12q]P(Lys)- 
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Figure 3. Dose dependence of P(Lys)-BSA competition on [125I]- 
P(Lys)-BSA, [nSI]nucleoplasmin, and [32p]u2 snRNA nuclear 
import. Nuclear import in 10-15 oocytes was assayed at 45 min 
after coinjection of the labeled transport substrate with increasing 
concentrations of P(Lys)-BSA. Normalized transport (relative 
transport) is expressed as the ratio of competed import, with 
P(Lys)-BSA, to uncompeted import, with BSA. 
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Figure 4. Time course of [riP]U2 snRNP and p2sI]P(Lys)-BSA 
import in the presence of excess P(Lys)-BSA. [32P]HeLa U2 
snRNA (1 rig, 32 nM) and [~25I]P(Lys)-BSA (100 nM) were coin- 
jected with 20 #M unlabeled P(Lys)-BSA or 20 #M BSA into Xeno- 
pus oocytes. Nuclei and cytoplasms from 10 to 12 oocytes at each 
time were separated and pooled. (.4) [~2p]u2 snRNA import was 
determined as described in Materials and Methods. (B) p25I]p- 
(Lys)-BSA import was determined by quantitating [125I]P(Lys)- 
BSA in nuclear and cytoplasmic extracts in a gamma counter prior 
to extraction of RNA. 

BSA import in the same cells was assessed independently by 
gamma counting (Fig. 4 B). Here it is shown that at concen- 
trations of P(Lys)-BSA sufficient to significantly reduce the 
transport rate of p2q]P(Lys)-BSA, the initial rate of p2p]u2 
snRNA is unaffected. We conclude that P(Lys)-BSA and nu- 
cleoplasmin compete for a limiting component of the nuclear 
transport apparatus, probably an NLS receptor, that is not 
required for U2 snRNA import. This conclusion is consis- 
tent with the findings of Yamasaki et al. (1989) who found 
that both T-antigen and nucleoplasmin synthetic signal pep- 
tides axe bound by the same rat liver signal binding proteins. 

U snRNP transport studies are complicated by the require- 
ment for the labeled U2 snRNA to assemble into an RNP 
before import. Although unassembled U snRNAs them- 
selves are not karyophilic, it is possible that, when mixed 
with P(Lys)-BSA, they might be imported artifactually as a 
complex with P(Lys)-BSA; that is, piggyback (Goldfarb, 
1989). If this were the case, then the import of the p2p]u2 
snRNP-P(Lys)-BSA complex would be susceptible to the 
dose dependent competition characteristic of P(Lys)-BSA 
saturation. Thus, the fact that p2p]u2 snRNA import is not 

competed by P(Lys)-BSA excludes the possibility that U2 
snRNA import is direcdy mediated by P(Lys)-BSA. We 
comSrmed that U2 snRNP assembly was occurring under the 
conditions of our import assays by immunoprecipitation as- 
says using antibodies specific for either P(Lys)-BSA or the 
Sin-antigen component of assembled U2 snRNP. Anti-Sin 
IgG but not anti-P(Lys)-BSA IgG precipitated nuclear 
[32P]U2 snRNA that had been microinjected 1 h previously 
together with either BSA or P(Lys)-BSA (Fig. 5). Further- 
more, virtually all nuclear p2p]u2 snRNA is immunopre- 
cipitable by anti-Sm IgG and none by anti-P(Lys) antibody. 
[mI]P(Lys)-BSA is efficiently immunoprecipitated from 
oocyte nuclear extracts by anti-P(Lys) IgG but not by anti- 
Sm IgG (not shown). Also, anti-Sm IgG can be used to im- 
munoprecipitate assembled p2P]U2 snRNP but not free 
pzP]U2 snRNA or [mI]P(Lys)-BSA (not shown). We con- 
clude that, when microinjected together with P(Lys)-BSA. 
U2 snRNA assembly and import proceeds unabated and in- 
dependently of PfLys)-BSA import. The simplest explana- 
tion for this phenomenon is that the import of P(Lys)-BSA 
and U2 snRNP are mediated by separate transport receptors. 

P(Lys)-BSA Competes the Nuclear Import of  HeLa 
U6 snRNA 

In mammalian cells, U4 and U6 snRNAs associate by base 
pairing to constitute a U4/U6 snRNA complex that functions 
in RNA splicing. However, Hamm and Mattaj (1989) 
reported that microinjected U6 snRNA can enter oocyte 
nuclei as a solitary particle, not associated with U4 snRNP. 
The import of U6 snRNA is particularly interesting because 
it lacks both the M3G cap and Sm binding site that are es- 
sential for U1 import (Hamm et al., 1990; Fischer and Liihr- 
mann, 1990). A single stranded region of U6 snRNA, dis- 
tinct from the sequence that mediates RNA-RNA interaction 
with U4 snRNA, is required for U6 import in oocytes (Hamm 
and Mattaj, 1989). The solitary U6 snRNP was also found 
associated with a 50-kD protein that was not detected as- 
sociated with U4/U6 snRNPs (Hamm and Mattaj, 1989). 
Thus, the biochemical and transport properties of U6 snRNA 
in oocytes are significantly different from those of the RNA 
polymerase II transcribed U snRNAs. 

Figure 5. Immunoprecipitation of U2 snRNA from oocyte nuclei 
with anti-P(Lys) and anti-Sm-spocific antibodies. U2 snRNA was 
injected into oocytes with 20/zM P(Lys)-BSA (LYS) or 20 #M BSA 
(BSA) and incubated for 1 h. Nuclei and cytoplasms from each 
treatment were separated, and RNA from each fraction isolated to 
indicate the level of U2 transport. Nuclear lysates from sibling oo- 
cytes in each treatment group were also immunoprecipitated with 
anti-P(Lys) or anti-Sm (snRNP-specific) antibodies. I represents 
the injected material. Each lane corresponds to 10 oocytes. 
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Figure 6. Dose dependent inhibition of U2 import by P(Lys)-BSA. 
32p-labeled HeLa U2 (open triangles) and U6 snRNA (open 
squares) and nsI-P(Lys)-BSA (closed squares) were coinjected 
into Xenopus oocytes with increasing concentrations of competitor 
P(Lys)-BSA, and the import of each karyophile determined after 
1 h incubation as described in Materials and Methods. Import of 
each karyophile was normalized to its import in the presence of 
equimolar concentrations of BSA. 

In our hands, U6 snRNA import into oocyte nuclei is less 
efficient than is U2 import. In one trial, 18% of microinjected 
[32p]u6 snRNA and 42 % of [32p]u2 snRNA accumulated in 
nuclei after 3 h. tRNA, for comparison, is virtually excluded 
from nuclei after this period (Fig. 1 B). Using [32p]u6 
snRNA, we conducted competition experiments in Xenopus 
oocytes with P(Lys)-BSA. We coinjected [tESI]P(Lys) BSA, 
HeLa [32p]u2 snRNA, and HeLa [32p]u6 snRNA with 
P-(Lys)-BSA or BSA into groups of 30 oocytes and monitored 
the transport of each type of molecule after 1 h. Low concen- 
trations of P(Lys)-BSA (0.5 #M) did not significantly affect 
the import of [~25I]P(Lys)-BSA, U2 snRNA, or U6 snRNA 
compared to controls coinjected with 0.5 #M BSA (see be- 
low). Significantly, however, 20 #M P(Lys)-BSA decreased 
both U6 snRNA and P(Lys)-BSA import threefold as com- 
pared with the controls but, as expected, had no significant 
effect on U2 RNA import. This can be seen in the dose depen- 
dent effects of increasing concentrations of P(Lys)-BSA on 
the import of [32p]u2 and U6 snRNA and [~25I]-P(Lys)-BSA 
(Fig. 6). Because [32p]u6 snRNP is imported more slowly 
than [32P]U2 snRNE we incubated the oocytes for 1 h, in- 
stead of 45 min as in Fig. 3, to allow more transport to occur. 
Thus, because transport proceeds even in the presence of 
competitor, albeit more slowly, the apparent inhibition of 
[~2sI]P(Lys)-BSA as a function of P(Lys)-BSA is less in Fig. 
6 than in Fig. 3. 

It is possible that P(Lys)-BSA acts by inhibiting the assem- 
bly of the U6 snRNP rather than as a transport competitor. 
Because the biochemistry of the U6 snRNP is poorly under- 
stood, U6 snRNP-specific antibodies are not yet available. 
Presently, therefore, we cannot directly monitor the in situ 
assembly of the U6 snRNE For this reason, we restrict our 
conclusions to the import of the U6 snRNA and not the 
snRNE We have attempted to determine whether or not 
P(Lys)-BSA associates strongly with the U6 snRNA before 
injection by gel retardation assay (Konarska, 1989). Al- 
though a small fraction of U2 snRNA can be shown to associ- 
ate with P(Lys)-BSA by gel retardation, the migration of U6 

snRNA in gels in unaffected by preincubating the RNA in 0.2 
mM P(Lys)-BSA. Thus, it is unlikely that if P(Lys)-BSA is 
preventing U6 snRNP assembly it is doing so by complexing 
the RNA. We also asked whether the coinjection of P(Lys)- 
BSA with U6 snRNA has any effect on its sedimentation in 
glycerol gradients. In this experiment, [32p]u6 snRNA was 
coinjected into oocyte cytoplasms with either BSA or P(Lys)- 
BSA, incubated for 1 h, after which time whole oocyte ex- 
tracts were prepared. Glycerol gradient analysis of these 
extracts indicated that P(Lys)-BSA had no effect on the sed- 
imentation of the [32p]u6 snRNA (data not shown). Neither 
of these experiments is a good assay for U6 snRNP assembly, 
thus, we can not rigorously exclude the possibility that 
P(Lys)-BSA interferes with U6 snRNP assembly. But we 
think it is unlikely. 

Discussion 

In the first part of this study, we showed by kinetic criteria 
that two karyophilic proteins, P(Lys)-BSA and nucleoplas- 
min, compete for the same limiting component of the nuclear 
transport apparatus. We believe that these two proteins are 
representative of a much larger, general class of karyophiles 
that are imported by the cell's predominant import pathway. 
We have also observed the inhibition of [t25I]calf thymus 
histone H1 import in oocytes by P(Lys)-BSA and the inhibi- 
tion of [t2~I]nucleoplasmin import by H1 (Breeuwer and 
Goldfarb, unpublished observations). The ability of P(Lys)- 
BSA to compete the import of [nSI]nucleoplasmin at lower 
concentrations than those required to compete [~I]P(Lys)- 
BSA import (Fig. 3) can be explained by differences in their 
respective affinities for a common receptor. At 45 rain, the 
import of P(Lys)-BSA is reduced by half in the presence of 
~10/~M P(Lys)-BSA, whereas <3 #M P(Lys)-BSA is re- 
quired to compete nucleoplasmin import to the same extent. 
Differences in the K, values of these two substrates for their 
common import receptor may differ by as much as an order 
of magnitude to account for this difference. What is the 
molecular basis for this difference? First, the NLS of nu- 
cleoplasmin is complex and contains an element(s) that ap- 
pears to be related to the T-antigen NLS motif (Burglin and 
De Robertis, 1987; Dingwall et al., 1988) but only insofar 
as they both contain clusters of lysine residues. It is difficult 
to envision a receptor recognizing such different sequences, 
present in the case of P(Lys)-BSA as a synthetic peptide, 
with identical affinities. Second, and perhaps more impor- 
tantly, the presence of increasing numbers of NLS on the sur- 
face of a protein can increase the rate and extent of its trans- 
port (Lanford et al., 1990; Lanford et al., 1988; Roberts et 
al., 1987; Dworetzky et al., 1988). Although nucleoplasmin 
is a pentamer, the P(Lys)-BSA used for the present study has 
12-17 NLS peptides/monomer. As the local concentration of 
signals increases on the surface of the karyophile, a previ- 
ously bound receptor protein, upon dissociating, will have 
a statistically greater chance of reassociating with a nearby 
signal on the same protein resulting in higher association rate 
constants. The dissociation rate constant for receptor-signal 
complexes should not be influenced by multivalency, but the 
overall effect will be to increase the equilibrium binding con- 
stant. Thus, assuming each receptor has but one NLS- 
binding site, positive multivalency can be produced by signal 
proximity effects. Alternatively, as previously suggested 
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(Goldfarb, 1989), positive multivalency may be achieved by 
the simultaneous binding of more than one NLS receptor to 
multivalent karyophiles. This could occur in the cytoplasm 
or on the central transporter assembly where multiple 
karyophile binding sites have been demonstrated (Akey and 
Goldfarb, 1990). 

The key finding of this study is that 132 snRNP import oc- 
curs independently of a limiting factor that is required for 
P(Lys)-BSA, nucleoplasmin and U6 snRNP import. What 
distinguishes the import of U2 snRNP from that of U6 
snRNP? Recent evidence indicates that both the M3G cap 
and Sm antigen binding site of U1 are critical for nuclear im- 
port (Hamm et al., 1990; Fischer and Ltihrmann, 1990). U6 
snRNA lacks both of these features although it is imported 
when artificially transcribed with a M3G cap, but not when 
its single stranded region is deleted (Hamm et al., 1990). 
Furthermore, Fischer and Ltihrmann (1990) were able to in- 
hibit U1 import with free M3G cap. These results together 
with the findings of the present study suggest that the M3G 
cap may have a signaling functioning distinct from the SV40 
large T-antigen type of NLS. Alternatively, the M3G cap 
may not be a proper signal but instead binds a factor essential 
for the karyophilic activation of the snRNP. 

How can multiple import pathways exist in a cell whose 
only portal to the nucleus is the NPC? Four of the more likely 
models are compared in Fig. 7. Based on the lack of competi- 
tion between 102 snRNP and P(Lys)-BSA import each model 

must provide unoccupied NPCs for U2 snRNP import in the 
presence of saturating P(Lys)-BSA concentrations. 

In model 1, which we favor, distinct cytoplasmic adaptors 
mediate the targeting of the two karyophiles to the nuclear 
envelope. Each adapter has two domains: a karyophile- 
specific NLS binding domain, and a NPC binding domain. 
Free karyophile, in excess over its adapter, is unable to 
directly bind the NPC. In this model, the amount of P(Lys)- 
BSA receptor/adapter and not the NPC is limiting. Thus in 
the presence of saturating P(Lys)-BSA concentrations its 
adaptor, but not the NPC, becomes saturated. Cytoplasmic 
adaptors/signal receptors are known to function in other 
membrane transport pathways (Bernstein et al., 1989). SRP 
is a well characterized adapter/cytoplasmic receptor that 
mediates the targeting of all start-transfer signal-sequence- 
containing proteins to the ER membrane. The proposition 
that cytoplasmic adapters act as primary NLS receptors has 
received support from a number of laboratories (Yamasaki 
et al., 1989; Breeuwer and Goldfarb, 1990; Newmeyer and 
Forbes, 1990; Adam et al., 1990). What would be the func- 
tion of cytoplasmic adaptors in nuclear transport? A major 
role in SRP in membrane transport is to maintain the translo- 
cation competence of the nascent polypeptide (Bernstein et 
al., 1989), which is not a requirement for nuclear import. 
The present study suggests that the role of putative cytoplas- 
mic receptors in nuclear transport may be to regulate the ac- 
cess of multiple karyophile classes to a relatively small num- 
ber of equivalent NPCs. Cytoplasmic NLS receptors may 
also prevent the passive diffusion of small karyophilic pro- 
teins through the nuclear pore (Breeuwer and Goldfarb, 
1990). 

In certain circumstances, translocation competent signal 
peptides can bypass the requirement for SRP and bind 
directly to an ER membrane-associated signal sequence 
receptor (Walter, 1987). A similar phenomenon could also 
occur in nuclear import. Thus, model 2 allows U2 snRNP, 
but not P(Lys)-BSA, to bypass the adaptor step and bind 
directly to the NPC. Model 2 predicts that P(Lys)-BSA im- 
port would be competed by saturating concentrations of U2 
snRNP, but not vice versa. 

In model 3, each NPC contains separate binding sites for 
each class of karyophile. The use of cytoplasmic NLS adap- 
tors is not excluded by this model; however, in this case, each 
adaptor would bind distinct NLSs and distinct sites at the 
NPC. An analogous situation occurs in mitochondrial pro- 
tein targeting where multiple high affinity receptors in the 
outer membrane mediate protein import (Hartl, 1989). The 
existence of multiple, spatially distinct, karyophile binding 
sites (peripheral binding and central docking sites) within 
the NPC central transporter assembly would allow for this 
mechanism (Akey and Goldfarb, 1989; Richardson et al., 
1988; Newmeyer and Forbes, 1988). 

In model 4, the nuclear envelope is studded with function- 
ally distinct NPCs. Each karyophile class has a cognate NPC 
class. Although this model is consistent with our kinetic 
data, binding data argue strongly against this model. By 
electron microscopy, all the NPCs visible in extensive fields 
were observed to bind nucleoplasmin-coUoidal gold or 
P(Lys)-BSA-colloidal gold (Feldherr et al., 1984; Richard- 
son et al., 1988; Newmeyer and Forbes, 1988; Akey and 
Goldfarb, 1989). 
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In conclusion, the present data suggest that U2 snRNP and 
P(Lys)-BSA use kinetically distinct nuclear import pathways. 
If P(Lys)-BSA, nucleoplasmin, and U6 snRNP belong to one 
class of karyophile and U2 snRNP to another, then we may 
ask, how many karyophilic macromolecules belong to each 
class and how many total classes exist? At one extreme, 
snRNPs that contain either Sm antigens or M3G caps, or 
both, may represent a unique and rather small family of 
karyophiles that are exceptional in that they do not use the 
cell's predominant import pathway. At the other extreme, the 
cell may have evolved a large number of independently regu- 
lated import pathways, each with its own characteristic NLS 
and receptor apparatus. The SV40 large T-antigen NLS, 
which can direct import in yeast and higher ceils, appears 
to be a member of a functionally conserved class of signals. 
Kinetic experiments are underway to investigate exactly how 
large this class is and if there are many other karyophiles like 
U2 snRNP that fall into other classes. 
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