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THE BIGGER PICTURE The probability of success is a key parameter that clinical researchers, biopharma
executives and investors, and portfolio managers focus on when making important scientific and business
decisions about drug development. We describe an in-house data science and artificial intelligence chal-
lenge organized by Novartis in collaboration with MIT researchers. Using state-of-the-art machine-learning
algorithms and extensive feature engineering augmented by domain expertise in drug development, two
winning teams developed models that outperformed the baseline MIT model proposed in a prior study.
These new predictivemodels can be used to augment human judgment tomakemore informed data-driven
decisions in portfolio riskmanagement and capital allocation. These results suggest the possibility of devel-
oping even more accurate models using more comprehensive and informative data, and a broader pool of
challenge participants.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
We describe a novel collaboration between academia and industry, an in-house data science and artificial
intelligence challenge held byNovartis to developmachine-learningmodels for predicting drug-development
outcomes, building upon research at MIT using data from Informa as the starting point. With over 50 cross-
functional teams from 25 Novartis offices around the world participating in the challenge, the domain exper-
tise of these Novartis researchers was leveraged to create predictive models with greater sophistication.
Ultimately, two winning teams developed models that outperformed the baseline MIT model—areas under
the curve of 0.88 and 0.84 versus 0.78, respectively—through state-of-the-art machine-learning algorithms
and the use of newly incorporated features and data. In addition to validating the variables shown to be asso-
ciated with drug approval in the earlier MIT study, the challenge also provided new insights into the drivers of
drug-development success and failure.
INTRODUCTION

The rising cost of clinical trials and a shift to utilizing more com-

plex biological pathways with greater therapeutic potential—but

also greater chances of failure—have caused drug development

to become an increasingly lengthy, costly, and risky endeavor in

the past decade.1–5 The average drug now requires at least 10
This is an open access article und
years of translational research involving multiple iterations of

lead optimization and several phases of clinical studies costing

hundreds of millions of dollars before it can be approved by

drug-regulatory authorities, such as the US Food and Drug

Administration (FDA).

Due to the capital-intensive nature of the drug-development

process, biotech and pharma companies can only afford to
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invest in a limited number of projects. Whenmanaging their port-

folios of investigational drugs, these developers typically use his-

torical estimates of regulatory approval rates, based on the ther-

apeutic class and phase of development of the drug, combined

with subjective adjustments, determined through unstructured

discussions of project-specific risk factors, to make their invest-

ment decisions. Recently, however, there has been increased in-

terest in combining machine-learning predictions with human

judgments on project-specific information in a more structured

manner.6

In a recent large-scale study involving a range of drug and clin-

ical trial features from over 6,000 unique drugs and close to

20,000 clinical trials, Lo et al.7 applied machine-learning tech-

niques to predict regulatory approval. Using two proprietary

pharmaceutical pipeline database snapshots (taken through

2015Q4) provided by Informa (Pharmaprojects and Trialtrove),

Lo et al.7 developed models that achieved promising predictive

accuracy, measured at 0.78 and 0.81 AUC for predicting transi-

tions from phase 2 to regulatory approval and phase 3 to regula-

tory approval, respectively. (The AUC, also known as the area

under the receiver-operating characteristic curve, is the esti-

mated probability that a classifier will rank a positive outcome

higher than a negative outcome.) The models also identified

the most useful features for predicting drug-development out-

comes: trial outcome, trial status, trial accrual, trial duration, prior

approval for another indication, and sponsor track record.

With a better understanding of the drivers of drug approval as

well as more accurate forecasts of the likelihood of clinical trial

success, biopharma companies and investors should be better

able to assess the risks of different drug-development projects,

and thus allocate their capital more efficiently.

As an extension of the previous study, the authors (all from

MIT) collaborated with Novartis, one of the largest multinational

pharmaceutical companies in the world, to implement an in-

house data science and artificial intelligence (DSAI) challenge

based on updated snapshots (taken through 2019Q1) of the

same Informa databases. This challenge was designed to

leverage the domain expertise of Novartis data scientists, statis-

ticians, portfolio managers, and researchers to develop more

powerful models for predicting the probability of success of

pipeline drug candidates and uncover deeper insights into the

drivers of drug approval. Success in this context was defined

as regulatory approval. Over 50 teams consisting of more than

300 individuals from 25 Novartis offices around the world partic-

ipated in the challenge, submitting approximately 3,000 models

for evaluation in a head-to-head competition. In addition to their

predictive performance, the teams were evaluated on the inno-

vativeness and robustness of their models, and the potential

business value of their findings.

In this paper, we summarize the findings of the top-performing

teams. By examining their models, we validate the variables pre-

viously found to be associated with drug approval and identify

new features that contain useful signals about drug-develop-

ment outcomes.

Methods
Data

For the DSAI challenge, we used two pharmaceutical pipeline

databases from the commercial data vendor Informa for the
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core dataset: Pharmaprojects, which specializes in drug infor-

mation, and Trialtrove, which specializes in clinical trial intelli-

gence (see https://pharmaintelligence.informa.com/products-

and-services/data-and-analysis/citeline). These two databases

aggregate drug and trial information from over 40,000 data sour-

ces in the public domain, including company press releases,

government drug and trial databases (e.g., Drugs@FDA and

ClinicalTrials.gov), and scientific conferences and publications.

The database snapshots used in this paper are updated versions

of those used in Lo et al.7 (2019Q1 versus 2015Q4).

As in Lo et al.,7 we constructed a dataset of drug-indication

pairs, focused on phase 2 trial data that have known outcomes

(‘‘P2APP’’), either successful registration or program termina-

tion.We extracted a range of drug compound attributes and clin-

ical trial characteristics as potential features for prediction,

including three binary features, one date, seven numerical fea-

tures, two multi-class features, 16 multi-label features, and five

unstructured free texts. These are summarized in Table 1. For

the purpose of our analysis, we defined the development status

of suspension, termination, and lack of development as ‘‘fail-

ures,’’ and registration and launch in at least one country as

‘‘successes’’ or approvals (see Note S1 for further details).

The resulting dataset consisted of 6,901 drug-indication pairs

and 12,680 unique phase 2 clinical trials, with end dates span-

ning 1999 to early 2019, containing about two decades of data

(Table 2). In our dataset, 796 drug-indication pairs (11.5%)

were successes, and 6,105 drug-indication pairs (88.5%) ended

in failure. The data cover 15 indication groups: alimentary, anti-

cancer, anti-infective, anti-parasitic, blood and clotting, cardio-

vascular, dermatological, genitourinary, hormonal, immunolog-

ical, musculoskeletal, neurological, rare diseases, respiratory,

and sensory products. Drugs for cancer, rare diseases, and

neurological diseases made up the largest subgroups. As ex-

pected, the majority of the trials in the dataset were sponsored

by industry rather than investigator-initiated academic trials.

Challenge setup

The DSAI challenge was hosted on an Aridhia Digital Research

Environment (Aridhia DRE), a cloud-based platform designed

for collaborative data analytics on healthcare data (see https://

www.aridhia.com/). Each team was provided a remote work-

space for accessing the data, computing resources for devel-

oping their models, and a Git repository hosted by AIcrowd for

managing their source code (see https://www.aicrowd.com/).

AIcrowd was also used to host a leaderboard and discussion

forum for teams to interact and answer questions. Figure 1 pre-

sents an illustration of the setup.

For the leaderboard challenge, teams were required to predict

the probability of regulatory approval (i.e., the drug-indication

development status) given phase 2 trial data and drug com-

pound characteristics (see Table 1). This corresponds to a

real-world decision-making scenario whereby a pharmaceutical

company must decide whether to invest in a phase 3 program

based on phase 2 results. We split the P2APP dataset chrono-

logically, with drug-indication pairs that failed or succeeded

before 2016 provided to the participants as training data, while

those pairs that failed or succeeded in 2016 or later were held

out as testing data for leaderboard evaluation. Table 2 shows

the sample sizes of the training and testing data. Teams were

encouraged to create new features in the core dataset, in

https://pharmaintelligence.informa.com/products-and-services/data-and-analysis/citeline
https://pharmaintelligence.informa.com/products-and-services/data-and-analysis/citeline
http://ClinicalTrials.gov
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Table 1. Features extracted from Pharmaprojects and Trialtrove

Description

Drug-indication pair

Biological target protein on which the drug acts

Country country in which the drug is being developed

Drug-indication development status current approval status of the drug-indication pair

Indication indication for which the drug is under development

Mechanism of action mechanism through which the drug produces its pharmacological effect

Medium physical composition of the material in which the drug is contained

Name name of the drug

Origin origin of the active ingredient in the drug

Prior approval of drug for another indication approval of the drug for another indication prior to the indication under consideration

Route route by which the drug is administered

Therapeutic class therapy area for which the drug is in development

Trial

Attribute distinguishing attribute or feature of the trial, e.g., registration trials, biomarkers,

immuno-oncology

Actual accrual number of patients enrolled in the trial

Disease type disease, disorder, or syndrome studied in the trial

Duration duration of the trial

Exclusion criteria criteria for excluding a patient from trial consideration

Gender gender of the enrolled patients

Investigator experience primary investigator’s success in developing other drugs prior to the drug-indication

pair under consideration

Location country in which the trial is conducted

Number of identified sites number of sites where the trial is conducted

Outcome outcome of the trial

Patient age minimum and maximum age of the enrolled patients

Patient population general information about the disease condition of the enrolled patients

Patient segment disease segmentation by patient subtypes, therapeutic objectives, or disease

progression/staging

Phase 2 end date year phase 2 ended (end date of the last observed phase 2 trial)

Primary endpoint detailed description of primary objective, endpoint, or outcome of the trial; endpoints

are classified into four main groups: efficacy, safety/toxicity, health economics and

outcomes research, and pharmacokinetics/pharmacodynamics

Sponsor financial sponsor of the trial

Sponsor track record sponsor’s success in developing other drugs prior to the drug-indication pair under

consideration

Sponsor type sponsor grouped by type

Status recruitment status of the trial

Design investigative methods used in the trial

Design keywords keywords relating to investigative methods used in the trial

Target accrual number of patients sought for the trial

Therapeutic area therapeutic area of the disease studied in the trial

See Note S1 for examples of each feature.
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addition to those provided, by linking new datasets (e.g., com-

pound data) and through feature engineering.

The challenge spanned 5 months, from October 2019 to

March 2020: 1 month for team registration and onboarding,

2 months for model development and submission, and 2 months

for final evaluation. During the model development segment,

teams built their models using the training data. They were
able to receive real-time feedback on the performance of their

models on a subset of the testing data (50%) and how it

compared with other teams (‘‘open-testing round’’). This

happened via a public leaderboard, which was updated with

every submission. This gave participants the opportunity to

refine and calibrate their algorithms. Additionally, each team’s

submissions were evaluated on the complete testing set
Patterns 2, 100312, August 13, 2021 3



Table 2. Sample sizes of the P2APP dataset, and the training and testing data used for the challenge

Drug-indication pairs Clinical trials Unique drugs Unique indications Unique clinical trials

Phase 2 to approval (P2APP)

Success 796 2,435 614 182 2,209

Failure 6,105 13,203 3,313 283 10,722

Total 6,901 15,638 3,726 291 12,680

Training data

Success 610 1,852 468 169 1,666

Failure 4,293 6,839 2,537 264 5,845

Total 4,903 8,691 2,872 272 7,451

Testing data

Success 186 583 160 93 557

Failure 1,812 6,364 1,096 218 5,065

Total 1,998 6,947 1,229 229 5,561

Note that the number of unique drugs, indications, and clinical trials are not necessarily additive across rows since drugs, indications, and trials have

relationships that are surjective and non-injective: different drugs may target the same indication, and some trials may involve multiple drug-indication

pairs. See also Note S1.
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(100%) in the final evaluation round. This information was not

shown to participants during the competition, defining the pri-

vate leaderboard to assess performance. We used the binary

cross entropy log loss function as the primary scoring metric

for evaluating the predicted probabilities.

We also trained a baseline model based on the algorithm

described in Lo et al.7 using the same training data provided to

the participants. To obtain the confidence interval of the perfor-

mance of each model, we bootstrapped the testing set 1,000

times and evaluated the models on the same bootstrapped

datasets.

As part of the final evaluation process, teams were required to

upload the code used to train their models and a write-up

describing their methods and results. An evaluation committee

was formed from technical and domain experts to (1) validate

the team’s leaderboard performance and (2) assess the level of

depth regarding business insights produced by the models.

Along the technical dimension, each team’s source code repos-

itory was examined to ensure that the results reported were

robust and reproducible. The submission history of the top-per-

forming teams was also reviewed to prevent gamification and

ensure that they did not gain an unfair advantage by making

frequent submissions. As discussed in the results, little evidence

for overfitting or reverse engineering was observed. Technical

evaluation also included understanding the innovative aspects

of top solutions that were driving their performance in terms of

data wrangling and adopted methodology. Domain experts

then evaluated the insights and learning from suchmodel interro-

gations and visualizations in terms of general, scientific program,

and scientific trial insights. Since the potential business value of

the findings would be to inform portfolio and risk-management

decisions, the focus for the business evaluation was on the inter-

pretability of themodels, i.e., the ease of insight regarding the risk

factors and key drivers of approval. This additional domain

assessment was planned in anticipation of a potential discrep-

ancy between top-performing models and actionable insights.

However, in-depth domain expertise and feature insights proved

to be clear differentiators of both winning solutions.
4 Patterns 2, 100312, August 13, 2021
Subsequent to this evaluation, the two top-performing teams

were selected to present their findings to a final committee con-

sisting of Novartis leaders from its portfolio strategy and biosta-

tistics divisions and its Digital Office, andMIT researchers A.W.L.

and K.W.S. Other teams with innovative approaches were also

invited to share their experience as part of a panel discussion

with the broader Novartis community.

RESULTS

We received approximately 3,000 model submissions in the

open-testing round of the leaderboard challenge. The teams

explored a wide range of machine-learning models, ranging

from traditional logistic regression, support vectormachines, de-

cision trees, and neural networks to ensemble methods such as

random forests,8 gradient boosting machines, XGBoost,9 and

combinations of multiple types of models.

Recognizing the dangers of overfitting that arise from the reuse

of testing set data,10 we created a scatterplot of public and pri-

vate leaderboard scores to assess the extent of adaptive overfit-

ting (Figure 2). The public scores were evaluated on a subset of

the testing set provided to the participants during the open-

testing round, while the private scores were evaluated on the

complete testing set in the final evaluation round. In the ideal

case, the points would lie close to the diagonal since the public

andprivate performanceof themodelswouldbealmost identical.

In contrast, deviations from the diagonal suggest possible over-

fitting. We observe that our scores approximated the ideal case

in Figure 2, indicating that there was little evidence of DSAI chal-

lenge competitors overfitting to the public leaderboard score.

In Figure 3, we compare the performance of the top ten

ranking teamswith the baselinemodel described in Lo et al.,7 us-

ing the private leaderboard log loss and the AUC as our metrics.

While the baseline model had a worse log loss compared with

the top ten best-performing teams, its AUC (0.78 with 95% con-

fidence interval [CI] [0.75, 0.82]) was only lower than the top two

teams in the challenge. This may be, in part, because the teams

in the competition attempted to optimize log loss.



Figure 1. DSAI challenge setup

The challenge was hosted on Aridhia DRE and AI-

crowd. It consisted of an open-testing round for

teams to refine and calibrate their models, and a

final evaluation round.
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We focus on the approaches of the two teams that outper-

formed the baseline model on all metrics. These teams had

different strategies and backgrounds of expertise, but were

aligned in the way they harnessed human insight into their model

predictions.

d The team with the top-ranked model was primarily

composed of biostatisticians with significant domain

expertise in clinical trial data analysis. They relied on hand-

crafted features that incorporated their insights into drug-

development timelines and which data entries should be

discarded. A team member with portfolio management

experience also provided a different perspective.

d The runner-up team was primarily composed of data sci-

entists with domain expertise in bioinformatics and chem-

informatics. They relied on extensive data exploration and

feature engineering, in particular developing a novel

method to understand the interaction of these features,

but also augmented them with clinical trial knowledge.
Approach of the top-performing team
The top-performing model was developed by a collaborative

team (team ‘‘Insight_Out’’) from Novartis offices in the United

States and Switzerland whose members had backgrounds in

biostatistics, data science, and portfolio management. Their

model achieved an AUC of 0.88 (95% CI [0.85, 0.90]), corre-

sponding to an improvement of approximately 0.10 over the

baseline model. In addition to using the core features provided

in the dataset, the team created several new features to: capture

information about orphan drug indications, improve the granu-
larity of therapeutic areas; compare the

relative size of phase 2 trials with the

average by therapeutic area and disease;

classify the drug candidate as a novel

compound, a life cycle management

(LCM) project, or a generic; and determine

whether an international nonproprietary

name (INN) has been registered for

the drug.

The final model of the top-performing

team was an ensemble consisting of two

XGBoost models and one Bayesian logis-

tic regression (BLR) model. See https://

mc-stan.org/rstanarm/ and https://github.

com/stan-dev/stancon_talks/for imple-

mentation details of the BLR model. The

XGBoost models, known to be highly

effective for tabular data, were trained us-

ing 263 raw and derived features, using

time-series cross-validation with different
levels of hyperparameter tuning (i.e., using simple heuristics

and a more sophisticated approach involving differential evolu-

tion optimization).11 Subsequently, logistic regression with a

ridge penalty was used to combine the trial-level predictions of

the XGBoost models into predictions at the drug-indication level.

The BLR model was trained using case weights based on co-

variate balancing propensity scores,12 with greater weights

given to cases that had a greater propensity of appearing in

the test set. The BLR model allowed the team to incorporate

its judgment on the likely effects of a smaller set of features.

These included granular therapeutic areas as a random effect,

novelty (e.g., that a drug was non-generic, and not an insulin or

a flu vaccine), the relative phase 2 accrual versus the disease

average, the success rates of drugs with the same mechanism

of action, INN assignment, and trial outcomes, as well as interac-

tions between these features. The parameters were estimated

via Markov chain Monte Carlo sampling.

Ensembles of diversemodels can generally outperform any in-

dividual model.13 The ensemble predictions were obtained as a

weighted average of the predictions from the XGBoost and BLR

models. Afterward, the predictions were post-processed using

heuristics derived from the team’s domain expertise. For

example, the predictions for trials after 2018 were rescaled be-

tween 0.001 and 0.1 because the team believed that obtaining

approval within 2 years of completing phase 2 was unlikely.

These limits were determined based on prior elicitation using

the roulette method.14 In addition, the team introduced upper

and lower bounds for their predictions to reduce the impact of

overconfident and overpessimistic predictions on the log loss,

since extreme predictions that are incorrect are heavily penal-

ized under the log loss metric.
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Figure 2. Scatterplot of public and private

leaderboard scores

Each point corresponds to the best-performing

submission of each team. The points lay very close

to the diagonal, which indicates that there is little

evidence of overfitting in the competition.
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The team found that the phase 2 accrual relative to the disease

average was one of the strongest predictors of approval. The

likelihood of success increased for programs with above-

average accrual compared with other programs for the same

disease. In contrast, programs with below-average accrual

were more likely to fail. The team also found prior approvals for

any indication (e.g., LCM programs), past approvals of other

drugs for similar indications, and well-established modes of ac-

tion improved the odds of approval, suggesting that reposition-

ing an approved drug for a new indication is less challenging

than developing a first-in-class new chemical entity. On the other

hand, they found that drugs that targeted difficult-to-treat dis-

eases (i.e., therapeutic areas that have historically demonstrated

a much lower probability of success in clinical development

versus their counterparts), such as cancer or Alzheimer’s dis-

ease, were more likely to fail. Trial termination (whether due to

lack of efficacy, safety issues, or pipeline reprioritization), poor

patient enrollment versus planned accrual, and the absence of

an INN were also strong indicators of failure. See Note S2 for

further details of the methodology and findings.

Approach of the second-place team
The second-place model was developed by a team of data sci-

entists and researchers from the Genomics Institute of the No-

vartis Research Foundation (team ‘‘E2C’’). This model achieved

an AUC of 0.84 (95% CI [0.81, 0.86]), corresponding to an

improvement of approximately 0.06 over the baseline model.

The team performed extensive feature engineering, creating
6 Patterns 2, 100312, August 13, 2021
rank-normalized versions of features

known to demonstrate temporal coupling

(e.g., phase 2 trial durations, which have

shown greater mean and spread over the

years). This was done because decision-

tree algorithms tend to be inefficient at

incorporating heteroskedasticity. In addi-

tion to the core features in the dataset

such as prior approval, the team created

new variables to capture the impact of

development history on future approvals.

For example, they computed the number

of past trials in which each drug had been

involved by phase, by outcome, and in

aggregate, regardless of indication. Addi-

tionally, they made a similar computation

for indications and indication groups,

aggregating them over all drugs. The

team also used natural language-process-

ing techniques, such as the TFIDF (term

frequency-inverse document frequency)

algorithm, to convert text data for trials

into feature vectors. Because the set of
features under consideration was large, the team performed

stepwise feature selection using random forests to identify a

parsimonious set of factors.

From the outset, the second-place team focused on the

XGBoost model, an algorithm that has a strong track record in

data science competitions. They explored multiple training-vali-

dation strategies for hyperparameter selection, eventually

settling on the random 5-fold cross-validation approach. Like

the top team, they also post-processed trial-level predictions

from the XGBoost model, based on expert knowledge. For

example, they reduced the predictions for trials after 2018

because team members believed that approval within 2 years

was unlikely, and clipped overconfident and overpessimistic

predictions to reduce the impact of outliers on the log loss

scoring metric. Unlike the leading team, however, they obtained

predictions for each drug-indication pair by using the maximum

trial-level prediction across all trials associated with the drug-

indication pair, as opposed to using penalized logistic regres-

sion. They hypothesized that the best-performing trial would

dominate the outcome of the drug-indication pair regardless of

any lack of evidence in other trials in support of efficacy.

Among the final set of features, the second-place team found

that rank-normalized variables were generally favored over their

raw, unnormalized counterparts, thus verifying the importance of

normalization. Out of the top 20 most important features, eight

were novel features created by the team and not provided in

the core dataset (see Note S3 for further details). They found

that the top features were largely consistent with those reported



Figure 3. Private leaderboard log loss and

AUC for the top ten ranking teams and the

baseline model

The error bars correspond to the 95% confidence

intervals. The top two teams outperformed all other

submissions in the leaderboard challenge as well as

the baseline model.
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by Lo et al.,7 e.g., trial outcomes, trial accrual, prior approval, and

sponsor track record. Moreover, they found that drugs with

strong development histories, as quantified by the percentage

of past trials with positive outcomes, were more likely to be suc-

cessful. Over- and underenrollment with respect to the target

accrual were also associated with lower success rates, not an

entirely unexpected finding since these signs hint at poor trial

operation or a lack of efficacy. Interestingly, the team found

that trials with a younger age criterion for inclusion tended to

be more successful. However, features created from text data

did not seem to contribute meaningful predictive value.

In addition to single-feature analysis, the second-place team

went a step further to identify informative feature pairs. They

found strong interaction effects between trial outcomes and

drug-development history, e.g., the historical success rate of

past trials and the presence or absence of prior approval. For

example, given a successful trial with its primary endpoints

met, a drug with prior approval for other indications was almost

twice as likely to be approved in comparison with a new com-

pound without any prior approval. The team also found that

drug developers with a strong track record had higher probabil-

ities of success in indications that had been less explored in the

development process, as quantified by the cumulative number of

past trials.

In addition, the team observed strong coupling between the

success of anti-cancer drugs and their development history.

The likelihood of success of an anti-cancer drug was five times

greater with a prior approval than without. This effect was less

pronounced in non-cancer programs, where the ratio in success

rates conditional on prior approval was only twice as great. The

team hypothesized that historical success rates and prior

approval were especially important for anti-cancer drugs

because it is not uncommon for effective cancer therapies to

work across multiple cancer subtypes (e.g., chemotherapy),

and therefore an approval in one subtype was predictive of po-

tential success in other subtypes. See Note S3 for further details

of the methodology and findings.

We also evaluate the performance of both models when com-

bined, taking simple composites of the winning teams’ predic-

tions, e.g., the maximum, minimum, arithmetic mean, and geo-

metric mean. The combined models achieved AUCs that are
close to the top-performingmodel, ranging

between 0.86 and 0.88 depending on the

composite used.

DISCUSSION

MIT and Novartis researchers collaborated

on an in-house DSAI challenge to develop

machine-learning models for predicting

clinical development outcomes, building
on Lo et al.,7 whose work used one of the largest pharmaceutical

pipeline databases in the world, provided by Informa. To the best

of our knowledge, this challenge represents the first crowd-

sourced collaborative competition to use pharmaceutical data

for this purpose, in this case updated snapshots of the same In-

forma databases used in the earlier MIT study. In total, over 50

cross-functional teams from 25 international Novartis offices

participated in the challenge. We received approximately 3,000

model submissions over a 2-month period.

Internal data science competitions are both an opportunity

for a company to address business problems and a learning

opportunity for the company’s data science community.

From this perspective, the large number of Novartis associ-

ates who chose to actively participate in the process and

had the chance to expand their data science skill set was

encouraging.

The probability of success is one of several key parameters, in

combination with unmet medical need and market opportunity,

which clinical researchers, biopharma investors, and portfolio

managers consider when making scientific and business deci-

sions about drug development. Accurate estimates of this

parameter are therefore critical for efficient risk management

and resource allocation. The top-performing teams in their win-

ning solutions delivered additional heuristics with respect to pre-

dicting the probability of success:

d Identification of novel features predictive of probability of

success (as outlined above)

d Novel approaches and methodologies for feature extrac-

tion, combining domain expertise and machine learning

d Creative ways of introducing additional data types to the

problem, such as unstructured text and biochemical

data—for example, several teams presented ways of con-

necting new data types, although this in itself did not trans-

late into top leaderboard performance

Additionally, the discussion about the availability of specific

information at the time of decision making about the fate of a

project was helpful for assessing the potential for target leakage

in the solutions of external vendors offering similar predictive

solutions.
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However, the DSAI challenge also had several limita-

tions. First, the P2APP dataset was split chronologically, using

drug-indication pairs that failed or succeeded before 2016 as

training data, and those that failed or succeeded in 2016 or later

were held out as testing data. Due to the nature of drug develop-

ment, however, some boundary effects were inevitably present

in the last years of the testing data. Because drugs tend to fail

much more quickly than those that are approved, the majority

of the trials completed after 2018 ended in failure. (The probabil-

ity of phase 2 to approval in the testing data is 9.3% for all trials in

aggregate but only 1.8% for trials completed after 2018.) With

their experience and expertise in drug development, both teams

eventually discovered this artifact in the data, and were able to

improve their model performance by adjusting their predictions

for trials after 2018. While such adjustments were useful in

the competition, they add little practical value for real-life

application.

Second, some available features reflected a decision already

taken by a company to terminate a project. These included trials

that were stopped due to pipeline reprioritization, a small-sized

phase 2 program due to stopping the program after an initial

small trial, and the failure to apply for an INN. Not all such infor-

mation is available at the time of decision making in practice.

These limitations illustrate that in order to make data science

competitions directly useful for business problems without sub-

stantial modification, it is important to align extremely closely the

prediction task in the competition with the real-world business

problem

We also received feedback from knowledgeable participants

that the core dataset lacked key information that decision-

makers typically take into consideration, such as the preclinical

data, detailed safety and efficacy data, and biological plausibil-

ity of the mechanism of action. Unfortunately, investigators do

not usually release this information to the public domain for

strategic reasons. It is therefore unsurprising that such data

are not available in commercial pharmaceutical databases

based on publicly available sources of information. Potentially,

this limitation could be overcome by recent progress in deep-

learning approaches to natural language processing, which

may enable information about trial protocols, development pro-

grams, and drugs to be extracted from unstructured text data

sources.

Conclusion
By tapping the power of crowd-sourcing and the domain exper-

tise of Novartis researchers working in cross-disciplinary teams,

we have shown the potential for DSAI challenges to generate

predictive models for drug-development outcomes that outper-

form existing models from the academic literature. In addition to

validating features previously associated with drug approval in

the MIT study, the DSAI challenge has provided new insights

into the drivers of drug approval and failure. Ultimately, these

new predictivemodels can be used to augment human judgment

to make more informed decisions in portfolio risk management.

Nevertheless, there remains a clear opportunity to further

improve themodels in this competition. We believe that more ac-

curate models can be developed with access to better quality

and more comprehensive data, and a broader pool of challenge

participants.
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Resource availability

Lead contact

Andrew W. Lo, MIT Sloan School of Management, 100 Main Street, E62–618,

Cambridge, MA 02142. (617) 253-0920 (tel), (781) 891-9783 (fax), alo-admin@

mit.edu (email).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The source code of the algorithms is available at https://github.com/

bjoernholzhauer/DSAI-Competition-2019 (Insight_Out) and https://github.

com/data2code/DSAI-Competition-2019 (E2C). The data supporting the cur-

rent study have not been deposited in a public repository, due to their propri-

etary nature. The data are available from Informa at https://pharmaintelligence.

informa.com/products-and-services under Pharmaprojects and Trialtrove.

Restrictions apply to the availability of the data, which were used under license

for this study.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100312.
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