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Abstract

The double-yolked (DY) egg is quite popular in some Asian countries because it is consid-

ered as a sign of good luck, however, the double yolk is one of the reasons why these eggs

fail to hatch. The usage of automatic methods for identifying DY eggs can increase the effi-

ciency in the poultry industry by decreasing egg loss during incubation or improving sale pro-

ceeds. In this study, two methods for DY duck egg identification were developed by using

computer vision technology. Transmittance images of DY and single-yolked (SY) duck eggs

were acquired by a CCD camera to identify them according to their shape features. The

Fisher’s linear discriminant (FLD) model equipped with a set of normalized Fourier descrip-

tors (NFDs) extracted from the acquired images and the convolutional neural network

(CNN) model using primary preprocessed images were built to recognize duck egg yolk

types. The classification accuracies of the FLD model for SY and DY eggs were 100% and

93.2% respectively, while the classification accuracies of the CNN model for SY and DY

eggs were 98% and 98.8% respectively. The CNN-based algorithm took about 0.12 s to rec-

ognize one sample image, which was slightly faster than the FLD-based (about 0.20 s).

Finally, this work compared two classification methods and provided the better method for

DY egg identification.

Introduction

The occurrence of double-yolked (DY) avian eggs is a common phenomenon in commercial

species of poultry, waterfowl, and game birds [1–6]. DY eggs are formed when two yolks ovu-

lated within three hours of each other become enclosed in one egg [7, 8], and estimated to

occur in 4~12.5% of broiler breeder pullet eggs in the first 3 months of laying [9, 10], 1.1~3.5%

of laying hen eggs [11], and 2~10% of Gaoyou duck (an indigenous Chinese breed) eggs [12].

DY eggs are considered as a loss to overall commercial hatcheries because of their relatively

lower yolk fertility rate due to their smaller yolk size and markedly lower hatchability rate due

to lack of space to move compared to single-yolked (SY) eggs [4, 6, 13–15]. These unhatched

eggs are waste of space and energy in the incubator, and have the potential to contaminate
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other hatching eggs by infecting them with bacteria or molds, thus DY eggs are mostly

removed before incubation in commercial hatcheries [16, 17].

Although DY eggs are not suitable for using as hatching eggs, they have great edible and

commercial values. The absolute quantities of the nutrient components are greater in DY eggs

as they are physically larger than SY eggs but the nutrient’s relative proportions also different

from those in SY eggs [6, 18]. According to Chinese and Japanese folklore, DY eggs are

believed to be a sign of good luck [12]. Therefore, consumers in China and Japan prize DY

eggs above SY eggs. DY eggs are roughly 6~8 times more expensive than SY eggs in the Chi-

nese market [19, 20].

Commercial hatcheries exclude DY eggs from hatching in order to decrease egg loss during

incubation, while egg producers pick out them for sale to improve economic returns. There-

fore, an accurate, nondestructive, and automatic method is needed to improve the DY egg

identification in the poultry industry. Computer vision, which uses computers to emulate

human vision, is a detection technology with the advantages of high automaticity, high detec-

tion efficiency, low cost, and easy maintenance [21–23]. Computer vision technology has been

successfully applied to the rapid identification of animal and plant products, such as cichlid

fishes [24], grains [25], and field peas [26].

The traditional method for DY egg identification is “candling” and involves illuminating a

bright light through each egg. By sending light through the DY egg, two rounded gray shadows

(the yolks) become visible. Since candling is a visual process, it is possible to use a computer

vision system to accomplish the identification of DY eggs. Wang et al. [27] developed the first

computer vision system to identify DY chicken eggs. They used the geometrical characteristics

(i.e., egg area, yolk area to perimeter ratio, yolk area to egg area ratio, yolk perimeter to egg

perimeter ratio) from digital images to detect DY eggs from SY eggs at a correct recognition

rate of over 95%. The judgment criterion they used was based on the statistical conclusion that

DY eggs were larger than SY eggs. In reality, some DY duck eggs are similar in size to SY eggs

and such eggs are always produced at the onset of laying [15]. These geometric characteristics

would be not sufficient to identify DY eggs and carry a considerable risk of failure. Further,

this method was suitable only for identifying certain preassigned egg species.

In the countries of China and South East Asia, duck egg consumption, either as fresh or

preserved, accounts for about 30% of the total egg consumption [28, 29]. Giving rise to the

need to identify DY duck eggs. This study investigated the potential of using computer vision

to classifying duck eggs into SY and DY categories. For this purpose, the research was con-

ducted through (1) to establish an image preprocessing algorithm that could be used to isolate

the regions of interest (ROIs) from sample images; (2) to extract shape descriptors of yolk, and

apply them to build a Fisher’s linear discriminant (FLD) model to separate SY from DY eggs;

(3) to build a convolutional neural network (CNN) model fed with primary preprocessed

images; and (4) to compare the classification accuracy rates and wall clock time of the two

models and thereby determine the better method for DY duck egg identification. The final

goal of this work is to develop the system for an on-line grading machine (utilized on the con-

veyor belts) in the industry, for the future.

Materials and methods

Duck egg materials

Eggs from a flock of Shaoxing ducks (Anas platyrhynchosdomesticus) which were within two

days of being laid were obtained directly from a local poultry farm in the Pukou district of

Nanjing City, Jiangsu Province, China, over a 5-month period (between March and July 2016).

A total of 500 DY and 500 SY eggs were identified by well-trained local workers at the farm via

Computer vision for DY egg identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0190054 December 21, 2017 2 / 15

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0190054


hand candling. Small and large DY duck eggs (termed by Salamon and Kent [15]) were col-

lected in this study. Once eggs arrived at the laboratory, they were washed to remove the dirt

and cuticle from their surface and then quickly dried and individually numbered prior to fur-

ther testing.

Image acquisition

To acquire clear transmittance images of duck eggs, a self-made computer vision system was

developed, as shown in Fig 1. This system adopted an Imaging Source color CCD camera

(model: DFK23U274) equipped with a manually controlled Pentax TV lens (focal length 16

mm; maximum shutter aperture 1.4). The light source in the egg candler was a LED lamp with

a nominal voltage of 12 V, a rated power of 5 W, and a color temperature of 3500 K. To reduce

any disturbance to the light from the external environment, the image capture was done in a

closed darkroom, a wooden cubic chamber 40×40×50 cm in size and painted black on the

inside. The top of the egg candler and the camera lens were set 35 cm apart. During the image

capture, the duck egg was set horizontally on the egg candler and an image was taken with an

aperture value of 4.0 and exposure of 1/10 s. The resulting images (Fig 2) were saved in BMP

format with a resolution of 1600×1200 pixels.

Image preprocessing

The image preprocessing algorithm was developed in order to isolate ROIs from their respec-

tive backgrounds with Matlab software, as shown in Fig 3.

Color channel separating. RGB color space is oriented toward hardware (such as for

color monitors and a broad class of color video cameras) [30]. The images captured by the

CCD camera used in this study are the RGB images. The R, G, and B channel images were sep-

arated from each original image (Fig 3A). It was easier to see the differences in gray values

between the yolk area and the surroundings in the B channel image (Fig 3B). Therefore, yolk

region could be isolated from this channel. There was a clear contrast between the background

and the egg itself in the R channel image (Fig 3C). Thus, this channel provided better outline

information of egg region.

Fig 1. Self-made computer vision system.

https://doi.org/10.1371/journal.pone.0190054.g001
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Image de-noising. A 3×3 median filter was used to de-noise the R and B channel images

separately to remove noise and reduce edge signal distortions in the images (Fig 3D and 3E).

ROI cropping. The objective of this sub-process was to locate the egg in the original

image and obtain ROI’s cropping coordinates. The segmentation was done after thresholding

the de-noised R channel image with the Otsu’s algorithm [31]. This generated a binary image

(Fig 3F) where the pixels of the duck egg were white (gray level = 1) and the pixels of the back-

ground were black (gray level = 0). The pixel coordinates of four vertices of the minimum

enclosing square of egg outline were calculated with the regionprops function. To prevent over-

cropping or loss of edge information, the square region was extended in four directions by 30

pixels to form the ROI’s coordinates. Finally, the imcrop function was applied to crop a square

matrix from the B channel image after de-noising and the ROI was created (Fig 3G).

Fig 2. Typical color images of duck egg samples. (a) From SY egg. (b) From DY egg.

https://doi.org/10.1371/journal.pone.0190054.g002

Fig 3. Flow chart of the image preprocessing algorithm. (a) Original color image. (b) B channel separating. (c) R channel separating. (d) Image de-

noising for B channel. (e) Image de-noising for R channel. (f) Threshold segmentation for R channel. (g) ROI cropping. (h) Mask cropping. (i) Background

removal for ROI. (j) ROI resizing. (k) Mask Resizing.

https://doi.org/10.1371/journal.pone.0190054.g003
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Background removal. The binary duck egg image (Fig 3F) was cropped with the ROI’s

cropping coordinates described above to obtain a mask image (Fig 3H). The resulting ROI was

then multiplied by the mask image to obtain a new ROI (Fig 3I) wherein the background was

pure black (gray level = 0) and the gray level of egg region remained unchanged [32].

Image size normalization. The dimensions of the new ROI were resized into a 32×32

matrix (Fig 3J) using bicubic interpolation owing to variations in the size of each sample [33].

The mask image was subject to the same changes (Fig 3K).

FLD-based algorithm development

FLD was chosen as the classification method for classifying DY and SY eggs as a result of its

relative simplicity and lower computational cost compared to other classification methods

[26]. FLD as a conventional machine learning technology requires firstly manually designing

the feature vectors and extracting them.

Morphological characteristics extraction. The shape features of an object can be catego-

rized based on its morphological characteristics in a digital image. The image processing steps

were developed to extract the morphological characteristics of egg yolk as shown in Fig 4.

Firstly, a binary image (Fig 4B) was generated after thresholding the resized ROI with the

Otsu’s algorithm. In this binary image, the albumen region was white while the yolk region

and the background were black. Secondly, a subtraction operation was performed between the

pixel values of the resized mark image (Fig 3K) and Fig 4B (i.e., Fig 3K minus Fig 4A). In the

resulting binary image (Fig 4C), the yolk region and eggshell boundary appeared in white.

Finally, a 3×3 median filter was used to treat the image obtained above in order to remove the

eggshell boundary. After that, the final binary image (Fig 4D) contained only the yolk region,

where white pixels (active pixels, gray level = 1) represented morphological characteristics of

egg yolk and black pixels represented the background (gray level = 0).

Shape feature extraction. Fourier Descriptors (FDs) conceptualized by Zahn and Roskies

[34] were used to describe the yolk shape in this study. FD, one of shape descriptors, has been

popular for sharp recognition, matching and registration purposes[35–38]. Following the

method described by Gonzalez [30], a set of complex Fourier coefficients (i.e., Fourier Descrip-

tors) were generated by the discrete Fourier transform (DFT) of the yolk boundary.

FDs represent the shape of an object in a frequency domain. In theory, the harmonic orders

of FDs range from 0 to N-1 (where N is the number of boundary points). However, it is one

favorable property common to FDs that an approximate boundary can be reconstructed using

only a few low-frequency coefficients. For classification purposes, only the first few low-fre-

quency FDs were generally enough to distinguish the difference between yolks shapes.

To eliminate the impacts of the translation, rotation, scale of the shapes, and starting

point of the outline trace, the Fourier coefficients were normalized using the method

of Yadav et al. [39]. With this procedure, the binary image of yolk boundary was

Fig 4. Flow chart of morphological characteristics extraction algorithm. (a) ROI image. (b) Threshold

segmentation. (c) Subtraction operation. (d) Eggshell boundary removal.

https://doi.org/10.1371/journal.pone.0190054.g004

Computer vision for DY egg identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0190054 December 21, 2017 5 / 15

https://doi.org/10.1371/journal.pone.0190054.g004
https://doi.org/10.1371/journal.pone.0190054


automatically transformed into the translation, scale and rotation invariant FDs, i.e., nor-

malized Fourier descriptors (NFDs).

FLD model development. The duck eggs were first photographed with a CCD camera.

Immediately, the NFDs were extracted from the sample images and used as feature vectors.

Then, each egg was opened manually to confirm the actual yolk type. The NFDs were used as

input variables, and the manual recognition results were used as output classes. The FLD

model was built and analyzed in IBM SPSS v20.0 software. After a set of Fisher discriminant

functions are calculated, they can be applied to identify an unknown sample with the codes

written in Matlab language.

CNN-based algorithm development

CNNs are feedforward, backpropagate neural networks with a special architecture inspired

from the visual system [40]. CNN, as one of the most popular deep learning models at present,

has led major advances in the computer vision research community. Compared to conven-

tional machine learning technologies, such as FLD, support vector machine (SVM) and back-

propagation neural network (BPNN), CNN allows the net to be fed with raw or only minimally

preprocessed images so as to automatically learn the image features needed for recognition

and achieves a higher accuracy in practical applications [41].

Prior to treating the original images via CNN, the sample images were subjected to several

initial pre-processing operations eliminating redundant information in order to shorten the

wall clock time of the algorithm. The B channel images were first extracted from the color sam-

ple images since the shape features were the criterion for identifying DY eggs, rather than the

color features. The ROI’s dimensions were then reduced to a 32×32 matrix after 3×3 median

filtering, cropping, and background removal with the methods described above. These small

preprocessed ROIs after being normalized (i.e., divided by 255) were used as input data, and

the types of samples (SY eggs labeled [0, 1] and DY eggs labeled [1, 0]) were used as labels. The

CNN model was built and validated in Matlab R2012b software with DeepLearnToolbox-mas-

ter toolbox (developed by Rasmus Berg Palm, downloaded from https://github.com/

rasmusbergpalm/DeepLearnToolbox).

Results

Feature vector selection for FLD model

All the 1000 original images of duck eggs automatically were converted to binary yolk images

with smooth boundaries after being subjected to the image processing sequence. Typical

binary yolk images of SY and DY eggs are shown in Fig 5. The SY egg yolk image was roughly

circular in shape, while the DY egg’s was shaped like an “8”.

Fig 5. Two typical binary yolk images. (a) From SY egg. (b) From DY egg.

https://doi.org/10.1371/journal.pone.0190054.g005
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The DY and SY duck egg yolk boundaries reconstructed from the first 4, 6, 8, 10, 12, 14, 16,

and 18 FDs are shown in Fig 6. The reconstructed boundaries grew closer to the original

boundaries as the number of FDs increased. Moreover, the first 16 FDs were considered

appropriate for approximating the DY and SY duck egg yolk boundaries.

To come to a more objective conclusion regarding the relationship between the actual error

of the reconstructed boundary compared to the original and the FD quantity, 20 DY and 20

SY duck egg images were randomly selected as test objects to calculate their reconstruction

errors εn from Eq 1 [42] using different quantities of FDs. Fig 7 shows the relationship between

the reconstruction error εn and the FD quantity. The reconstruction errors of the two type

eggs both decreased rapidly as the number of FDs increased and became eventually negligible

after the 16th FD.

εn ¼
1

N
PN� 1

k¼0
mink2Cð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxk � xnkÞ
2
þ ðyk � ynkÞ

2

q

Þ ð1Þ

where εn is the error between the reconstruction and original boundary based on the first n
harmonics, N is the number of the points on the original boundary, (xk, yk) are the original

boundary coordinates for point k (k = 0, 1, 2, . . ., N-1), and (xnk, ynk) are the reconstruction

coordinates respectively corresponding to (xk, yk).

The reconstructed boundary images and error curves altogether indicated that the coeffi-

cients of the first 16 low-frequency harmonics could accurately approximate the original yolk

boundary. After the first 16 FDs being normalized, the first two of the resulting NFDs d(u) (for

u = 0, 1, 2, . . ., N-1, where u is the harmonic order and N is the number of boundary points)

were constants (i.e., d(0) = 0 and d(1) = 1), therefore they were discarded. Ultimately, d(2)-d

Fig 6. DY and SY egg yolk boundaries reconstructed from the first 4, 6, 8, 10, 12, 14, 16, and 18 FDs and the

original boundaries. (a) From SY egg. (b) From DY egg.

https://doi.org/10.1371/journal.pone.0190054.g006
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(15) were chosen from the original data to constitute the 14-dimensional feature vector [d(2),

d(3), . . ., d(15)] as the input variables to build the classification models.

FLD model for identifying duck egg yolk types

The FLD model was built based on all 500 DY and 500 SY duck egg images. Consequently, a

set of Fisher classification functions for classifying the types of duck eggs were obtained. This

model was validated using the leave-one-out cross-validation method. The performance of the

FLD model is outlined in Table 1. No sample from SY eggs was misclassified and the misclassi-

fied samples were from DY eggs. The classification accuracies for SY and DY eggs were 100%

and 93.2% respectively.

CNN Model for identifying duck egg yolk types

The CNN model was used to recognize all the sample images. The network was created follow-

ing the traditional LeNet architecture (developed by LeCun [40, 43], who invented the convo-

lution networks). The structure of this CNN model is shown in Fig 8. This model consisted of

one input layer, two pairs of alternating layers of convolution layers and average pooling lay-

ers, and one fully connected output layer. The input layer had a 32×32 neuron array to receive

the small preprocessed ROIs from the original sample images. The first convolution and aver-

age pooling layers each had four feature maps and the second groups each had six. The size of

Fig 7. Reconstruction error versus the number of FDs.

https://doi.org/10.1371/journal.pone.0190054.g007
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the convolution kernel was set to 5×5, and the size of the region was set to 2×2 to pool the con-

volved features over. The second convolution layer was all connected to the first average pool-

ing layer. The output layer consisted of two output neurons corresponding to the two class

labels. The feature maps of the last average pooling layer concatenated into a column vector

which fed into the output layer. The sigmoid function was used as activation function at the

convolution and pooling layers, and softmax function was used as activation function for the

recognition problem at the final output layer.

All the sample images were randomly divided into two groups at a ratio of 95:5, each of

which contained the same number of DY and SY eggs. One group was used as the training set

and the other as the validation set. The CNN model was trained on the training set, and then

the trained CNN was applied on the validation set to measure the accuracy. The experiment

above was repeated 10 times, and the accuracies were recorded and averaged. The CNN

Table 1. Classification results for duck egg yolk type using FLD.

Group Predicted Group Membership Total

SY eggs DY eggs

Case selected

Original a

Count SY eggs 500 0 500

DY eggs 34 466 500

% SY eggs 100 0 100

DY eggs 6.8 93.2 100

Cross-validated b

Count SY eggs 500 0 500

DY eggs 34 466 500

% SY eggs 100 0 100

DY eggs 6.8 93.2 100

a Each case was classified by the functions derived from all cases.
b Cross validation was done only for those cases in the analysis. In cross validation, each case was

classified by the functions derived from all cases other than that case.

https://doi.org/10.1371/journal.pone.0190054.t001

Fig 8. The structure of CNN model built for recognition of each egg yolk image type.

https://doi.org/10.1371/journal.pone.0190054.g008
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models were trained using Stochastic Gradient Descent (SGD) with a fixed learning rate of 0.2

and a batch size of 50 for 100 training epochs. The average classification accuracies of the

CNN model for SY and DY eggs were 98% and 98.8% respectively. A few of samples from SY

eggs were misclassified besides a few of DY egg samples. For detailed information, please refer

to S2 Table.

Wall clock time with different classification methods

25 DY and 25 SY egg images were randomly chosen from the sample images and used as test

objects to measure the execution speed (wall clock time) of two whole algorithms based on

FLD and CNN models, shown in Fig 9. The codes for the two algorithms were both written

using Matlab language. The wall clock time was calculated by employing a stopwatch timer

Fig 9. Flow chart of DY egg identification algorithms. (a) The FLD-based algorithm. (b) The CNN-based

algorithm.

https://doi.org/10.1371/journal.pone.0190054.g009

Computer vision for DY egg identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0190054 December 21, 2017 10 / 15

https://doi.org/10.1371/journal.pone.0190054.g009
https://doi.org/10.1371/journal.pone.0190054


function (based on the tic and toc functions) [44]. All tests were performed on a computer

equipped with an Intel Core i7-3537U @ 2.00 GHz processor, 8 GB RAM, Windows 7 system

with Matlab R2012b software.

The code for each algorithm was run 10 times, and the wall clock time from the image pre-

processing to the sample identification was recorded and averaged. The average wall clock

time of the FLD- and CNN-based algorithms to recognize one sample image was 0.20±0.0075

s and 0.12±0.0080 s, respectively. For detailed value, please refer to S3 Table. The FLD-based

algorithm spent much more time recognizing one sample image than the CNN-based. This

was mainly because the former needed to extract complex characteristic parameters from sam-

ple image while the latter did not. Comparing the accuracy rates and wall clock time of the two

methods, it was concluded that the CNN-based method was the better method for identifying

DY duck eggs.

Discussion

In commercial hatcheries and egg producers, candling is a reliable and unique technique for

DY egg identification. The inspection of eggs for double yolks is a major bottleneck because it

is largely done by human workers. Candling suffers from judgment errors due mainly to

human subjectivity, visual stress, and tiredness, especially when linked with high-speed grad-

ing machines. In the last two decades, many researchers have attempted to design and develop

computer vision systems to replace human operators for egg quality assessment. In this study,

computer vision technology was applied to the identification of DY duck eggs. Compared to

candling, computer vision technology can control costs, reduce the workload on workers, and

increase the efficiency, accuracy, and stability of the yolk identification process.

In this paper, the FLD-based method for DY duck egg identification was developed using

computer vision and conventional machine learning technology. Compared to Wang’s

method [27], this method was simple and accurate. The morphological characteristics of egg

yolks were first extracted from sample images, and then the shape features (i.e., FDs) were cal-

culated to establish a FLD model. The model worked based on the fact that there is a substan-

tial visual difference in the yolk shapes in SY and DY egg images.

However, the FLD-based method was ineffective for a few sample images where the two

yolk regions were separated (shown in Fig 10). There were two separate closed boundary

curves in these sample images. FDs could be calculated from single closed curve [34], so only

the first connected component was extracted to obtain FDs. As described above, the yolk

region was segmented after thresholding with the Otsu’s method (one of global thresholding

Fig 10. Typical yolk image with two separate yolk regions. (a) Original color image. (b) Yolk binary image.

(c) Yolk boundary image using the method described by Gonzalez [30].

https://doi.org/10.1371/journal.pone.0190054.g010
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techniques). The size of the yolk region depended on the threshold level. The computation of

the threshold level using Otsu’s method is mainly impacted by the gray level distribution of the

image [30]. The inhomogeneity of egg sample itself caused by eggshell light transmittance

made the threshold of the captured sample image away from the optimal threshold for yolk

segmentation. If the threshold calculated here was too large, the yolk regions were relatively

small and the two yolk regions were separated.

In this study, the CNN-based method demonstrated better performance for identifying DY

eggs compared to the FLD-based. CNN, as a deep learning technology, can self-learn deep

visual features, and has advantages in both classification ability and speed. CNN has already

been successfully applied in recognizing animals and plants such as dairy cows [45] and Chi-

nese herbal medicines [46]. Grayscale images from the B channel were used as inputs to the

CNN network to identify DY eggs. The CNN-based method developed here showed slightly

shorter wall clock time than the FLD-based and was able to correctly identify most of the sam-

ple images where the two yolk regions underwent segregation. In short, the CNN-based

method was better for automatic DY egg detection. Samples we used in our experiments were

within two days of being laid, but if they are burst yolks or scattered single yolks caused by

unavoidable vibration during the transportation, they will also be occasionally misclassified to

double yolks because their image characteristics are similar.

Conclusions

This study was conducted in an effort to develop a set of techniques for separating DY from

SY duck eggs using computer vision. Both the FLD and CNN model were investigated for

duck egg type identification. Training and validation of the FLD model were performed using

NFDs extracted from transmittance images of duck egg samples, while those of the CNN

model were performed using grayscale images. The classification accuracies of the FLD model

for SY and DY eggs were 100% and 93.2% respectively, while the classification accuracies of

the CNN model for SY and DY eggs were 98% and 98.8% respectively. The CNN-based algo-

rithm took about 0.12 s to recognize one sample image, which was slightly faster than the

FLD-based (about 0.20 s). Both methods can be adapted to the real-time detecting process.

The CNN-based method has a better prospect of application, although its algorithm has higher

requirement to computer hardware than the FLD-based. The results of this study effectually

lay a foundation for the further development of industrial, automatic DY egg sorting equip-

ment based on computer vision.
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