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Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment

for hematologic malignancies, and other hematologic and immunologic diseases.

Donor-derived immune cells identify and attack cancer cells in the patient producing a

unique graft-vs.-tumor (GVT) effect. This beneficial response renders allo-HCT one of the

most effective forms of tumor immunotherapy. However, alloreactive donor T cells can

damage normal host cells thereby causing graft-vs.-host disease (GVHD), which results

in substantial morbidity and mortality. To date, GVHD remains as the major obstacle

for more successful application of allo-HCT. Of special significance in this context are a

number of cytotoxic pathways that are involved in GVHD and GVT response as well as

donor cell engraftment. In this review, we summarize progress in the investigation of these

cytotoxic pathways, including Fas/Fas ligand (FasL), perforin/granzyme, and cytokine

pathways. Many studies have delineated their distinct operating mechanisms and how

they are involved in the complex cellular interactions amongst donor, host, tumor, and

infectious pathogens. Driven by progressing elucidation of their contributions in immune

reconstitution and regulation, various interventional strategies targeting these pathways

have entered translational stages with aims to improve the effectiveness of allo-HCT.

Keywords: allogeneic hematopoietic cell transplantation (allo-HCT), graft-vs.-host disease (GVHD),

graft-vs.-tumor (GVT) effect, cytotoxic pathways, the Fas/Fas ligand (FasL) system, the perforin/granzyme

pathway, cytokines

INTRODUCTION

Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for
leukemia, lymphoma, and other hematologic malignancies. It is also an effective therapy for
some non-malignant diseases, such as aplastic anemia, immunodeficiencies, and autoimmune
diseases (1, 2). In allo-HCT, donors and recipients must have at least partially matched human
leukocyte antigen (HLA) genotype to ensure engraftment and decrease the possibility and severity
of graft-vs.-host disease (GVHD) (3). After the recipients are treated with conditioning regimens
that include high-dose chemotherapy or combined with radiotherapy, donor bone marrow cells or
peripheral blood stem cell (PBSCs)mobilized by granulocyte colony-stimulating factor (G-CSF) are
infused to the recipients. The cells in the allogeneic graft, which include hematological stem cells
and pre-existing immune cells, are not only important for re-establishing the hematological system,
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but also critical for reconstitution of immunity against tumor and
infectious pathogens (4). In case of malignant diseases, donor
immune cells are able to attack and eradicate residue malignant
cells. This unique immune response has been defined as the
graft-vs.-tumor (GVT) effect (5). However, the development of
GVHD may limit the success of allo-HCT, which results from
donor allogeneic T cells damaging normal recipient tissues as
foreign (4, 6, 7). Acute GVHD may develop within a few weeks
after allo-HCT, characterized by damage to susceptible organs,
causing skin lesion, liver dysfunction, and diarrhea. Chronic
GVHD occurs later leading to further damage to connective
tissue, respiratory tract, and exocrine glands. Multiple modalities,
including T cell depletion (TCD), immunosuppressive agents and
different conditioning regimens, have being utilized to prevent
or treat GVHD. Nevertheless, these strategies are not always
effective, and may adversely cause infection, cancer relapse, or
secondary malignancies (4, 6). Therefore, the “holy grail” of allo-
HCT remains the separation of the adverse GVHD from the
desired GVT effect.

It has been established that many types of donor-derived
immune cells, such as different subsets of T cells (4, 8), B cells
(9, 10), and NK cells (11, 12) are involved in mediating GVHD
and GVT effect. Donor-derived T cells remain the main player
for both GVHD and GVT response. Simply depleting T cells
from the allo-graft could successfully prevent GVHD (13), but
increases the risk of cancer relapse (14). Most of the therapeutic
approaches for GVHD are targeting T cells, such as T cell
modulation in different stages of transplantation (15, 16), co-
stimulatory and co-inhibitory modulation (17–21), and targeting
cytokines produced by T cells (22–24). The most practiced
GVHD therapy still use glucocorticoids that have strong and
broad anti-inflammatory effects including suppression of T cell-
mediated cytotoxicity (25).

Both CD4+ and CD8+ T cells can cause GVHD (26). At
the molecular level, a number of pathways have been described
for allogeneic T cell-mediated cytotoxicity, including Fas/Fas
ligand (FasL), perforin/granzymes, and cytokines such as tumor
necrosis factor α (TNFα), interferon γ (IFNγ), and TNF-related
apoptosis-inducing ligand (TRAIL) (27–29) (Figure 1). Many
studies have examined these pathways in allo-HCT. Interestingly,
most of these T cell-derived cytotoxic molecules can affect
both target cells and T cells themselves, while different T cell
subsets (e.g., CTLs vs. Tregs) can use the same molecule to
perform distinct functions thereby causing different impact on
GVHD and GVT response (28, 30–32). In principle, the Fas/FasL
pathway has been reported to function mainly in CD4+ T
cell-mediated GVHD, while the perforin/granzyme pathway is
essential in CD8+ T cell-mediated GVHD (33). In addition,
many reports have demonstrated the importance of cytokines in
regulating GVHD and GVT effects (34–39). In this review, we

Abbreviations: Allo-HCT, allogeneic hematopoietic cell transplantation; GVHD,

graft-vs.-host disease; GVT, graft-vs.-tumor effect; TCD, T cell depletion; MHC,

major histocompatibility complex; TCR, T cell receptor; FasL, Fas ligand; GzmA,

granzyme A; GzmB, granzyme B; TNF-α, tumor necrosis factor alpha; IFN-

γ, interferon gamma; TRAIL, tumor necrosis factor (TNF)-related apoptosis-

inducing ligand.

provide updates for research progress and treatment strategies
targeting these cytotoxic pathways.

Fas/FasL PATHWAY IN ALLO-HCT

Fas, also known as CD95, belongs to TNF receptor superfamily
and is expressed in multiple organs, playing a crucial role in
extrinsic programmed cell death. FasL, also known as TNFL6,
is predominantly expressed on activated T cells, macrophage,
and neutrophils. Fas is a type I transmembrane receptor protein,
existing as a homotrimer. Once engaged by FasL, Fas will
trigger the formation of the death-inducing signaling complex
(DISC). Subsequently, Fas interacts with the adaptor protein Fas-
associated death domain protein (FADD) through homologous
domain (40). This triggers the autocatalytic cleavage of pro-
caspase 8 into caspase 8 and activation of downstreammolecules,
such as caspase 3, caspase 6, and caspase 7, which eventually
induce apoptosis. Caspase 8 can activate the mitochondrial cell
death pathway as well, resulting in activation of cytochrome c and
caspase 9 (40).

Fas or FasL deficiency in mice (Fas receptor mutation lpr
mice and FasL deficiency gld mice) causes accumulation of
TCRαβ+CD3+B220+CD4−CD8− double negative (DN) T cells
and systemic lupus erythematosus like autoimmune disease,
which indicated Fas/FasL pathway plays an important role in
T cell negative selection in thymus (41, 42). Fas mutation
in human can also cause autoimmune lymphoproliferative
syndrome (ALPS) (43). Activation-induced cell death (AICD),
defined as activated T cells undergoing apoptosis after ligation
of TCR by antigen or mitogen, has critical regulatory function
of T cell response. Fas/FasL pathway is essential for AICD of T
cells, T cell selection during development, as well as mature T cell
re-stimulation by antigens (44, 45).

Fas/FasL in GVHD
Increased expression of Fas and FasL is observed in both CD8+

and CD4+ T cells during GVHD (46–48) and is associated
with the severity of GVHD (48, 49). Blockade of Fas/FasL
pathway led to decreased overall mortality in GVHD (50, 51)
and reduced tissue specific organ damage (52). Meanwhile,
single-nucleotide polymorphism (SNP) analysis showed that
SNP of Fas in recipients can be used to improve prognostic
stratification of GVHD (53, 54). Furthermore, selective depletion
of host-sensitized donor lymphocytes by pre-treatment of soluble
FasL can prevent GVHD (54–56). These results indicate that
Fas/FasL is a key molecule in the pathogenesis of GVHD.
Mizrahi et al. (57) found that short-term mobilization of
peripheral blood by FasL reduced GVHD and improved survival
following lipopolysaccharide stimulation, while retaining GVT
activity. Likewise, engineered T cells displaying novel form of
FasL (streptavidin-FasL) eliminated alloreactive T cells without
significantly affecting GVT effect (58). However, the expression
level of Fas failed to serve as a sensitive and specific marker for
GVHD (59).

Variable mechanisms have been proposed for the function
of Fas/FasL pathway in GVHD. Using murine parent to F1
models, it was reported that FasL pathway was important for
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FIGURE 1 | Three major cytotoxic pathways in HCT (A) FasL on T cells induces target cell apoptosis by engaging Fas on cell surface. (B) Cell apoptosis mediated by

perforin/granzymes stored in the cytotoxic granules of T cells. (C) Cytokines secreted by T cells, such as TNFα, IFNγ, and TRAIL, mediate target cell apoptosis

through various signaling pathways.

both CD4+ and CD8+ T cell-mediated GVHD. Host mice
receiving FasL-deficient donor T cells developed significantly less
GVHD compared with WT donor T cells (60). FasL-deficiency
in donor T cell did not affect T cell proliferation, homing,
activation, cytokine production, and anti-tumor activity, but
decreased mature T cell expansion after allo-HCT (50, 60).
However, allo-HCT of FasL-deficient T cells led to decreased
donor cell engraftment and subsequent chimerism (61). On the
recipient side, both Fas-deficient and FasL-deficient mice had
higher GVHD mortality compared with WT mice (62, 63).
Together, these findings show that Fas/FasL pathway in the host
is vital to resist donor cell engraftment and subsequent GVHD,
while important for donor cell engraftment in allogeneic host
to form stable chimerism after non-myeloablative conditioning.
Therefore, how to attenuate Fas-mediated GVHD, while not
affecting donor cell engraftment is a great challenge. Further
study showed brief exposure of unstimulated naïve donor
lymphocytes to FasL in vitro preferentially depleted FasL-
sensitive cells, and attenuated GVHD without impairing
engraftment or GVT activity (64). In addition, FasL had been
found to enhance the killing activity of CD25+ regulatory T cells
(killer Treg) and abrogate autoimmunity. Infusion of killer Treg
cells increased apoptosis of effector lymphocytes and ameliorated
GVHD severity (65).

Previously, it was believed that CD4+ T cells cause
cytotoxicity mainly through Fas/FasL pathway while CD8+

T cells prefer the perforin/granzyme pathway (66). However,
reports afterwards demonstrated that the perforn/granzyme
pathway was involved in cytotoxic function of CD4+ T cells
and Fas/FasL is important for that of CD8+ T cells as well,
though the potency was variable (60, 67). Maeda et al. (68)
reported that deficiency in either perforin or FasL in CD8+ T
cells decreased the development of GVHD, indicating that both
were required for the function of alloreactive CD8+ T cells.
However, another study showed that donor T cell cytotoxicity
via Fas/FasL or perforin was not prerequisite for induction of
GVHD (69). T cells lacking perforin and FasL function can
still cause lethal GVHD after bone marrow transplantation (69).
Furthermore, it was reported that memory CD8+ T cells in the
host mediated resistance to donor cell engraftment through a
mechanism that was independent of FasL and perforin pathways
(70). Sleater et al. (71) demonstrated that the absence of either
perforin or Fas had little impact on rejection of pancreatic islet.
However, simultaneous disruption of both pathways prevented
allograft rejection despite T cell infiltration. These findings
painted a complicated picture about how Fas/FasL in the
host and donor cells affect GVHD. We postulate that the
perforin/granzyme and Fas/FasL pathways comprise alternative
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and required mechanisms for T cell-mediated cytotoxic function
in the context of allo-HCT. In addition, FasL is the critical
for NK cell-mediated cytotoxicity. Donor NK cells have been
found to suppress GVHD while inducing GVT effect after allo-
HCT (72, 73). Olson et al. also showed that co-injection of
donor NK cells with alloreactive T cells decreased host GVHD
severity by reducing cytokine production, T cell activation, and
proliferation, via a mechanism that involved T cell apoptosis
induced by NK cells through the FasL and perforin pathways
(74).

FasL/Fas in Target Organ Damage
Skin, liver, and intestines are typical target organs in acute
GVHD, while primary and second lymphoid organs are also
susceptible. In a human skin explant model, higher GVHD score
was associated with Fas expression in epithelium and blockade
of Fas-mediated apoptosis decreased severity of cutaneous
GVHD damage (75). Likewise, in oral mucosa lesions, allogeneic
lymphocytes from FasL-defective mice did not induce vascular
damage, or epithelial cell death in recipients, suggesting a major
role of FasL by allogeneic lymphocyte-mediated mucosal GVHD
(76). It was found that radiation conditioning prior to allo-HCT
upregulated Fas expression on thymic stromal cells and donor
alloreactive T cells used FasL to medicate thymic GVHD (77).
In addition, bone marrow atrophy is mediated by p53-dependent
up-regulation of Fas (78). Ceramide-rich macrodomains are sites
where Fas is concentrated on cells. Sphingomyelinase-deficient
mice, which cannot generate ceramide, revealed reduced GVHD-
related organ damage, attenuated cytokine storm, and CD8+ T
cell proliferation. These results indicate that GVHD-mediated
cutaneous damage is associated with Fas expression in recipients
(79). However, studies of GVHD in liver and intestines are
controversial. Hepatotoxicity is more likely through FasL-Fas
pathway (80), while intestinal GVHD is associated with FasL-
dependent TNFα level (81). Specifically, hepatic lesions were
improved by administration of anti-FasL antibody whereas
intestinal lesions were protected by anti-TNFα antibody but
not by anti-FasL antibody (82). This result indicates that FasL
and TNFα differentially contribute to GVHD pathogenesis.
Contradictory results were also reported that administration
of anti-FasL and anti-TNFα antibodies or using FasL-deficient
donor T cells was not able to prevent intestinal GVHD (52, 82,
83). Furthermore, hematopoietic stem cells are also susceptible
to FasL-induced cell apoptosis. A recent murine model study
indicated that bone marrow cells pretreated with IFNγ increased
expression of Fas and related caspases and proapoptotic genes
which cause engraftment failure after allo-HCT (84). Therefore,
it becomes evident that multiple pathways are involved in this
sophisticated network and further investigations need to evaluate
the role of Fas/FasL pathway in crosstalk with other molecules
during GVHD target organ damage.

FasL/Fas System in GVT Effect
Initially, the FasL/Fas system was believed to engage in
GVHD only (32). Depletion of FasL led to decreased lethal
GVHD while GVT activity remained intact, suggesting that
other molecular pathways are responsible for GVT effect (85).

However, another report showed that CD8+ T cell-mediated
GVT activity depended on IFNγ and FasL but did not require
TNFα, perforin or TRAIL (35). Other studies showed that FasL
and perforin were both required for CD8+ T cell-mediated GVT
effect (86), while the perforin/granzyme pathway may be more
dominant in GVT activity mediated by CD8+ T cells (60). It is
also possible that CD4+ T cell-mediatedGVT effect relies on both
the Fas/FasL and the perforin/granzyme pathways (60). These
studies used different donor-host combinations for allo-HCT and
various tumor models, which may explain the discrepancy on the
contributions of these pathways to GVT effect. While there is not
a comprehensive all-in-one model to quantify the contributions
of various pathways to GVT activity in different cancers that
are enormously heterogenous, it is reasonable to conclude that
the FasL/Fas system is important for GVT effect against certain
tumors.

PERFORIN/GRANZYME PATHWAY IN
ALLO-HCT, GVHD, AND GVT EFFECT

More than 30 years ago, a pore-forming molecule was observed
on cells that were targeted by NK cells (87), which was later
isolated, purified, and named perforin (88). A few years later, Jürg
Tschopp’s group purified a family of serine protease stored in
cytoplasmic granules in cytotoxic T lymphocytes (CTLs) called
granzymes (89). To date, five different granzymes have been
identified in humans, named A, B, H, K, and M; while for mice,
there are 10 functional granzymes, A, B, C, D, E, F, G, K, M,
and N (90). Granzymes and perforin are packaged in CTLs and
natural killer (NK) cells. When the killer cells engage their target
cells, these proteins are released into the target cell membrane
through synaptic cleft, where perforin mediates the influx of
granzymes through forming pores on target cell membrane.
Subsequently, granzymes cleave substrate proteins carrying out
multiple functions. GzmA and B are expressed in CTLs and NK
cells, whereas GzmK is expressed mainly in NK cells (91, 92).
Different granzymes have various substrates specificity. GzmA
and K exhibit tryptase-like activity and cleave substrates after
arginine or lysine, whereas GzmB cleaves its target proteins
after aspartic acid or glutamic acid. Among all these granzymes,
GzmB, which is responsible for apoptosis, is the most extensively
studied (93). Clipped by GzmB, pro-apoptotic BH3-only protein
BID translocated to mitochondria causing cytochrome C release.
Besides activation of mitochondria-mediated apoptosis, GzmB
can directly process caspase-dependent pathways, including the
effector caspase 3 and initiator caspase 8. A recent study also
reported that GzmB directly attackedmitochondria and triggered
increased production of reactive oxygen species (ROS) in target
cells that was involved in causing apoptosis (94). To date, GzmB
has been implicated in autoimmune disease, infection, cancer,
and GVHD (95).

It was reported in 1996 that perforin was involved in the
kinetics of GVHD induced by allogeneic T cells (52). Graubert
et al. (33, 96) further showed that the cytotoxic effect of GzmB
was pivotal for GVHD mediated by CD8+ T cells, but not by
CD4+ T cells, and restricted in MHC I-mismatched GVHD.
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Then the contribution of this pathway to the GVT response
was examined a few years later. Tsukada et al. (38) used mouse
leukemia models to show that perforin-deficient donor cells
lost GVT activity, leading to early death of the hosts due to
leukemia outgrowth. On the other hand, a recent report showed
that perforin-dependent CD8+ T cell apoptosis after donor
lymphocyte infusion (DLI) impaired T cell proliferation and
limited vaccine-based GVT effect (97). In addition, a recent
published study from Galleu et al. (98) stated that mesenchymal
stromal cells (MSCs) could be induced to undergo apoptosis in a
perforin-dependent manner, which was essential to initiate MSC-
induced immunosuppression after infusion to GVHD patients.
Moreover, the cytotoxic activity delivered by either host CD8+

T cells or host CD56+ NK cells was correlated with less
severe GVHD for patients who get MSC therapy. Therefore, the
contribution of the perforin/granzyme pathway to GVHD and
GVT effect is more complicated than initially believed and is
involved in multiple aspects of GVHD.

Perforin/Granzyme Pathway in T
Regulatory Cells
Grossman et al. first showed that human adaptive Treg cells
(converted from CD4+ conventional T cells) preferentially
express GzmB and can kill allogeneic target cells in a
perforin-dependent manner (99). On the other hand, human
CD4+CD25+ natural Treg cells express GzmA but very
little GzmB. Both Treg subtypes display perforin-dependent
cytotoxicity against autologous target cells, including activated
CD4+ and CD8+ T cells, CD14+ monocytes, and both immature
and mature dendritic cells (100). Based on in vitro activation of
human T cells, these findings suggest that the perforin/granzyme
pathway is one of the mechanisms that human Treg cells use
to control immune responses. A recent study from Choi et al.
(101) reported that the hypomethylating agent azacytidine could
drive Foxp3 expression in non-Treg cells and convert them
into Tregs that could suppress GVHD without decreasing GVT
effect in a murine model. And the suppressive function in
those converted Tregs was partially dependent on perforin, but
not GzmB. However, our studies with in vivo mouse tumor
models showed that GzmB is important for natural Treg cell-
mediated suppression of anti-tumor response (102). For natural
Treg cell-mediated allogeneic T cell response, it was learned
that GzmB was not required for donor natural Treg cell-
mediated suppression of murine GVHD (103). Furthermore,
our recent work has proven that GzmB is not required for
natural Treg cell-mediated suppression of GVT effect either
(104). Therefore, it seems that inhibiting GzmB will cause
minimal influence on natural Treg-mediated suppression of
murine GVHD and GVT effect. However, GzmA has recently
been reported to be required for Treg-mediated suppression of
murine GVHD, providing protection against GI tract damage
(105). In a recent clinical study, Ukena S et al. analyzed
CD4+CD25hiCD127lo Treg population from patients with and
without GVHD after allo-HCT and found that higher GzmA
expression in Treg cells had better tolerance to allo-graft
(106).

Perforin/Granzyme Pathway in CD8+ and
CD4+CD25− Conventional T Cells
Using MHC I-mismatched and MHC-fully mismatched murine
models, Graubert et al. reported in 1996 that GzmB was
important for CD8+ T cells to cause lethal GVHD. GzmB
deficiency in CD8+ T cells significantly decreased the lethality
and severity of GVHD after transplantation (96). Recent studies
by our lab added to two new discoveries. First, while GzmB−/−

CD8+ T cells exhibit reduced ability to cause GVHD, which
was expected, surprisingly GzmB−/− CD8+ T cells showed
significantly enhanced GVT activity with several tumor models
(107). GzmB-mediated activation-induced T cell death may
account for the different anti-tumor immune responses between
WT and GzmB−/− CD8+ T cells. Secondly, we have found
that a TLR5 agonist, could not only enhance GVT activity
via activating antigen presenting cells (APCs) (108), but also
stimulate up-regulation of endogenous GzmB inhibitor, Spi6, in
accessory immune cells including APCs. In addition, our new
report showed that Spi6 protects alloreactive T cells from GzmB-
mediated mitochondrial damage, preserving their ability to cause
GVHD without affecting GVT effect (109). Yet our study also
suggests a novel function for Spi6, which contributes to GzmB-
independent protection of intestinal epithelial cells in murine
GVHD (110).

Initially, it was thought that GzmB was not important
for CD4+ T cell-mediated GVHD. However, from our study
published recently, we found that GzmB expression was
upregulated in CD4+CD25− conventional T cells after allo-
HCT (111). GzmB−/− CD4+CD25− T cells exhibited enhanced
expansion which was due to decreased activation-induced cell
death (AICD). More GI tract damage and more cytokine
production were observed in the hosts mice receiving GzmB−/−

CD4+CD25− T cells. Using both MHC-mismatched (B6 to
BALB/c) and minor antigen mismatched (129/SvJ to B6) models,
we confirmed that GzmB−/− CD4+CD25− T cells caused more
severe GVHD compared to WT counterparts (111). On the flip
side, GzmB−/− CD4+CD25− conventional T cells partially lost
GVT effect compared with WT T cells (104).

These new results reveal a more complicated paradigm for
this pathway in allo-HCT as GzmB function in different T
cell subsets (CD4+ vs. CD8+) unexpectedly leads to opposite
outcomes in GVHD and GVT effect. Therefore, simply targeting
GzmB in total T cell population is probably not beneficial
for improving allo-HCT. Instead, disabling GzmB function in
selected CD8+ donor T cells but not in CD4+CD25− donor
T cells may lead to favorable outcomes desired for allo-HCT
patients.

OTHER CYTOTOXIC PATHWAYS IN
ALLO-HCT

Cytokines and their receptors are involved in different stages
of GVHD, from T cell activation, differentiation, trafficking to
direct tissue injury. In completed clinical trials, blockade of single
cytokines alone, such as TNFα or interleukin-1 (IL-1), failed to
improve clinical outcomes (24, 112) although there were evidence

Frontiers in Immunology | www.frontiersin.org 5 December 2018 | Volume 9 | Article 2979

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Du and Cao Cytotoxic Pathways in Allo-HCT

showing significant correlation between IL-1, IL-1β, and TNF-
α and GVHD occurrence (113). The reason for these results is
elusive and related to insufficient insight of complexity of the
cytokine network. Latest advances in immunology and novel
therapeutic agents suggest that the strategy of targeting cytokines
needs to be revisited and may provide salutary effects on GVHD
and GVT management.

TNFα

TNFα is a type II transmembrane protein which can be cleaved
to a soluble form. It has been well-studied and known as a pro-
inflammatory cytokine (114, 115). Holler et al. first reported that
increased blood level of TNFα was observed in acute GVHD
(116). Soluble TNF receptors (TNFRs) were also associated with
GVHD related complications (117). Choi et al. demonstrated
the dynamical change of TNFR1 level before and after allo-
HCT and its correlation with high grade II-IV GVHD (118).
Clinical trial investigating the combination of TNFα monoclonal
antibody (Etanercept) plus methylprednisolone as initial therapy
for GVHD found substantial majority of remission, delayed onset
of acute GVHD and reduced organ damage (112). Subsequent
phase II trial revealed that lower TNFR1 level was linked
with better prognosis. However, adding Etanercept to standard
prophylaxis did not affect the overall rate of GVHD (119).
In a multicenter prospective study, Etanercept arm had lower
rate of GVHD initially, but achieved similar response in the
end (120). Infliximab, a murine-human chimerized monoclonal
antibody against TNFα, failed to lower the risk of GVHD
in a small prospective study (121). In addition, TNFα has
been a promising target in GVHD prevention particularly in
gastrointestinal system (122). It should be noted that none of
the studies stratify the patients based on their TNFα or TNFRs
levels and these ambiguous findings should prompt us to revamp
the conventional concept of TNFα. On the flip side, TNFα

performs critical regulatory function in Treg cells after allo-HCT
(123). In a murine allo-HCT study, donor Treg cells primed
by TNFα can decrease GVHD, prolong animal survival and
maintain GVT effect (124). Overall speaking, TNFα plays a
fundamental role in allo-HCT, including GVHD initiation and
progression, affecting clinical outcome and response to therapy,
yet it functions much more like a pro-inflammatory cytokine
than a cytotoxic molecule.

IFNγ

IFNγ plays a central role in host defense by regulating both
innate and adaptive immunity, including specific effects on T cell
differentiation and proliferation (125). IFNγ exerts paradoxical
effect in GVHD. Exogenous IL-12 treatment stimulates IFNγ-
mediated protection against GVHD after lethal irradiation
conditioning on the day of allo-HCT (126). However, using IFNγ

knockout mice, two groups independently reported that neither
donor nor host derived IFNγ is required for the development of
GVHD (127, 128). Further studies confirm that the protective
effect of IFNγ may depend on IL-12, IL-18, or Fas (129–131).
Although the exact mechanism of IFNγ in GVHD remains
unclear, it may implicate that IFNγ signaling in recipient non-
hematopoietic cells is more important in the process of GVHD
development (125). In a recent study, Kim et al. (132) showed
that human MSCs, primed with IFNγ before infusion, displayed
stronger suppression of GVHD in vivo in an indoleamine 2,3-
dioxygenase (IDO)-dependent manner. On the other aspect,
IFNγ production is essential for tumor eradication as well (133).
GVT effect was diminished in the hosts receiving IFNγ-deficient
donor cells as IFNγ was also shown to promote FasL-dependent
GVT activity of CD8+ T cells (35). Furthermore, lack of IFNγ

led to impaired Treg function and exacerbated GVHD (134).
Among these studies, we note that IFNγ may function as a
cytotoxic molecule as well as a proinflammatory cytokine. While

TABLE 1 | Contribution of different cytotoxic pathways in allo-HCT.

Cytotoxic pathway Influence on GVHD Influence on GVT Target organs

Fas/FasL Contributes to both CD4+ and CD8+ T cell-mediated

GVHD (46–54, 60, 67, 68).

FasL in NK cells inhibits GVHD (72–74).

Controversial; seems more important for CD4+

T cell-mediated GVT (28, 35, 60, 85, 86).

Damage skin, liver, thymus,

HSC, controversial for GI

(75–84).

Perforin Involved in CD8+ T cell-mediated GVHD (52, 68)

Perforin in NK cells inhibits GVHD (74).

Critical for CD8+ T cell-mediated GVT (38, 97). Not defined (31).

GzmB GzmB is involved in CD8+ T cell-mediated GVHD (107).

GzmB decreases CD4+ T cell-induced GVHD (111).

GzmB does not affect natural Treg cell mediated

suppression of GVHD (103).

GzmB damages CD8+ T cell-mediated GVT

(107).

GzmB contributes to optimal GVT induced by

CD4+ T cells (104).

GzmB does not affect natural Treg cell

mediated suppression of GVT (103).

Not defined (31, 105, 107).

GzmA GzmA is required for Treg-mediated suppression of

GVHD (105, 106).

No report Protects GI GVHD (105).

IFNγ Controversial; Can be either protective against GVHD

(126, 129–132), or dispensable for GVHD (127, 128).

IFNγ increases Treg-mediated suppression GVHD (134).

IFNγ is critical for GVT effect (35, 36, 133). No report

TNFα TNFα is associated with GVHD development (112, 119). No report Damages skin, liver, GI (122).

TRAIL TRAIL in T cells decreases GVHD (137).

Soluble TRAIL prevents GVHD (138).

TRAIL is required for GVT effect (37, 136, 137). No report
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both functions are involved in GVHD and GVT effect, a better
mechanistic understanding of the INFγ signaling is still required
for dissociating the GVT effect from GVHD.

Tumor Necrosis Factor-Related
Apoptosis-Inducing Ligand
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL) belongs to TNF superfamily. TRAIL can induce target
cell apoptosis though binding to death receptor (DR) 4 or 5 (135).
TRAIL is upregulated after allogeneic stimulation and does not
affect donor T cell proliferation and cytokine production. It has
been reported that TRAIL contributes to optimal GVT effect
since TRAIL−/− donor T cells exhibit decreased anti-tumor
activity (37). NK cell-derived TRAIL was also shown to kill acute
lymphoblastic leukemia cells after HCT (136). A study using
over-expression system revealed that TRAIL+ T cells induced
less GVHD but augmented GVT effect (137), while another study
reported that the level of soluble TRAIL in peripheral blood after
allo-HCT was corelated with better prognosis with less GVHD
(138), suggesting that TRAIL may be a feasible target for GVHD
and GVT management.

CONCLUSION AND PERSPECTIVE

The prevention and treatment of GVHD without impairing
the GVT effect remains a major challenge for allo-HCT. Over
the past decades, intriguing studies in the field of cytotoxic
pathways open new avenues that can potentially diminish
GVHD while largely preserving the GVT effect. It has been
established that Fas/FasL, perforin/granzyme and cytokines

are three major pathways contributing to T cell-mediated
cytotoxicity in allo-HCT (Table 1). However, our understanding
of these complicated pathways remains limited. There is still a
barrier where current animal models cannot precisely mirror
the clinical situation, leading to compounding discrepancies
that hinder the translation into clinical practice. We anticipate
that the improved insights of the cytotoxic pathways coupled
with advanced technologies targeting these pathways will in
the near future promote translation of preclinical discoveries
into clinical implementation in GVHD management (139). New
therapies, such as targeting GzmB, may emerge to overcome this
devastating complication.
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