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Abstract A polymer molecule (represented by a statistical
chain) end-grafted to a topologically rough surface was
studied by static MC simulations. A modified self-
avoiding walk on a cubic lattice was used to model the
polymer in an athermal solution. Different statistical models
of surface roughness were applied. Conformational entro-
pies of chains attached to uncorrelated Gaussian, Brownian,
and fractional Brownian surfaces were calculated. Results
were compared with the predictions of a simple analytical
model of a macromolecule end-grafted to a fractal surface.

Keywords Self-avoiding walk . Monte Carlo method . Self-
similar and self-affine surface . Fractal dimension

Introduction

Surface modification by grafting end-functionalized polymer
chains has been extensively used for a variety of applications,
including drug delivery [1], molecular electronics [2], cosmet-
ics [3], manufacturing surface-responsive materials [4, 5],
biocompatible artificial implants [6], and in many other areas
in which colloidal dispersions must be stabilized/destabilized.
The properties of polymer layers, which determine the suit-
ability of coatings for particular applications, are strongly
dependent on the the grafted chain conformation. In good

solvent conditions, the chain conformation is a function of
the length of the chain and the density of polymer at the
surface [7]. For large polymer densities at the surface, the
chains form a structure called the polymer “brush,” whereas
they adopt a “mushroom” conformation at low densities.
Studies of the conformations of chains that are end-grafted
to convex and concave interfaces [8, 9] are relevant to issues
such as the deformation of a bacteria cell membrane by an
attached chain [10], the application of a macromolecule as a
localized pressure microtool [11], or the micromanipulation of
individual polymer molecules using AFM [12].

The conformations of polymer chains near surfaces under
athermal conditions are governed solely by the excluded
volume effects of the polymer itself and the interface.
These effects provide the entropic contribution to the total
free energy of the grafted chains.

In most studies in which the effect of the excluded
volume on the conformations of end-grafted chains was
examined, the surface was considered to be homogeneous.
However, real solid surfaces contain geometrical irregulari-
ties and morphological heterogeneities. These nonuniform-
ities can also influence the conformational behavior of
macromolecules that are in close proximity to a surface
[13, 14].

In the work described in this paper, we examined the
conformation of an isolated polymer molecule (represented
by a statistical chain) that is irreversibly attached at one of
its ends to a geometrically rough surface. The main aim of
the work was to generalize the thermodynamic description
of a linear chain that is terminally attached to a homoge-
neous, flat and purely repulsive surface to that of a chain
attached to a rough surface. Note that the present work
focuses on the athermal situation. Under purely athermal
conditions, the influence of the surface roughness on the
chain conformation can be considered to be entirely entropic
in nature. The rough surface was modeled based on different
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types of random geometrical irregularities, including the
fractal structure.

The model

Generation of a statistical chain

A series of statistically independent samples of linear SAW
(self-avoiding walk) chain conformations were generated by
means of the static Rosenbluth–Rosenbluth MC approach
[15, 16]. Simulations were performed on a 3D regular cubic
lattice of lattice constant a. In most simulations, the box
contained the interface represented by the surface generated
by algorithms described in “Generation of the interface.”
The method used to generate the SAWs was based on an
algorithm in which the segments of the chain were
connected by vectors of the type given by the permutation
of [0, ±2a, ±3a] (subsequently referred to as (023) motion).
This method is similar to those that have been applied in
simulations of polypeptides, where (123) and (023) motions
were used [17, 18], and it gives a coordination number ω of
24. A high value of ω results in very high chain flexibility.
The segment length b was equal to 3.606a. The volume of
the simulation box was limited to (601a)3. Simulations were
performed for free (unperturbed) chains and for chains at-
tached to the surface by one end-segment. The surface was
rigid and impenetrable to the chain. It was also purely
repulsive and there was no chain adsorption except for the
irreversible attachment of the terminal segment. Thus, the
influence of the surface on the chain conformation was
solely entropic in nature.

The model describes the athermal situation, as no inter-
actions except those for the excluded volume of the chain
segments and the interface were included (i.e., no long-
range and local potentials caused by intermolecular interac-
tions were taken into account) [19].

Chains of up to 100 segments were considered. Each data
set presented in the paper was calculated as the average of
results obtained from 105 chain conformations.

Calculation of the chain conformational entropy

The conformational entropy of the SAW chain was calcu-
lated by means of the statistical counting (SC) method [20],
which is based on the calculation of the quantity ϖ0

eff ;

defined as

ϖ0
eff ðiÞ ¼

Ω iþ 1ð Þ
ΩðiÞ ; ð1Þ

where Ω(i) is the number of conformations of the chain of i
segments. The physical meaning ofϖ0

eff can be related to the

effective coordination number of the lattice. For the (023)
algorithm with the cubic lattice, this takes a value of 24 for
the first segment, and then ϖ0

eff � 23.
In our study, instead of ϖ0

eff , the average values obtained
by the MC sampling method, ϖeff , were used. In practice,
ϖeff was obtained as the number of all empty sites (sites not
filled with other segments or the surface) available to a
successive segment at each generation step.

The entropy S of a chain built of N segments was calcu-
lated from the equation

S

kB
¼

XN�1

i¼1

ln ϖeff ðiÞð Þ; ð2Þ

where kB is the Boltzmann constant.
The entropy results calculated by means of the SC meth-

od rapidly converged to the average (see Fig. 1); the relative
standard deviation of the entropy of a chain of 100 segments
obtained by 50 independent data sets of 105 conformations
was 5.0 × 10−6.

Generation of the interface

The surfaces were generated using two different methods:
random displacement (RD) and random midpoint displace-
ment with successive random addition (RMD) [21]. Initially,
the generated surface was a square of area (1024a)2. Before
the simulations, the size of the surface was reduced to the
length of the edge of the simulation box (601a). Three
different methods of surface reduction were applied. The
methods differed in the way that the altitude of the central
point on the surface was chosen: from among all of the
surface sites with coordinates between 301 and 723 (sites
localized in the central part of the surface), the site that had
either (i) the minimum altitude (zmin), (ii) the maximum

Fig. 1 Example of the visualization of the convergence of the confor-
mational entropy of a chain during a simulation (the relative entropy
vs. the number of iterations)
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altitude (zmax), (iii) the elevation closest to the mean altitude
of all the surface sites (zmean), or (iv) a particular random
altitude (zrandom) was chosen. Chain generation started at a
lattice site adjacent to this point.

Since the chain was generated starting at the central point
of the simulation box, the method applied produced chains
anchored at a local minimum (the valley) or maximum (the
apex) of the surface, or at a surface site with the mean or a
particular random altitude. The range of possible localiza-
tions of the surface site for the chain end attachment was
larger than the dimension of the coil formed by the chain
(larger than the end-to-end distance and the average radius
of gyration for the chain built from N0100 segments). This
guaranteed that the surface fragment considered was a sta-
tistically significant surface sample containing topological
elements (hills and valleys) that were comparable in size to
the coil.

In the study, three different types of amorphous surface
were examined. The methods used to generate these surfa-
ces are described below.

Uncorrelated Gaussian surface

Each uncorrelated Gaussian motion (uGm) surface [21]
consisted of elements of the same size as the lattice mesh,
and the altitude was determined by the normal distribution.
The altitude of each element of the lattice was fully inde-
pendent of that of its neighboring elements. The uGm sur-
faces were generated as follows. The elevation zS of each
lattice site representing the modeled interface was consid-
ered to be the integer part of the variable of the normal
distribution defined by the expression

zS ¼ z0 þ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 lnðX Þ

p
cos 2p Xð Þ; ð3Þ

where z0 is the assumed mean altitude of the surface, σ
is the standard deviation of the altitude, and X is a
variable representing a uniform distribution in the range
[0,1). All sites with altitude coordinates z < zS, which
are located inside the solid phase, were marked as
inaccessible to the chain.

Brownian motion and fractional Brownian motion surfaces

Brownian motion (Bm) surfaces and fractional Brownian
motion (fBm) surfaces were generated by means of the
RMD method. Surface generation consisted of modifying
the initially smooth surface described by z 0 z0, the initial
mesh size of which was equal to 1024a. The modification
led to a recursive reduction in the mesh size by a factor of 2
and a change in the altitude of a randomly chosen square by
an increment whose standard deviation was given by a
factor of 2H, where H is the Hurst exponent [21]. For the

floating point number representation of the surface altitude,
the exponent H is directly related to the fractal dimension
DF of the surface as follows:

H ¼ 3� DF: ð4Þ

At random intervals, all of the altitudes were subjected to
random displacements in order to minimize artefacts of the
surface construction. The method applied guarantees scale
invariance in the range between the lattice constant and the
length of the simulation box, since the fractal irregularities
of the surface do not have amplitude and their dimensions
increase with the object scale. This method produced Bm
surfaces at H01/2 and fBm surfaces at H≠1/2. At the end of
surface generation, the resulting altitudes z were converted
to discrete values. All sites with coordinates z < zS were
marked as inaccessible to the chain.

Characterization of surfaces

The last step in both of the methods of surface generation
described above was to convert the results given as floating
point numbers to integers. Thus, the final values of the
parameters describing the surface roughness differed from
the generated ones. In order to characterize the roughness of
surfaces described by integer altitudes, the standard devia-
tion of these altitudes and the “empirical” fractal dimension
were applied. The empirical fractal dimension was calculat-
ed as follows:

DF ¼ lnðX Þ
lnðLÞ ; ð5Þ

where X is the total surface area, which includes the upper
and side wall areas of the surface elements, and L is the edge
length of the square obtained by projecting the surface
sample onto the wall of the simulation box. The parameter
DF takes a value of 2 for a smooth flat surface and tends to 3
for an extremely rough surface.

Results

Analysis of the surface roughness

The images of a few examples of uGm surfaces gener-
ated for different standard deviations σ of the altitude
are shown in Fig. 2. As seen, increasing σ changes the
surface shape from planar (Fig. 2a) to a brush with a
large number of sharp apices and deep and narrow
valleys (Fig. 2d and Table 1).

Although the uGm surfaces are not fractal objects,
we have adopted their fractal dimension as a measure of
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their roughness. The fractal dimensions of the surfaces,
DF, versus the standard deviations of altitude, σ, calcu-
lated for all of the surface types used in the study are
shown in Fig. 3. As follows from this figure, increasing
σ/a leads to an increase in DF from 2 (the flat surface)
toward 3. The DF 0 log(σ/a) dependencies have the
same slope irrespective of the surface type for high
values of σ/a.

Figure 4 presents examples of Bm and fBm surfaces.
As seen, the fractal Bm surfaces (Fig. 4a–c) are good
models of amorphous surfaces with different rough-
nesses. Increasing the Hurst coefficient of the fBm
surface (Fig. 4d–f) implies a transition from an amor-
phous surface to a surface morphology close to that of
the crystal fracture surface.

The applied methods of simulation permit the generation
of interfaces with different topologies: from amorphous
surfaces to regular ones corresponding to crystal fracture,
and from smooth surfaces to rough brush structures like
those obtained by modifying the interface through polymer
adsorption.

Conformational entropy of a grafted chain

The conformational entropy of a free unperturbed lin-
ear chain can be calculated from Eq. 6, which was
derived on the basis of renormalization group theory
[22, 23]:

S

kB
¼ ln CF

� �þ gF � 1
� �

ln N þ N ln wF
eff

� �
; ð6Þ

where C and the average effective coordination number
of the lattice ωeff are constants that depend on the
geometrical details of the model (namely on the coordi-
nation number of the lattice), and γ is the universal
constant, which takes the value 7/6 for a free unper-
turbed chain in a 3D lattice. The superscript F is used

Fig. 2 Samples of uGm
surfaces with different standard
deviations of altitude. Surface
roughness parameters for a–d
are collected in Table 1

Table 1 Roughness
parameters for the
surfaces depicted in
Figs. 2 and 4

Figure Surface
type

H σ DF

2a uGm – 0.4 2.089

2b uGm – 0.5 2.114

2c uGm – 1.0 2.184

2d uGm – 3.0 2.320

4a Bm 0.5 1.0 2.109

4b Bm 0.5 2.0 2.173

4c Bm 0.5 3.0 2.215

4d fBm 0.01 1.0 2.240

4e fBm 1.0 1.0 2.055

4f fBm 2.0 1.0 2.014 Fig. 3 The dependencies of the fractal dimensions of uGm, Bm, and
fBm surfaces on the standard deviation of altitude
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to denote the free unperturbed chain. The S 0 f(N)
relationship represented by Eq. 6 was compared with
that obtained for the model in which long-range exclud-
ed volume effects are not incorporated [the nonreversal
random walk (NRRW)], which is given by [24]

S

kB
¼ ln wð Þ þ N ln w � 1ð Þ; ð7Þ

where ω is the coordination number of the lattice. When
one compares Eqs. 6 and 7 it becomes apparent that the
parameter CF in Eq. 6 refers to the initial part of
macromolecule (i.e., the part generated at the very be-
ginning). It can be correlated to the number of possible
positions of the second segment around the first one,
and can be related to the term ln(ω) in the NRRW
model. Moreover, one can conclude from the above
comparison that the parameter γF as well as the differ-
ence between wF

eff and ω−1 describe the excluded vol-
ume effects in the more distant parts of the chain.

Anchoring the chain end to a surface implies a reduction
in the conformational entropy of the macromolecule. Later
in the text, this reduction in the chain entropy following its
attachment to a surface is referred to as the “entropy of chain
anchoring” ΔS. If the anchoring takes place on a planar

smooth surface, ΔS is related to the segment number by the
following relationship (based on Eq. 6):

� ΔS

kB
¼ � SA � SF

kB
¼ ln

CA

CF

� �
þ gA � gF
� �

ln N

þ N ln
wA
eff

wF
eff

� �
; ð8Þ

where the index A refers to the anchored chain. For a long
chain, the ratio CA/CF is much lower than N and we can
neglect the first term on the right hand side of Eq. 8.
Moreover, the probability that the segments will make con-
tact with the surface diminishes as their distance from the
grafted segment (measured along the chain) increases, since
the anchored chain most likely propagates towards the bulk,
where the conditions are similar to those of the free chain.
Hence, it can be assumed that the ratio wA

eff wF
eff � 1

�
and

Eq. 8 takes the form:

ΔS

kB
¼ gA � gF

� �
ln N ¼ Δg lnN ; ð9Þ

where Δγ≈−0.47, since the exponent γA is equal to 0.70±
0.02 for the planar surface [23, 25]. In the case of chains that
are end-attached to a smooth planar surface, Eq. 9 was

Fig. 4 Samples of Bm (a–c)
and fBm (d–f) surfaces
generated by the RMD method.
Surface roughness parameters
for a–f are collected in
Table 1
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found to provide a good approximation of the ΔS 0 f(N)
dependence [23, 25].

In order to assess the applicability of Eq. 9 to chains
anchored to rough surfaces, the obtained dependencies of
the effective coordination number (used in this work to
calculate the absolute entropies SF and SA) on the chain
length and the fractal dimension of the surface were ana-
lyzed. Examples of the dependencies ofϖeff on N for chains
anchored at z 0 zrandom on uGm surfaces characterized by
different values of DF are shown in Fig. 5a. The plot ofϖeff

¼ fðNÞ starts from ϖeff close to 16, corresponding to the
number of free sites near a segment located at an altitude zS
+1 (ϖeff ¼ 6 is reached only for a planar surface), then it
increases asymptotically, reaching a value close to 22.9 at
N0100. The maximum coordination number of the lattice
ω023 (resulting from the NRRWassumption) is not reached
because of the excluded volume effect. Figure 5b presents
the dependence ϖeff ¼ f DFð Þ. As expected, an increase in
the surface roughness causes a decrease in the effective
coordination number, especially for short chains.

Changes in the effective coordination number with N can
also be illustrated using a different coordinate system.
Figure 6a presents the dependence of the ratio ϖA

eff ϖF
eff

�
on

the segment number N, calculated for uGm surfaces at z 0
zrandom. The dependencies obtained for other types of surfaces
(i.e., Bm and fBm) and different initial values of the parameters
are similar in shape: as N increases, the ratio ϖA

eff ϖF
eff

�
tends

asymptotically to a certain value that depends only slightly on
the fractal dimension of the surface. However, at low N, a
pronounced effect of the value of DF on theϖA

eff ϖF
eff

�
ratio is

observed, indicating that linear dependence (9) is not a good
approximation of the real ΔS 0 f(N) relationship for rough

surfaces—at least not in the examined range ofN values, where
neglecting the term CA CF= in Eq. 8 seems to be an oversim-
plification. Figure 6b indicates that an increase in the surface
roughness implies a decrease in the relative coordination num-
ber of the lattice.

Figure 7a presents the ΔS 0 f(N) dependencies obtained
from our simulations of uGm surfaces at z 0 zrandom. As
expected, the dependencies are not linear, but they become
linear on a log-log scale, especially for relatively long chains,
which points to the predominant effect of the third term in
Eq. 8 (determined by the ratio of the effective coordination
numbers) on the shapes of these dependencies. In the case of
extremely irregular surfaces, the ln �ΔSð Þ ¼ f lnðNÞð Þ depen-
dencies become linear across the whole range of N and mutu-
ally intersect in a very small region of N values (Fig. 7b).
Based on the linear character of the relationships studied, the
parameters A and ζ in the following equation:

� ΔS

kB
¼ AN z ð10Þ

were chosen to characterize the influence of the surface rough-
ness on the entropy of chain anchoring (ΔS).

The effect of surface topology on the entropy
of chain anchoring

The results of simulations concerning the effect of sur-
face roughness on the conformational entropy of end-
attached chains are now presented and discussed sepa-
rately for each of the three types of surface models
described above, which mimic the most common real
surface geometries.

Fig. 5 Effective lattice
coordination number versus a
the length of the chain for
chains anchored to uGm
surfaces with different degrees
of roughness (values of DF are
indicated in the figure) and b
the fractal dimension of the
surface for selected chain
lengths (values of N are marked
in the figure). The chain is
attached at z 0 zrandom. The plot
of ϖeff vs. σ is shown in the
“Electronic supplementary
material” (ESM)
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Brush-like interfaces

The dependencies of ΔS and the parameters A and ζ and on
the fractal dimension of the uGm surface for a chain consisting
of 100 segments are shown in Fig. 8. As follows from Fig. 8a,
the DF value affects the chain entropy only slightly. Also, the
results show only a minor dependence on whether the attach-
ment point was chosen at random or the chain attachment was
forced to occur at the point of mean altitude.

It is clear that the influence of DF on ΔS, as observed in
Fig. 8a, is minimal, considering that the results presented
here are for a chain with N0100 (i.e., N in the vicinity of the
range of N in which the dependencies of ln(−ΔS) vs. ln(N)
intersect, as shown in Fig. 7b and mentioned in the previous
section). The slopes and initial intercepts of the plots of

ln(−ΔS) vs. ln(N) in Fig. 7b are strongly influenced by DF.
The appearance of a region in which the plots intersect (as
well as the existence of a critical value for the fractal
dimension of the surface, as discussed further in “Self-affine
surfaces”) is probably a result of discrete properties of the
network, as governed by the constants a and b that charac-
terize the grained structure of the system.

As illustrated in Fig. 8b and c, as the fractal dimension of the
uGm surface increases, the value of the parameter A decreases
to zero while the value of another parameter in Eq. 10, ζ,
increases without restriction (at least in the range of DF values
examined). No distinct dependence of either A or ζ on the
chosen chain attachment point on the surface was observed.

The decrease in A with increasing DF probably results
from the greater conformational freedom of the initial part of

Fig. 6 The dependencies a
ϖeff ;A ϖeff ;F

�
vs. N and b

ϖeff ;A ϖeff ;F

�
vs. DF calculated

for uGm surfaces (DF and N
values are indicated in the
figure, z 0 zrandom). The plot of
ϖeff ;A ϖeff ;F

�
vs. σ is shown

in the ESM

Fig. 7 The linear-logarithmic
(a) and logarithmic-logarithmic
(b) dependencies of the confor-
mational entropy vs. the seg-
ment number calculated for
uGm surfaces at different DF

values (as indicated in the
figure); z 0 zrandom
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the macromolecule (i.e., the part composed of segments
generated at the very beginning, which is in close proximity
to the end segment attached to the surface), since the spatial
hindrance due to the presence of the surface is expected to
decrease as DF increases. This can be understood when one
considers that the attachment of very short chains to the flat
surface involves eliminating approximately half of all pos-
sible conformations (since a half-space is blocked by the
surface). Anchoring the chain to a surface with a large
fractal dimension corresponds to placing its end in the
“brush” area, where the number of possible trajectories for
the chain increases (since those between the brush rods are
possible too). On the other hand, analysis of the influence of
DF on the value of ζ (Fig. 8c) indicates that, for high DF, the
probability of encountering a lattice site belonging to the
surface increases with increasing chain length. Therefore,
the reduction in the conformational entropy becomes larger
and occurs more rapidly as the chain length increases. This
can be understood by noting that, as DF increases, the depth
of a valley in which the chain can occur also increases, forcing
the chain to adopt a more extended conformation. In the
extreme case (i.e., for very high DF), the number of possible
chain conformations decreases to that corresponding to the
chain placed among parallel rods, and the drop in entropy
becomes proportional to the chain length, which implies that
the exponent ζ tends to unity:

lim
DF!3

z ¼ 1: ð11Þ

Self-similar surfaces

The Bm surface is locally smoother then the uGm one since
there are no narrow slits. Therefore, the frequency of viola-
tion of the SAW constraint was smaller (a smaller number of

trial conformations was rejected) with the Bm surface, so
simulation results were obtained much more easily than for
the chain bound to the uGm surface.

Figure 9 presents the results obtained for four different
locations of the chain end (among which the first three were
imposed): at the apex, at the valley bottom, at the surface
element of mean altitude, and at the altitude z 0 zrandom. As
seen (Fig. 9a), anchoring the chain to the apex of a local
irregularity results in only a small reduction in its confor-
mational entropy, which decreases with increasing fractal
dimension of the surface, while anchoring the chain to the
bottom of a local depression brings about a significant drop
in the entropy, which increases with the depth of the depres-
sion (valley). These results reflect the fact that both the apex
height and the valley depth increase with rising DF. In the
case of forced chain attachment at z 0 zmean (that is, at the
slope of a local elevation), the entropies of chain anchoring
change only slightly as the fractal dimension of the surface
is varied, and their values are somewhat higher than the
corresponding ones found for a chain attached at the point
with altitude z 0 zrandom. This can be understood by realizing
that in the latter case the chain “prefers” to attach to the
surface at a point with a high z value, due to the smaller
number of rejected trial conformations in the simulation
process.

The A and ζ vs. DF relationships are even more complex
than ΔS 0 f(DF). As can be seen from Fig. 9b and c, in most
cases (i.e., for z 0 zvalley, zmean, zrandom), the two dependen-
cies show opposite tendencies: parameter A passes through
its maximum value and parameter ζ attains its minimum
value in practically the same range of DF values. However,
when the chain is anchored in the valley, the unlimited
increase in the exponent ζ is accompanied by a decrease in
the coefficient A to zero as DF increases, just as seen for the
uGm surface. The exponents calculated for chains anchored

Fig. 8 Macromolecule tethered
to the uGm surface. The effects
of the fractal dimension of the
surface, DF, on ΔS (a) and the
coefficients A and ζ from Eq. 10
(b and c, respectively) are
shown. Values obtained for
different altitudes of the
tethered segment are marked
with different symbols, as
indicated in the figure (plots of
ΔS, A, and ζ vs. σ are shown in
the ESM)
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at all of the other anchoring sites considered tend to a
constant value ζ*. This value depends on the anchoring site
of the chain; when the chain end is anchored at the site with
altitude z 0 zapex, this value is equal to 0.29±0.02, whereas
for the two other anchoring locations (zrandom and zmean),
ζ*00.17±0.01. In all three cases, the lowest value of DF at
which ζ 0 ζ*, subsequently denoted Dcrit

F , is equal to about
2.5.

Self-affine surfaces

fBm surfaces have more general properties than Bm ones.
Namely, their roughness is determined by the Hurst param-
eter, H, besides the standard deviation of the altitude. The
higher the value of H, the smoother the surface. Figure 10a
shows the entropies of anchoring for chains with N0100
anchored at two different points (i.e., zrandom and zapex) on
the fBm surface, calculated for various DF and H values. As

seen, the dependencies of ΔS on DF are monotonic for both
locations of the anchored segment and all examined values
of H. However, for a chain anchored to a randomly chosen
element on the fBm surface, the values of ΔS are practically
independent of the Hurst parameter and grow slowly with
the fractal dimension of the surface, whereas for a chain
anchored to the apex of local elevation, the H value affects
the entropy change and smaller Hurst parameter values (i.e.,
rougher surfaces) cause steeper falls in ΔS with increasing
DF. Figures 10b and c illustrate the influence of DF on the
coefficient A and the exponent ζ for chains anchored at
zrandom and zapex. In the former case (z 0 zrandom), just as
seen for the Bm surface, the dependence of A on DF passes
through a maximum regardless of the value of the Hurst
parameter, whereas the exponent ζ tends to the value 0.17±
0.01 with increasing DF. In the latter case (z 0 zapex), in-
creasing DF causes A to decrease and, as in the previous
case, ζ to increase to a certain constant value, which is

Fig. 9 Macromolecule tethered
to the Bm surface. The
dependencies for the same three
pairs of variables (a–c) as
shown in Fig. 8, determined for
different altitudes of the
tethered segment (plots of ΔS,
A, and ζ vs. σ are provided in
the ESM) are shown

Fig. 10 Macromolecule
tethered to the fBm surface. The
dependencies of the entropy of
chain anchoring (a), the
coefficient A (b), and the
exponent ζ (c) on the fractal
dimension of the surface DF are
shown. Results obtained for
different altitudes and different
Hurst coefficients are marked
with different symbols, as
indicated in the figure (plots of
ΔS, A, and ζ vs. σ are shown in
the ESM)
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dependent (albeit weakly) on the Hurst parameter; ζ* shifts
from 0.30 to 0.27 when H changes from 0.1 to 1.0. For both
of the examined locations of the attachment point at the fBm
surface Dcrit

F ffi 2:5, which is similar to that found earlier for
the Bm surface.

The shape of the dependence of ζ on DF points to the
existence of two different scale regimes of compatibility
between two fractal objects—the fractal surface and the
fractal coil. The fractal dimension Dcrit

F of the transition
between two regimes corresponds to the standard deviation
of the surface altitude, equal to σ a= ffi 100� 20 (see Fig. 3).
On the other hand, the characteristic size of the coil—i.e.,
the root-mean-square end-to-end distance, RH, defined by
the following equation:

RH

a
¼ b

a
Nv; ð12Þ

where v denotes the Flory exponent, which is equal to 3/5
for the athermal solution—equals about 106 if the coil’s
anisotropy is taken into account (i.e., the ratio of the dis-
tances between chain ends, measured along the coordinate

axes, was taken to be 2
ffiffiffi
6

p
: 2 : 1 ), and a perpendicular

orientation of the longest axis with respect to the surface is
assumed. At DF ¼ Dcrit

F , the characteristic sizes of both
fractal objects (i.e., the macromolecule and the fragment of
the surface occupied by it) become comparable. ForDF > Dcrit

F ,
the entropy of chain anchoringΔS scales with the chain length
for a constant value of the exponent ζ 0 ζ*. ForDF < Dcrit

F ; the
relationship ΔS vs. N becomes dependent on the specific
properties of the lattice model used for the simulation: if the
linear dimensions of the considered quasi-fractal objects tend
to the value of the lattice constant, the self-similarity of these
objects disappears. This conclusion may have more general
relevance—one can extend it to real objects whose character-
istic linear dimensions decrease to those of atomic ones.

Another indication of this issue, as already mentioned in
“Brush-like interfaces,” seems to be the occurrence of a
region where all of the ΔS vs. N curves obtained for differ-
ent fractal dimensions of the uGm surface intersect, which
can be explained by the fact that the characteristic size of
surface irregularities and the characteristic size of the mac-
romolecule are governed by the grain size of the surface
roughness.

Simple analytical model of a chain terminally anchored to
the fractal surface

In order to interpret the results of the MC simulations, we
performed an additional analysis of the influence of surface
roughness on the conformational entropy of an end-grafted
chain. In this analysis, we took into account the fact that
when a chain is anchored to an impenetrable surface a

number of possible chain conformations are eliminated.
This elimination can be considered to be part of the segment
density distribution in a free coil being cut off by this very
surface.

The radial segment density distribution around the center
of mass of the coil formed by the unperturbed SAW chain
can be approximately expressed by [26]

ρFðrÞ ¼ ρGðrÞρEðrÞ ¼ BN
r

b

� 	2
exp � 9

N

r

b

� 	2
� �

exp � 1

72
� N

2a3

r3

� �
; ð13Þ

where r 0 (x2 + y2 + z2)1/2, x, y, and z are the Cartesian
coordinates and B is the normalization constant. The term
ρG(r) refers to the Gaussian distribution, whereas ρE(r)
corresponds to the excluded volume effect related to the
segment volume a3.

Let’s assume that when the end-segment of the macro-
molecule is attached to the surface at the site of mean
altitude (i.e., z 0 zmean), the center of the coil formed by
the remaining segments is located at a distance from the
attachment site equal to its average gyration radius, RG.
Since the surface is rough, the cut-off of distribution (13)
should be expressed by the cumulative distribution function
ρS(z) associated with the assumed altitude distribution of the
surface elements. Assuming that the distribution is
Gaussian, the cumulative distribution of lattice sites not

Fig. 11 Probability distributions for finding a segment in the unper-
turbed coil (ρF) and in the terminally attached chain (ρA), and the
cumulative distribution of free sites near the surface (ρS). The differ-
enceΔρ 0 ρF − ρA is also indicated. The vertical line denotes the mean
elevation of the surface (zmean); N0100; σ/a010
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occupied by the surface elements reads:

ρSðrÞ ¼
1

2
1þ erf

� x� RGð Þffiffiffi
2

p
σ

� �� �
: ð14Þ

Finally, the distribution of the segments in the coil
formed by the terminally attached chain takes the form

ρAðrÞ ¼ ρFðrÞρSðzÞ: ð15Þ

The segment density distributions in the free unperturbed
coil and the coil terminally attached to the fractal surface, as
calculated from Eqs. 13 and 15, respectively, are shown in
Fig. 11. As shown, attachment deforms the initial distribu-
tion (13). The deformation is equivalent to the elimination
of some conformations of the chain. Assuming that the
conformational entropy of the chain can be related to the
product ρV, where V is the volume occupied by the macro-
molecule, the reduction in conformational entropy due to
chain attachment can be calculated from

ΔS

kB
¼ ln

R
ρAdrR
ρFdr

� �
: ð16Þ

Numerical calculations of the entropy of chain anchoring
vs. the number of segments, based on Eqs. 13–16, produce a
straight line dependence in log-log coordinates (Fig. 12).
Fitting the parameters of the linear equation

ln
ΔS

kB

� �
¼ z lnðNÞ þ A ð17Þ

gives ζ equal to 0.162.
The value of ζ obtained from Eq. 17 agrees quite

well with that found by simulating chains attached at

zmean and zrandom on both Bm and fBm surfaces (in the
studied range of Hurst parameter values), which equals
to about 0.17. This agreement allows one to conclude
that the simple model based on the analysis of the chain
segment distribution is adequate enough to allow the
prediction of some properties of a system composed of
a linear macromolecule end-grafted to a rough surface.
However, note that distributions (13) and (14) are con-
tinuous and can only approximately describe the effects
that occur at the length scale in which the discrete
properties of the lattice control system behavior.

The model given by Eqs. 13–17 can be simplified by
eliminating the excluded volume effect [i.e., ρE(r)01] to
give the form that describes an ideal polymer solution.
This simplification gives a segment density in the coil
corresponding to that obtained in the theta condition.
However, it is important to bear in mind that the consistency
of the linear dimensions of coils in theta solutions with those
in the ideal solution results from compensating for the
excluded volume effect using attractive intramolecular (seg-
ment–segment) interactions. Since both factors can influ-
ence the segment density near the rough surface in
unpredictable ways, the possibility of extending the model
to theta conditions requires further investigation.

Conclusions

In this work, the effect of surface roughness on the confor-
mational entropy of a terminally attached chain was studied
using the lattice model. The reduction in the chain entropy
upon its attachment to a surface is a complex function of the
surface heterogeneity. We found that the magnitude of the
entropy reduction depends not only on the values of param-
eters that characterize the surface roughness (i.e., on the
fractal dimension or/and the standard deviation of the sur-
face altitude) but also on the geometric details of the surface
(e.g., on whether it is brush-like or quasi-fractal). In the
latter case, the behavior of the modeled system (i.e., of the
macromolecule at the rough surface) as a consequence of its
lattice character depends on the range of dimensions of the
surface inhomogeneities. The complicated courses of the
curves describing the influence of DF on ζ and A in the
small-dimension range can be correlated to the disappear-
ance of self-similarity when the sizes of the surface inho-
mogeneities decrease to the atomic level (or to the value of
the lattice constant in the model).

In order to explain the simulation results, a simple ana-
lytical model was developed to predict the conformational
entropy of an end-anchored chain. This model assumed that
the density distribution of segments in the coil formed by
the bound macromolecule can be found by superposing the
segment density distribution in the unbound, unperturbed

Fig. 12 The dependence of the entropy of chain anchoring on the
number of segments
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coil onto that of the free lattice sites near the interface. The
results obtained using this superposition model were found
to be in satisfactory agreement with those gained by simu-
lating a chain anchored at z 0 zmean on both self-similar and
self-affine surfaces.
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