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Prediction of transcription factor binding sites<p>An application of machine learning algorithms enables prediction of the functional context of transcription factor binding sites in the human genome.</p>

Abstract

We report an application of machine learning algorithms that enables prediction of the functional
context of transcription factor binding sites in the human genome. We demonstrate that our
method allowed de novo identification of hepatic nuclear factor (HNF)4α binding sites and
significantly improved an overall recognition of faithful HNF4α targets. When applied to published
findings, an unprecedented high number of false positives were identified. The technique can be
applied to any transcription factor.

Background
Regulation of gene expression is accomplished through bind-
ing of transcription factors (TFs) to distinct regions of DNA
(TF binding sites (TFBSs)), and, after anchoring at these sites,
transmission of the regulatory signal to the basal transcrip-
tion complex. Indeed, regions around TFBSs can be interro-
gated with regards to binding and interaction with other TFs
(so-called composite modules) as well as local sequence prop-
erties that favor recruitment of TFs, bending and looping of
DNA and nucleosome positioning. Some of these TFs are spe-
cific for a particular tissue, a definite stage of development, or
a given extracellular signal, but most TFs are involved in gene
regulation under a rather wide spectrum of cellular condi-
tions. It is clear by now that combinations of TFs rather than
single factors drive gene transcription and define its specifi-
city. Dynamic and function-specific complexes of many dif-
ferent TFs, so-called enhanceosomes [1], are formed at gene
promoters and enhancers to drive gene expression in a spe-
cific manner. At the DNA level, the blueprints for assembling
such variable TF complexes on promoter regions may be seen

as specific combinations of TFBSs located in close proximity
to each other. They are termed 'composite modules' (CMs) or
'composite regulatory modules' [2] or cis-regulatory modules
[3]. There may be several different types of CMs located in the
regulatory region of one gene, which may be distant from
each other (for example, liver- and muscle-specific enhancers
of one gene) or overlapping. Taking this into account, it
becomes more and more evident that the 'local sequence con-
text' in the vicinity of the TFBS, as well as 'global context' of
the whole promoter/enhancer where the TF site is located,
influences binding and functioning of the corresponding TF.
Numerous examples of so called composite regulatory ele-
ments are reported (see the TRANSCompel database [4])
when TF binding and proper functioning of a site is strongly
dependent on other sites located in the close vicinity (adja-
cent or even overlapping sites) or quite distant from each
other (up to 100 and more nucleotides). For instance, for the
TF family of nuclear receptors (to which hepatocyte nuclear
factor (HNF)4 factors belong) there is experimental evidence
showing clear dependence between functioning of HNF4
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factors at their cognate sites and binding of other factors to
the neighboring sites, both synergistically and antagonisti-
cally [4]. There is a need to develop computational models to
predict TFBSs that are functional and are involved in the con-
trol of gene transcription. Recent developments in the field of
machine learning techniques allow us to apply them to build
highly sensitive and specific methods for predicting func-
tional TFBSs in human and other genomes.

Because of our continued interest in the regulation of liver-
enriched TFs [5,6], we were particularly interested in identi-
fying novel genes regulated by the hepatic nuclear factor
(HNF)4α. Indeed, HNF4α is a versatile TF, and several inves-
tigators have reported the identification of genes targeted by
HNF4α. These studies included various experimental
approaches, including transient transfection of HNF4α into a
human hepatoma cell line, a rat insulinoma cell line, and a
human kidney cell line [7-9]. Additionally, findings with con-
ditional knock-outs of HNF4α [10] were recently reported.
Notably, in the study of Odom et al. the genome-wide identi-
fication of binding sites for TFs HNF4α, HNF1α, and HNF6
was reported by use of the ChIP-chip assay with a 13,000
human promoter sequence containing microarray [11]. Strik-
ingly, in the case of HNF4α, the number of contacted promot-
ers was unexpectedly high; 1,575 potential HNF4α target
genes were identified. In addition, 42% of the genes occupied
by RNA polymerase II were also occupied by HNF4α, sug-
gesting that nearly 50% of all liver-expressed genes are regu-
lated by HNF4α alone. Similarly, in another recent ChIP-chip
experiment of ENCODE (Encyclopedia of DNA Elements)
genomic regions (about 1% of the human genome), 663 novel
HNF4α binding sites were identified in 100 genes [12], which
suggests there are a large number of HNF4α targets (over
60,000 sites in the vicinity of about 10,000 genes) if extrapo-
lated to the entire genome. This unprecedented high number
of HNF4α binding sites revealed by the ChIP-chip method
raises the question of the functional role of all these sites in
the regulation of gene transcription.

Indeed, the ChIP-chip assay is a much wanted and a highly
advanced method for the genome-wide search and identifica-
tion of TFBSs. Nonetheless, it suffers from unacceptably high
false positive findings. In the study of Odom et al. [11] 252
(16%) false positive binding sites were predicted by the
authors. Another problem with this method is that a surpris-
ingly small fraction of identified ChIP fragments possesses
the canonical binding motif for the corresponding TF [3].
This limitation needs to be overcome, and it is highly desira-
ble to identify functional binding sites relevant for the regula-
tion of gene transcription. Furthermore, in the current
studies there is often no rationale for the selection of promot-
ers spotted on the array; for example, no bioinformatic
approach is applied to identify relevant sequences for the
design of the ChIP-chip assay.

Here, we report a computational approach based on a novel
machine learning technique, which enabled the identification
of genome-wide TFBSs. This method was applied to search
for HNF4α gene targets. A genetic algorithm and an exhaus-
tive feature selection algorithm were trained on 73 known and
well characterized HNF4α target sequences in promoters and
enhancers of different mammalian genes (Additional data file
1). By genome-wide scanning of all human gene promoters we
identified novel genes targeted by HNF4α. Then, a subset of
predicted binding sites was confirmed by electromobility shift
assay. We further interrogated promoter sequences for
HNF4α binding sites identified by the ChIP-chip assay. We
also analyzed expression of genes targeted by HNF4α and
observed a good correlation between computationally anno-
tated HNF4α binding sites and expression of targeted genes.
Notably, ChIP-chip experiments tend to report a rather high
number of TFBSs in promoters of genes whose regulation by
HNF4α is not observed, whereas our computational method
for the prediction of HNF4 regulatory sites enabled improved
specificity with the method encompassing rules for the regu-
lation of gene expression.

Overall, we demonstrate the power of our computational
approach in identifying novel genes targeted by HNF4α. Our
machine learning technique significantly improved the over-
all recognition and, therefore, the identification of faithful
HNF4α targets. This method enabled refinement of TF site
predictions based on the ChIP-chip assay and identification
from among them of potentially functional sites, as reported
here. Furthermore, our method can easily be applied to the
genome-wide identification of genes targeted by any mam-
malian TF and is not limited to promoter sequences alone,
with an overall success of approximately 80% based on exper-
imental confirmation.

Results
Repeats in HNF4 binding sites
It is generally accepted that HNF4 regulates gene expression
by binding to direct repeat motifs of the RG(G/T)TCA
sequence separated by one nucleotide (direct repeat (DR)1)
[13]. We used two 'half-site' positional weight matrices
(PWMs) taken from the TRANSFAC® database (see Materials
and methods) in order to identify such repeats in the
sequences containing known binding sites of HNF4 (based on
TRANSFAC® annotation; Additional data file 1). We found
that although the DR1 repeat structure is clearly seen in the
general consensus and in the full positional weight matrix,
actual genomic sites often can be characterized by more com-
plicated structures. The results are presented in Figure 1. As
can be shown, the current common point of view that DR1 is
the only characteristic repeat for HNF4 binding sites is not
accurate. We can identify repeats at various distances and
with various orientations different from the canonical DR1
structure in the sequences experimentally known as true
HNF4 binding sites. This fairly unbiased analysis of the
Genome Biology 2008, 9:R36
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internal repeat structure of known HNF4α binding sites con-
firms earlier observations that sometimes HNF4α binds to
elements other then DR1.

Molecular organization of the local context of genomic 
HNF4α binding sites
We applied the 'local context' machine learning technique to
the set of known HNF4α binding sites in order to reveal prop-
erties of the DNA context in close proximity to the functional
HNF4α binding sites. We analyzed frequencies of short oligo-
nucleotides of length 4, as well as the frequency of short
repeating motifs of lengths 2 and 4. The binding sites for
HNF4α are characterized by various repeat structures (Figure
1a). From our analysis of distribution of half-site motifs above
we can see that short additional degenerated motifs resem-
bling parts of the consensus repeat can be seen in the vicinity
of the core of the site. Based on these results we decided to
perform a thorough contextual analysis of DNA sequences
containing HNF4α binding sites. The analysis was done by
applying the algorithm in an exhaustive search through the
space of all possible short oligonucleotides and repeats in var-
ious regions of the sites and their flanks. In addition, we
searched for non-redundant sets of contextual features as
reported previously [14]. Table 1 presents the results of this
analysis. We selected a combination of four oligonucleotides,
six dinucleotide pairs and six four-nucleotide repeats that are
overrepresented or underrepresented in the sequences of
genomic HNF4α binding sites and compared the results to
background sequences. A linear combination of these local
contextual features gives rise to the score of context (d in
equation 1; see Materials and methods). Figure 2 depicts two
distributions of the score of context that we obtained on a test
set of HNF4α recognition sites (the test and training sets are

defined in Additional data file 1) and the test background set.
Splitting the set of sites into the training and test subsets was
done by random selection. Note that the sites from the test set
were not used in the training phase of the algorithm. As
shown in Figure 2, we clearly discriminate real HNF4α sites
from false positives in the background. In our further analy-
sis, we used the score of context with a cut-off value of 0.55,
which minimizes the sum of false negative error (the propor-
tion of unrecognized real sites to the total number of HNF4α
sites in the test set) and false positive error (the proportion of
false recognition of the background sequences as true sites to
the total number of tested sequences in the test background
set).

Among selected contextual features, some, like the motifs
ANGB and MDDR, fit to different parts of the HNF4 consen-
sus sequence and appear to be overrepresented in a rather
wide area around the center of the binding sites (Table 1). The
motif CDDM is overrepresented in quite a small area corre-
sponding to the central positions of the sites. Very interesting
are the 'negative' features, such as repeats of the motif BNDK,
which are positioned at the beginning and the end of the
HNF4 consensus, and repeats NBHV and NVYB, which have
one part of the repeat just at the left edge of the consensus and
the second part located at the center of the consensus. Such
'negative' features represent some nucleotide combinations
that are rarely or never observed at functional binding sites,
although such sequence context can be found in the back-
ground sequences. It is important to mention that the back-
ground sequences were generated as matching the HNF4
PWM but still have the additional contextual differences that
can be found through the local context approach. Therefore,
the local context approach can capture contextual rules that

Repeats in the structure of HNF4 binding sites (from TRANSFAC®)Figure 1
Repeats in the structure of HNF4 binding sites (from TRANSFAC®). (a) Examples of multiple repeats forming canonical DR1 as well as DR2, inverted (IR) 
and 'everted' (ER) repeats. The centrally located black arrows, marked as DR1 or DR2, indicate the repeat with the maximal score (sum of the scores of 
single elements) as compared to the gray arrows representing multiple repeats. (b) Statistics of repeats of different types (direct repeats, DR0-4; everted 
repeats, ER0-4; inverted repeats, IR0-4) in the structure of HNF4 sites. Black bars show the observed number of repeats found in the structure of 73 
sequences of known HNF4 binding sites (listed in Additional data file 1) considering one repeat with the maximal score per sequence. Gray bars show the 
total number of repeats found in this set of HNF4 sites.
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cannot be identified by the conventional PWMs, since they
distinguish real sites from false positive hits of the matrix.

To validate the contextual features found in our analysis, we
ran the algorithm 3 times using different samples of 100
background sequences generated in the same way as the first
sample. As expected (see Materials and methods), the result-
ing set of identified contextual features was different each
time (data not shown), whereas, the oligonucleotides ANGB
and CDDM, as well as the repeat (RBNH)2, were identified in
all tested cases (although with slightly different 'from' and 'to'
parameters of the sequence window). Overall discrimination
of the test distributions using the obtained sets of contextual
features was practically the same as obtained in the first run
shown in Figure 2. Therefore, in all further analyses we used
the set of features obtained in the first run.

Molecular organization of the global context of HNF4α 
binding sites
To study the global context, we retrieved flanking sequences
of length ±500 bp around known HNF4 binding sites (Addi-
tional data file 1) and put them into the YGlobal set. The back-
ground set (NGlobal) was constructed based on randomly
chosen intergenic fragments of DNA from various human
chromosomes applying the same strategy as for NLocal

(described in Materials and methods), but with the 500 bp
flanks around the assumed false positive match of the HNF4
matrix (we chose at random 642 sequence fragments scat-
tered through intergenic regions on all human
chromosomes).

We analyzed these sets using the Composite Module Analyst
(CMA) program (see Materials and methods), which allowed
us to study combinations of TFBSs in the interrogated

Table 1

Oligonucleotides and short repeats found in the local context of genomic HNF4α sites

Oligonucleotide/repeat Mode Wind_from Wind_to rmin rmax Alpha Avrfreq_Y Avrfreq_N

MDDR (I) 22 66 0 0 0.003082 13.433 (3.665) 11.051 (4.782)

ANGB (I) 20 38 0 0 0.016132 5.358 (2.529) 3.582 (2.845)

CDDM (I) 36 38 0 0 0.020372 4.346 (2.332) 3.212 (1.732)

AV-VS (II) 1 34 33 33 0.008246 6.694 (3.663) 4.893 (3.088)

MD-DB (II) 20 70 20 25 -0.003212 16.941 (3.078) 14.711 (3.344)

BR-NT (II) 33 37 9 18 -0.003942 4.802 (5.460) 7.702 (5.144)

VS-YA (II) 1 34 11 11 0.0103 4.237 (1.742) 3.121 (2.640)

VB-HA (II) 1 34 5 5 0.008647 9.028 (2.985) 6.517 (3.741)

HM-GN (II) 40 50 2 4 0.006468 7.783 (4.335) 4.672 (3.764)

(RBNH)2 (III) 20 51 5 12 0.030376 7.259 (1.778) 5.961 (2.168)

(MVKN)2 (III) 20 51 7 13 0.015979 3.123 (1.413) 2.388 (1.155)

(BNDK)2 (III) 32 32 7 7 -0.002214 0.000 (0.000) 14.343 (28.652)

(DNCD)2 (III) 28 42 7 7 0.068635 4.176 (2.797) 1.051 (2.196)

(NBHV)2 (III) 26 26 7 7 -0.001045 0.000 (0.000) 13.626 (28.102)

(NVYB)2 (III) 29 29 7 7 -0.001696 0.000 (0.100000) 12.909 (27.523)

Mode: (I), search for oligonucleotides; (II), dinucleotide pairs; (III), four-nucleotide repeats. Wind_from and Wind_to, sequence window in which the 
motif was found (the HNF4α site is located between positions 29 and 42, flanks are 28 bp and 33 bp long, respectively). rmin and rmax, distances 
between dinucleotide pairs and repeats. Alpha, coefficients in the linear function. Avrfreq_Y, the average frequency of the oligonucleotides in the 
corresponding window among sequences of the real sites. Avrfreq_N, background sequences. The standard error is given in parentheses.

Two histograms showing the distributions of the score of context in the -28 bp/+33 bp flanks of real HNF4α sites (gray bars, see also test set; Additional data file 1) versus the -28 bp/+33 bp flanks of PWM matches (PWM score >0.8) in random genomic positions (white bars)Figure 2
Two histograms showing the distributions of the score of context in the -
28 bp/+33 bp flanks of real HNF4α sites (gray bars, see also test set; 
Additional data file 1) versus the -28 bp/+33 bp flanks of PWM matches 
(PWM score >0.8) in random genomic positions (white bars). Mean values 
of the two distributions are 0.5849 and 0.348, respectively. The x-axis 
gives the score of context; the left y-axis gives the number of PWM 
matches in random genomic positions with the corresponding score of 
context; and the right y-axis gives the number of real HNF4α sites with 
the corresponding score of context.
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sequences. Input for CMA is a set of DNA sequences under
study (foreground set) - for example, the set of HNF4 func-
tional sites - and a set of background sequences. By compari-
son of two sequence sets, CMA identifies through an iterative
genetic algorithm a specific combination of TF matrices
(PWMs) that are common for the foreground set of sequences
and distinguish them from the background sequences [15].
The results are given in Table 2. The CMA algorithm identi-
fied six single TF matrices and eight pairs of TF matrices char-
acterized by variable distances between sites in each pair
(dmax is defined as a distance of 100, 200 and 500 bp). Figure
3 shows the results of the comparison of the distributions of
the CM score in the two sets: the YGlobal set (HNF4α sites ±500
bp; gray bars) and the NGlobal set (Genome PWM matches
±500 bp in random genomic positions; white bars). One can
see the clear discrimination between these sets. The average
CM score for real HNF4 sites equals 0.499, whereas for
random genome PWM matches it equals 0.050 (ratio = 9.98,
t-test p-value = 1.4896 × 10-26).

The obtained significant combination of matrices determines
the global context that is characteristic for the regulatory
regions around functional HNF4α binding sites in the
genome. The biological interpretation of located composite
modules is based on the concept of the 'enhanceosome', pos-
tulating that, for a proper performance of regulatory function,
a TF, while binding to the DNA target sites, should participate
in many protein-protein interactions with other TFs binding
in the neighborhood of the sites. As can be demonstrated, the
algorithm selected HNF4 matrices three times, for example,
as a single element, as well as parts of matrix pairs with
another HNF4 matrix and with the V$EFC matrix. Note that

the algorithm additionally selected TF matrices correspond-
ing to recognition motifs of, for instance, MAZ, ER, FOX,
CREB, Elk1 (Ets domain factor), COUP-TF, RFX1 and some
others. Strikingly, it is known that HNF4α TFs cooperate with
ER [16] and build synergistic composite elements with CREB
[17,18] and antagonistic composite elements with COUP-TF
[19] (see also the TRANSCompel® entries C00369, C00129,
and C00124). Interaction and cooperation between some
other factors listed in the composite module is also known, for
example, COUP-TF with ER [20] and CREB with Ets [21].
Thus, the found composition around known HNF4α binding

Table 2

Matrices and matrix pairs of the global context selected by the CMA program

Matrix_ID(1) TFs(1) Cut-off(1) Matrix_ID(2) TFs(2) Cut-off(2) dmin (bp) dmax (bp) κ φ

V$MAZ_Q6 MAZ 0.89 4 0.020763

V$ER_Q6 ER-α 0.913 4 0.047177

V$HEB_Q6 HTF4 0.969 4 0.078905

V$HNF4_Q6_01* HNF4α, HNF4α2, HNF4γ 0.976 4 0.210340

V$HEN1_02 HEN1 0.854 4 0.099368

V$CREB_Q2* CRE-BP2, CREM, ATF-1,2,3,4,6 0.888 4 0.086618

V$HNF4_Q6_01* HNF4α, HNF4α2, HNF4γ 0.8325 V$EFC_Q6 RFX1 (EF-C) 0.6825 8 100 2 0.043344

V$COUP_01 COUP-TF1, COUP-TF2 0.8005 V$KROX_Q6 Egr-1,2,3,4 0.8315 8 100 2 0.053285

V$PEBP_Q6 PEBP2α/AML1,3; PEBP2β 0.84 V$TEL2_Q6 Tel-2a,b,c 0.878 8 100 2 0.214469

V$ELK1_01 Elk-1 0.785 V$WHN_B FOXN1 0.948 8 100 2 0.111909

V$CMYB_01 c-Myb, B-Myb 0.86 V$KROX_Q6 Egr-1,2,3,4 0.841 8 100 2 0.100922

V$FOXO1_02* FOXO1,2,4, FOXJ3 0.8715 V$FXR_Q3 FXRα/RXR 0.8135 8 500 2 0.100184

V$HNF4_Q6_01* HNF4α, HNF4α2, HNF4γ 0.8065 V$HNF4_01(*) HNF4α, HNF4α2, HNF4γ 0.8705 8 200 2 0.080381

V$XBP1_01 XBP-1 0.8845 V$FOXO1_02(*) FOXO1,2,4, FOXJ3 0.8715 8 200 2 0.112402

Matrix_ID(1) and Matrix_ID(2) are the TRANSFAC® identifiers of the selected single matrix (or the first matrix in a pair and the second matrix in 
the pair, respectively). The other headings of the table correspond to the parameters of the composite module score (see equation 2 in Materials 
and methods). The first six lines of the table represent the single matrices selected by the algorithm to represent the global context; the other lines 
represent the pairs of matrices selected by the CMA program. The corresponding values of the parameters (in the Cut-off, κ and φ columns) are 
optimized by the CMA algorithm. *Matrices corresponding to TFs whose binding site combinatorial co-occupancy was found in Odom et al. [45] for 
promoters of liver-expressed genes. Bold text indicates TFs identified by the CMA.

Two histograms showing the distributions of the CM score in the ±500 bp flanks of HNF4α sites (gray bars) versus ±500 bp flanks of PWM matches (PWM score >0.8) in random genomic positions (white bars)Figure 3
Two histograms showing the distributions of the CM score in the ±500 bp 
flanks of HNF4α sites (gray bars) versus ±500 bp flanks of PWM matches 
(PWM score >0.8) in random genomic positions (white bars). The average 
CM score for real HNF4α sites is 0.499, whereas for PWM matches in 
random genomic positions (in the set NGlobal) it is 0.050 (ratio = 9.98, t-
test p-value = 1.4896 × 10-26).
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sites represents potential interaction partners of HNF4 fac-
tors, therefore providing functionality in the regulation of
HNF4α target genes. Note that in the case of computing the
global context there was no test set available, that is, all
known sites were used to train the algorithm. In order to val-
idate the computed composite module, we performed a series
of ten data shuffling experiments. Each time, the assignments
of positive and negative sets were randomly shuffled among
the sequences and CMA was applied in order to find a matrix
combination that would best discriminate between these sets
of sequences. No good discrimination was obtained in such
shuffling iterations. The maximum ratio achieved between
the mean values was 1.6 with t-test p-values of 10-5, which is
much higher than in the unshuffled case (Figure 3).

Complex criteria for determining functional HNF4α 
binding sites
We determined the following complex recognition criteria for
a sequence of length 1,000 bp to be a potential target for
HNF4α TFs: the maximal matrix score of an HNF4 site in the
sequence (qmax) should be >0.8; the maximal local context
score (dmax) should be >0.28; the maximal global context
score (CM; vmax) should be >0.18; the sum of matrix scores of
all HNF4 sites found in the sequence (qSum) should be >10.0;
and the TFBS with the maximal score should be considered as
the binding site for HNF4α, whereas the 1,000 bp regions
provide the functional context for this site.

These rather complex criteria were derived through an itera-
tive computation of different combinations of each individual
threshold with the goal of achieving a method that would have
approximately 90% sensitivity and would efficiently use indi-
vidual criteria of the local and global contexts. Finally, we
obtained criteria that yield 87% sensitivity on the YGlobal set
(known functional sites for HNF4 factors with 500 bp flanks)
and thresholds of the local and global context scores were set
at the minimum of the sum of errors of these two criteria (Fig-
ures 2 and 3, respectively). As can be seen from these two fig-
ures, the relative contribution of the global context to
prediction power is larger than that of the local context. The
sum of the errors for the local context is approximately two
times higher than the sum of the errors for the global context.
This means that in applying these complex criteria, in approx-
imately 13% of cases we may miss an identification of func-
tional HNF4α binding sites (the false negative rate of the
method is 13%).

Analyzing ChIP-chip data for HNF4α sites
Using the HNF4α PWM, which was built on a representative
set of 73 known functional HNF4α binding sites in mamma-
lian genes, and two new methods (local and global content for
estimating the DNA context around functional HNF4α bind-
ing sites as discussed above), we analyzed the ChIP-chip data
for HNF4α reported by Odom et al. [11]. We interrogated two
sets of sequences: 'positives', a set of 1,605 sequences that
were reported as HNF4α-targeted genes in hepatocytes; and

'negatives', a set of 10,852 sequences that were reported not
to be contacted by HNF4α in hepatocytes and pancreatic
islets. The average length of the sequences reported by Odom
et al. was approximately 1 Kb [11]. In each sequence of both
sets, we computed the number of potential HNF4α binding
sites (matrix score >0.8), the sum of the scores for all sites,
and the maximal score of the sites found in the sequence.
Thereafter, we calculated the local context score (d) and the
global context score (v) for each potential HNF4α binding site
in these sequences and reported the maximal scores obtained
in each sequence. We applied the complex recognition criteria
(see above) to the sequences in these two sets. As a result, only
21% of the 'positive' set (that is, 375 sequences out of 1,605)
passed the criteria. Indeed, 79% of the sequences were
rejected, since they did not pass one or several requirements
as defined above. In order to estimate the rate of false posi-
tives of our method, we applied it to the set of 'negative'
sequences. Our complex criteria rejected 97.4% of these
sequences, giving us an overall estimate of 2.6% for the false
positive rate. Figure 4 depicts a plot of the global and local
context scores, comparing distribution of the 375 sequences
selected from the 'positive' set versus distribution of all
sequences in the 'negative' set. Obviously, the selected
sequences are characterized by the highest global and local
context scores, whereas the majority of the 'negative'
sequences are characterized by low values for these two
scores. The list of the 375 sequences that passed our criteria
are given in Additional data file 2. Furthermore, Figure 5
summarizes the data obtained in the analysis of known
HNF4α binding sites, as well as 'positive' and ' negative' sets
of sequences derived from ChIP-chip experiments reported
by Odom et al. [11]. These data clearly show that the majority
of the sequences revealed in the ChIP-chip experiments of
Odom et al. [11] differ quite significantly in their local and glo-
bal context from the sequences of known and experimentally
confirmed HNF4α binding sites. We estimate that only 20%
of these sequences fulfill our requirements to be considered
as faithful functional HNF4α binding sites. Note that Odom
et al. [11] assume a 16% false discovery rate in the identifica-
tion of binding sites in their ChIP-chip experiments. Applica-
tion of our analysis to the Odom et al. data suggests about
80% of the ChIP-chip identified targets do not meet the con-
textual requirements that characterize biologically functional
sites and, therefore, may not be involved in HNF4α-depend-
ent regulation of gene transcription.

Linking HNF4α binding sites to gene expression
We also applied our computational method to data reported
by Naiki et al. [7] and Lucas et al. [9]. Notably, these investi-
gators carried out microarray experiments to identify genes
whose expression differed upon targeted overexpression of
HNF4α. From these studies a list of differentially expressed
genes was obtained. Additionally, we compared the differen-
tially expressed genes with findings reported by Odom et al.
[11], who performed ChIP-chip experiments with HNF4α. We
thus compared data from two different approaches, that is,
Genome Biology 2008, 9:R36
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targeted overexpression of HNF4α and ChIP-chip data for the
identification of novel HNF4α target genes. We then applied
our computational approach (by use of the complex recogni-
tion criteria described above) to interrogate the data sets. The

results are presented in Table 3. Only a small fraction of iden-
tified genes could be compared directly; 75 and 70 differen-
tially expressed genes (Up + Dn) reported by Naiki et al. [7]
and Lucas et al. [9], respectively, and 150 genes whose
expression did not change (NC). As can be seen from the data
given in Table 3, our computational method and the ChIP-
chip data are similar when correlated with the gene
expression data of HNF4α-targeted genes (see the Table 2
legend); approximately 18-20% of differentially expressed
genes were similarly identified by the ChIP-chip and our com-
putational method based on the data of 145 differently
expressed genes. Indeed, several genes targeted by HNF4α
were identified by both methods (for example, 5 genes
(ACADVL, RBKS, SLC35D1, ATP7B, MGST2) out of 70 from
the Lucas et al. [9] data set).

At the same time, our computational method for identifying
HNF4α gene targets is less error-prone; there were 2.7% false
results based on the computational method compared to
13.3% false results determined using the ChIP-chip method
(based solely on gene expression data from Lucas et al. [9])
(Table 3, last row). It is of considerable importance that when
using just a single HNF4 PWM and ignoring local and global
sequence context the prediction of HNF4α target genes
becomes prone to generating false positive errors (19% as
shown in Table 3).

Search for HNF4α functional sites amongst all known 
human gene promoters
We applied the method developed for identifying putative
HNF4α gene targets to the full set of promoters of human
genes annotated in TRANSPro™ database release 2.1 (con-
taining 15,455 promoters). First, we scanned promoters in the
region from -500 to +100 around the transcription start site
(TSS) for matches of the HNF4 weight matrix with matrix
score q > 0.8 accompanied by local context score d > 0.48. We
identified 3,009 promoters that had at least one site passing
both these criteria. Next, we chose the highest scoring match
of the HNF4 matrix in each of the promoters and retrieved
500 bp flanking regions around the match. We applied the
complex criteria (see above) to obtain a set of sequences,
which led to the prediction of 375 target promoters; among
them 121 promoters of genes encoding TFs and other compo-
nents of the cell signaling system. These genes attracted our
attention for experimental verification by electrophoretic
mobility shift assay (EMSA) as reported here. The full list of
the predicted target promoters is given in Additional data file
2.

Electrophoretic mobility shift assay confirmation
Supershift experiments with probes for established recogni-
tion sites for HNF4α, that is, promoter regions derived from
HNF1α, AAT, APOB, AGT, APOC3, CYP2D6, TF, ALDH2,
APOC2 and PCK1, resulted in binding of HNF4α (Figure 6a).
This exemplifies the selectivity and sensitivity of the EMSA
assay for validating HNF4α binding sites for ten arbitrarily

Plot of the distribution of global and local contexts in the 375 sequences (red squares) selected from the 'positive' set of ChIP-chip results reported by Odom et al. [11] versus all 10,852 sequences from the 'negative' (not binding; H13K_noHNF4) set (green dots) reported for the same experimentFigure 4
Plot of the distribution of global and local contexts in the 375 sequences 
(red squares) selected from the 'positive' set of ChIP-chip results reported 
by Odom et al. [11] versus all 10,852 sequences from the 'negative' (not 
binding; H13K_noHNF4) set (green dots) reported for the same 
experiment. The selected sequences are characterized by the highest 
global and local context scores whereas the majority of the 'negative' 
sequences are characterized by low values for these two scores. The 
vertical and horizontal lines show two thresholds chosen for the global 
context score (0.28) and the local context score (0.18).

Percentages of sequences passing the complex recognition criteria in the set of known HNF4 binding sites (TRANSFAC® HNF4 sites), in the set of 'positive' sequences based on ChIP-chip experiments reported by Odom et al. [11] for hepatocytes and in the set of 'negative' sequences described by Odom et al. [11]Figure 5
Percentages of sequences passing the complex recognition criteria in the 
set of known HNF4 binding sites (TRANSFAC® HNF4 sites), in the set of 
'positive' sequences based on ChIP-chip experiments reported by Odom 
et al. [11] for hepatocytes and in the set of 'negative' sequences described 
by Odom et al. [11]. From the last set we estimate that the percentage of 
false results from our method is about 2.6%.
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chosen but known targets of HNF4α. From the list of 375 pre-
dicted HNF4α target genes (see above) we selected a further
10 novel HNF4α binding sites for experimental confirmation
that are characterized by high PWM and local and global con-
text scores and that were not reported in the study of Odom et
al. [11]. Note that EMSA revealed binding of HNF4α to
NCOA2, TFF2, CHEK1, CD63, SH3Gl2, RND2, ESRRBL2 and
DDB1, whereas supershift experiments did not confirm
HNF4α binding to NEUROG3 and IL6 (Figure 6b), thus pro-
viding an estimate of 80% for the sensitivity of our computa-
tional method for de novo prediction of HNF4α binding sites.
A summary of the biological function of these newly identified
HNF4α target genes is given in Table 4.

In addition, we wished to verify HNF4α binding sites pre-
dicted by ChIP-chip experiments [11]. Note that nearly 80%
of the proposed HNF4α binding sites were rejected by our
computational method, which combines analysis of HNF4
matrices with the local and global contexts of the sequences.
For this we selected ten genes that were reported by Odom et
al. [11] to be targeted by HNF4α in hepatocytes but were char-
acterized by our computational method with extremely low
scores for the HNF4 weight matrix and local and global con-
texts (all four tests comprising the complex criteria set by us
failed to identify these genes as HNF4α targets). Therefore,

these ten potential sites (in promoters of genes NPAS2,
GPHN, PPP1R3C, AKR1C3, CFL2, MDM2, CLCN3, CBX3,
AZI2 and C14orf119) were analyzed for HNF4α binding.
Strikingly, none of these sites were bound by HNF4α, as
shown by the supershift experiments (Figure 6c).

Discussion
De novo computational identification of genes targeted by
various TFs is a challenging task, especially in genomes of
higher eukaryotic organisms, which are characterized by
extremely large gene regulatory regions. Indeed, binding of
TFs to their cognate sites on DNA is a complex process that
requires the presence of a specific short sequence pattern in
DNA, commonly described by a PWM. Furthermore, the spe-
cific local sequence context in the vicinity of the binding site
is required to provide favorable conditions for DNA confirma-
tion and DNA flexibility [22]. In addition, local structures
such as short repeats and palindromes are often observed
and, as discussed before, are needed to enable an optimal
environment for homo- and heterodimerization of TFs [4].
The particularly important role of the global context of TFBSs
in determining cooperative binding of factors with other TFs
to their neighboring DNA sites is broadly recognized [1]. A

Table 3

Comparison of gene lists between HNF4α expression data, ChIP-chip data, and computational prediction of target promoters

Gene sets in ChIP-chip experiment HNF4 targets identified by PWM 
V$HNF4_Q6_1 (cut-off = 0.9)

HNF4 targets identified by local + global 
context

Positive* Negative†

Gupta et al. [44]
Up + Dn (133)

13 (9.8%) ND 66 (49.6%) 41 (30.8%)

Naiki et al. [7]
Up + Dn (75)‡

17 (22.7%) 32 (42.7%) 15 (20%) 14 (18.7%)

Lucas et al. [9]
Up + Dn (70)‡

13 (18.6%) 39 (55.7%) 17 (24.3%) 13 (18.6%)

Lucas et al. [9]
NC (150)‡

20 (13.3%) 99 (66%) 29 (19.3%) 4 (2.7%)

*The number of differentially expressed genes with HNF4α binding sites as identified by ChIP-chip experiments. †The number of differentially 
expressed genes with no HNF4α binding as determined by ChIP-chip experiments. ‡The number of genes whose expression was upregulated or 
downregulated by more than two-fold. NC, genes with no change of expression; ND, not determined.

EMSA confirmation experimentsFigure 6 (see following page)
EMSA confirmation experiments. (a) EMSA with established HNF4α recognition sites. Electrophoretic mobility shift experiment with 2.5 μg Caco-2 cell 
nuclear extracts and oligonucleotides corresponding to promoter regions derived from HNF1, APOB, AAT, AGT, APOC3, CYP2D6, TF, ALDH2, APOC2 and 
PCK1 as 32P labeled probes. For supershift analysis an antibody directed against HNF4α was added (+). (b) EMSA with predicted novel HNF4α recognition 
sites. Electrophoretic mobility shift experiment with 2.5 μg Caco-2 cell nuclear extracts and oligonucleotides corresponding to promoter regions derived 
from NCOA2, TFF2, CHEK1, CD63, SH3GL2, RND2, ESRRBL1, DDB1, NEUROG3 and IL6 as 32P labeled probes. For supershift analysis an antibody directed 
against HNF4α was added (+). (c) EMSA with potential recognition sites from putative HNF4α targets reported by Odom et al. [11]. Electrophoretic 
mobility shift experiment with 2.5 μg Caco-2 cell nuclear extracts and oligonucleotides corresponding to promoter regions derived from AZI2, CFL2, 
GPHN, C14orf119, PPP1R3C, AKR1C3, NPAS2, MDM2, CLCN3 and CBX3 as 32P labeled probes. For supershift analysis an antibody directed against HNF4α 
was added (+).
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Figure 6 (see legend on previous page)
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broad collection of experimentally proven facts on coopera-
tive binding of two and more TFs to so-called composite reg-
ulatory elements with synergistic effects on the regulation of
gene expression is provided by the TRANSCompel® database
[4]. Among these are several known examples of nuclear
receptors that are involved in such composite elements (for
example, glucocorticoid receptor, androgen receptor and oth-
ers). But there are no bioinformatics tools available so far that
enable a systematic analysis of the combinatorial sequence
context of genomic binding sites.

In general, there is a definitive need to develop novel compu-
tational approaches to improve the description of the DNA
patterns required for TF binding. Ellrott and co-workers [23]
applied a Markov chain model to identify HNF4α binding
sites in order to improve recognition accuracy of the DNA
binding pattern. They have demonstrated that the approach
performs better than PWMs alone, but this approach does not
consider any local context on the flanks of sites that indeed
play a crucial role in promoter activation and DNA binding in
vivo.

Recently, local context in the form of short repeats has been
successfully implemented to improve recognition of binding
sites for nuclear receptors [24,25]. Extending the previously
published approach [24] to the application of hidden Markov
models, Sandelin and Wasserman [25] modeled various
known constellations of direct, inverted and everted repeats
for different sites of nuclear receptors and were able to
improve the general precision of the recognition. This
approach looks very promising, although it lacks any

capability to classify predicted sites in order to identify which
particular TF from the large family of nuclear receptors is able
to bind to the predicted sites. In addition, we show here that
binding sites for such nuclear receptors as HNF4α are highly
enriched by various different repeat structures, which does
not completely fit with the existing paradigm that the DR1
repeat comprises the canonical structure of HNF4 sites. This
makes it extremely difficult to judge factor recognition based
on an oversimplified model based on the repeat structures of
sites.

We therefore developed a novel approach for the recognition
of functional HNF4α binding sites by analyzing the local and
global contexts of targeted genes. The method is based on the
assumption that the sequence context surrounding TFBSs in
DNA is very important for the process of TF binding to the site
and, most importantly, for providing specificity of the TF in
the regulation of gene expression - by either activation or
repression of the gene in particular cellular situations. The
sequence contexts of the TFBSs actually makes them func-
tional: in the absence of the proper context, the possible
binding of a TF to a particular site on DNA can be impaired or
made functionally neutral (which means that the factors are
bound to the DNA, but do not influence expression of the
gene; such sites are, therefore, non-functional).

In the current work, we performed a thorough analysis of the
local nucleotide context on the flanks of known functional
HNF4α sites, as well as in the whole local region occupied by
the sites. We improved our earlier published approach to ana-
lyzing local context [2], which is based on a SiteVideo method

Table 4

Biological functions of novel predicted HNF4α gene targets

Gene symbol Gene name Biological function

CD63 CD63 antigen (melanoma 1 antigen) Localization plasma membrane

Endocytosis

CHEK1 CHK1 checkpoint homolog Cell cycle

Negative regulation of cell proliferation

DNA damage response

ESRRBL1 estrogen-related receptor beta like 1 Induction of neuronal apoptosis

DDB1 damage-specific DNA binding protein 1, 127 kDa DNA repair

NCOA2 nuclear receptor coactivator 2 Regulation of transcription

Signal transduction

RND2 Rho family GTPase 2 Signal transduction

Protein transport

Dendrite development

SH3GL2 SH3-domain GRB2-like 2 Central nervous system development

Signal transduction

Endocytosis

TFF2 trefoil factor 2 Defense response

Digestion
Genome Biology 2008, 9:R36
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[14], and introduced new types of contextual features that
modeled various repeated structures in the sequences on the
flanks of the sites. Interestingly, the revealed short oligonu-
cleotide features and repeats can be classified into three cate-
gories. The first category includes oligonucleotides like
ANGD and MDDR and repeats like AV-VS, VS-YA and
(RBNH)2 that fit to different parts of the HNF4 consensus
sequence and appear to be overrepresented in a rather wide
area around the center of the binding sites. We can interpret
such features as a signature of overrepresentation of HNF4
site-like patterns in the local area surrounding the functional
HNF4 site, which may play a role in increasing the probability
of HNF4α binding to this site. The second category includes
oligonucleotides like CDDM and repeats like (DNCD)2, which
are overrepresented in a quite small area corresponding to
the central positions of the sites. Such features correspond to
the central HNF4 site pattern, but they reveal some contex-
tual features of the functional HNF4 sites that cannot be
described by the PWM matrix model, for example, correlation
between neighboring nucleotides that can not be captured in
full by the mononucleotide weight matrix. The third category
includes 'negative' features that reveal oligonucleotides to be
underrepresented at functional binding sites when compared
with background sequences. Such negative features can be
local, as in the case of the repeats (BNDK)2, (NBHV)2 and
(NVYB)2, which again describes some mutual nucleotide cor-
relations that cannot be captured by PWMs, or distributed,
such as BR-NT, which can be interpreted as an 'echo' of some
physical-chemical properties of DNA that may interfere with
the binding or functioning of the TFs. Notably, the length of
the oligonucleotides tested by our method was restricted to
four letters of the extended code, mainly because of the high
computational complexity of the calculations; however, this
oligoncleotide length seems quite optimal for revealing statis-
tically significant features of DNA sequences.

We assume that, in addition to the local context, the global
context of the TFBSs in the regulatory regions of genes
dictates whether these sites are functional. The global
context, which we model by specific combinations of binding
sites of various TFs, provides some sort of 'scaffold' on DNA
to enable cooperative or antagonistic interactions between
TFs. These multiple and complex interactions, if correctly
organized in space and time, give rise to the regulatory func-
tion of the TFBSs under investigation. It is clear by now that
binding of a single TF to its cognate site on DNA alone does
not guarantee the proper functional activity of the targeted
gene. More interaction with other TFs in the transcription
complex and in the enhanceosome are necessary to acquire
the full regulatory functionality.

Specifically, known functional combinations of TFBSs were
used before in a number of promoter analysis approaches, for
example, for identifying muscle-specific promoters [26,27],
the promoters of liver-enriched genes [28], yeast genes [29],
immune-specific genes [30-32], and the promoters of genes

regulated during the cell cycle [33] or genes involved in anti-
bacterial defense responses [34,35]. A number of approaches
identifying composite motifs were created, including Bio-
Prospector [36], Co-Bind [37], MITRA [38], and dyad search
[39]. These programs help to discover ab initio new regula-
tory sites for yet unknown TFs. Another set of methods has
been developed to discover composite modules by utilizing
information on potential binding sites for known TFs (sto-
chastic methods such as ClusterScan [40] and TOUCAN
system [41], and probabilistic methods such as reported in
[42]). We combined these two approaches by computing local
context as an exhaustive ab initio composite motif discovery
method with the global context - the powerful composite
module discovery method based on application of a genetic
algorithm.

Furthermore, we wish to point out that our method considers
several alternative PWMs for the calculation of the global
context. The use of such alternative PWMs for constructing
the composite module (see Materials and methods) enables
more reliable predictions. In cases with small training sets
but with data derived from multiple rounds of computations,
the use of different matrices is particularly meaningful. These
computations are far from statistical saturation, but new sites
may eventually add a certain bias and potentially drive the
new PWM matrix away from the functional binding site
sequence context. In the case of HNF4α we included both
half-site and full-site matrices. Still, the full-length PWMs are
able to capture some subtle differences in the spacing
sequences between the 'repeats'. Recent reports confirm our
old observation that such 'gap' sequences between two
repeats of the nuclear receptor sites are often actually more
conserved between species then the repeats themselves.
Therefore, the combined usage of fixed-length PWMs
together with the distributed oligonucleotides on the flanks
provides a more robust method for site detection than each
method separately.

To compare the findings from our algorithm with the best
existing methods, we performed an independent run of the
TOUCAN software [41] on the set of HNF4α sites. Notably,
TOUCAN is similar to our method and is based on a genetic
algorithm. It identified a combination of 14 PWMs for differ-
ent TFs, including two matrices for HNF4α factors
(V$HNF4_01 and V$HNF4_01_B) and matrices for other
factors (V$USF_01, V$OCT1_02, V$SP1_Q6, V$PPARG_03
and some others). Interestingly, except for the HNF4
matrices, there were no further correlations with matrices
selected by our method (Table 2). This difference can be
explained by the ability of our method to identify pairs of
matrices and also by the ability to optimize the cut-off values,
which is not possible in TOUCAN. Another advantage of our
method is the possibility to include information on the tissue
specificity of the factors, through extensive use of factor
expression annotation in the TRANSFAC® database. We fur-
ther compared our method with the NUBIscan algorithm
Genome Biology 2008, 9:R36
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[24]. Our approach combines many different features of the
most conserved part of the sites as well as various features of
the local and global contexts, whereas the NUBIscan algo-
rithm relies solely on the 'repeated' structure of the nuclear
receptor sites, which is indeed a very profound property of
these sites but not the only one. And, similar to the later pub-
lished Wasserman approach [25], the NUBIscan algorithm
lacks the capability to classify predicted sites in order to iden-
tify which particular TF from the large family of nuclear
receptors is able to bind to a predicted site. Notably, our
method was designed specifically for the recognition of HNF4
sites. Nonetheless, our strategy to define the local and global
sequence contexts is a highly generalized method and can be
applied to any TF.

An additional point of consideration is the 'regulatory poten-
tial score', as introduced in the work of Elnitski and co-work-
ers [43], which refers to the five-way multi-species alignment
introduced in the UCSC Genome Browser. In our study we did
not restrict ourselves to conserved sites based only on multi-
species homology of regulatory regions (phylogenetic foot-
printing). Although this concept is quite popular for the
selection of evolutionarily conserved regulatory sites, the
method suffers from low sensitivity because functional TFBSs
are frequently missed, mainly due to the very complicated
evolutionary history of mammalian regulatory sequences,
which can hardly be modeled by the simple divergent con-
cept, which is the basic concept of phylogenetic footprinting.

Furthermore, promoter regions are characterized by very
specific average base composition as well as composition of
di-nucleotides. It is known that whereas the overall genomic
sequences are highly depleted of CG dinucleotides, promoters
are often located near high concentrations of them, in or near
so-called CpG islands. We therefore compared the nucleotide
and dinucleotide composition of the promoter sequences of
the known HNF4α sites and sequences that were used as
probes in the ChIP-chip experiments of Odom et al. [11], since
these were the sequences to which our method was applied.
We did not find any significant difference in the nucleotide
and dinucleotide compositions of these two sets of sequences,
which is not a surprise since the probes of the chip were
designed using known genomic promoters. Consequently,
since training and test sequences are very similar in their con-
text, the CpG bias, if any, of the HNF4-containing promoters
of the training set cannot bias the results of the analysis of the
sequences from the ChIP-chip experiment.

Additionally, many authors attribute a certain functional role
to the CpG islands in promoters. These islands can be some
sort of centers of regulated DNA methylation, which can
effectively contribute to hepatocyte-specific gene regulation
by providing HNF4α binding sites with necessary functional
context. The absence of such a CpG context in the vicinity of
HNF4α binding sites may potentially render them function-
ally neutral. Therefore, some CG dinucleotide-like features

that were included in the local context (for example, elevated
frequency of the oligonucleotide CDDM, where D is (A/T/G)
and M is (A/C)) may reflect this 'CpG' bias of functionally
active promoter sequences and, therefore, help to identify the
functionally active HNF4α binding sites.

We further studied the influence of the distance from HNF4α
sites to TSSs. As shown in Additional data file 1, the location
of known HNF4 sites is variable in promoter sequences and
may range from a position close to the TSS to up to +10 kb and
-11 kb. Under such high variability, it is improbable that the
method can 'memorize' the position of TSSs during training
since sequences in the training set are not aligned in relation
to TSSs.

We then applied the developed methods to analysis of the
data derived from ChIP-chip experiments reported by Odom
et al. [11] for HNF4α. This study is based on chromatin
immunoprecipitation combined with DNA-DNA
hybridization on a microarray containing 13,000 human pro-
moter sequences. In the study of Odom et al. [11], the number
of HNF4α-targeted promoters was unexpectedly high; 1,575
potential HNF4α target genes in hepatocytes were identified,
corresponding to 42% of the genes occupied by RNA polymer-
ase II. Only 48 (3%) of the 1,575 putative HNF4α targets were
verified, however, in separate gene-specific ChIP-chip exper-
iments. Additionally, HNF4α DNA binding was not distin-
guished from protein-protein interactions, as in vitro binding
was not analyzed. We applied our algorithm to the proposed
HNF4α gene targets and found merely 20% of them to obey
the complex computational criteria (the presence of appro-
priate local and global contexts) that can predict the func-
tional activity of these binding sites. We further stratified our
approach by comparing HNF4α functional sites identified by
us with independent gene expression data. This comparison
shows that our computational approach is versatile and
predicts expressed genes directly targeted by the HNF4α TF
with similar sensitivity to chromatin immunoprecipitation
(ChIP)-chip experiments. In strong contrast, the false discov-
ery rate of the computational method is almost five times
lower than that of the ChIP-chip method. This confirms our
suspicion that many of the HNF4α binding sites predicted by
Odom et al. [11] are functionally neutral, whereas the devel-
oped computational method is able to recognize the function-
ally active HNF4α binding sites based on verification of the
local and global contexts of these sites.

Furthermore, in a recent paper by Gupta et al. [44], regula-
tion of gene expression was studied in pancreatic cells of an
HNF4α conditional knockout model. Expression analysis
identified 133 genes as HNF4α regulated. Regulated genes
could be compared with the promoter array data of Odom et
al. [11]. Surprisingly, the overlap between differentially
expressed genes and those bound by HNF4α is rather small.
In other words, of 133 genes whose expression was dependent
on HNF4α, only 13 have been identified by the location anal-
Genome Biology 2008, 9:R36
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ysis reported by Odom et al. [11]. Likewise, of 587 promoters
occupied by HNF4α in the study of Odom et al. [11], 574
showed no significant change in gene expression [44]. There-
fore, 86% of HNF4α-targeted genes proposed by Odom et al.
[11] did not differ in gene expression in the absence of
HNF4α. These estimates agree well with our computational
approach where only 20% of the target genes proposed by
Odom et al. [11] could be computationally confirmed.

In the most recent study [45] by the same investigators and
through the application of an improved ChIP-chip assay,
more then 4,000 HNF4α target genes were identified. By
comparing the list of genes identified in the ChIP-chip assay
with the list of genes expressed in liver, the authors deter-
mined the combinatorial co-occupancy of binding sites of dif-
ferent factors in promoters of HNF4α target genes.
Furthermore, this feature correlated well with expression of
these genes in hepatocytes. This agrees well with our findings
and confirms the utility of our method in defining the local
and global contexts for specific combinations of different
TFBSs in the vicinity of functionally active HNF4α binding
sites of promoters of genes whose expression is regulated by
HNF4α. Notably, the combination of PWMs identified by the
genetic algorithm (Table 2) captured two TFs, FOX and
CREB. Strikingly, these factors were identified independently
by Odom et al. [45] in an analysis of TFBSs that co-accrued
with HNF4α sites (Table 2, matrices indicated by asterisks).

In a further study of Odom et al. [46], the authors showed
that two-thirds of the binding sites identified by ChIP-chip
experiments are not conserved between human and mouse.
Taking into account the quite conservative liver expression
patterns of genes between these two species, we can conclude
that by far not all HNF4α binding sites identified by the ChIP-
chip method directly contribute to the regulation of gene
expression.

To experimentally validate our predictions, we selected two
sets of promoters. The first set contained ten ab initio, and
therefore novel, HNF4α recognition sites predicted by the
computational complex recognition criteria described above.
Strikingly, eight of the ten binding sites (NCOA2, TFF2,
CHEK1, CD63, SH3Gl2, RND2, ESRRBL2 and DDB1) could
be confirmed as HNF4α binding sites in electromobility
supershift experiments (Figure 6b). In addition, we studied
another set of ten promoters that were reported by Odom et
al. [11] as targets for HNF4α, but our computational method
rejected them because of extremely low scores for the HNF4
weight matrix as well as low scores for local and global con-
texts. None of these sites (NPAS2, GPHN, PPP1R3C, AKR1C3,
CFL2, MDM2, CLCN3, CBX3, AZI2 and C14orf119) did in fact
bind to HNF4α, as shown by electromobility supershift assays
(Figure 6c). These findings suggest a high error rate concern-
ing the proposed targets by Odom et al. [11].

Finally, another computational approach has been applied to
analyze the same set of HNF4α (as well as HNF1 and HNF6)
ChIP-chip data that is the focus of our current study. Indeed,
Smith and colleagues [47] demonstrated that an application
of combinations of motifs allowed for improvements in the
prediction of the genomic location of TFBSs. In contrast to
our approach, however, they performed a blind motif discov-
ery instead of using the existing TF weight matrices. To the
best of our knowledge, this makes the algorithm very compli-
cated and increases the risk of missing important TF
combinations that are characteristic of functionally active
regulatory sites.

Several further improvements to our algorithm can be con-
sidered in the future. Among the most important, we should
consider the possibility of taking into account sequence con-
servation in the non-coding regulatory regions of genes
between different species, for example, human and mouse. It
was demonstrated in recent studies [48-51] that sequence
conservation can be a good indication of the functional
importance of a region. Indeed, such regions can bear func-
tional TFBSs. Despite being quite useful, such considerations
should be taken with care since regulatory regions are charac-
terized by a high level of convergent evolution, which can pro-
vide non-divergent means of forming the functional context
of a TFBS.

Another direction for further improvements is considering
known protein-protein interaction data between different
TFs. Such data are partially available in databases such as
TRANSFAC®, TRANSPATH® and BIND. Known interactions
between TFs can help to find proper combinations of neigh-
boring binding sites for these factors.

A further step in improving our method will be the use of
PWMs for factors whose expression is tissue specific, as indi-
cated in TRANSFAC®. This will greatly improve the predic-
tive power of the method. To achieve this, more extensive
annotation of expression information of TFs is needed and
will be a task of the future. One possibility for obtaining this
information resides in ChIP-chip experiments in conjunction
with gene expression data. This will help to identify TF activ-
ity in a given cellular environment.

Taking gene expression data into account will significantly
help to determine the global and local sequence contexts and,
therefore, functional TFBSs. Recently, we applied the algo-
rithm described in this paper to analysis of promoters of
differentially expressed genes [2,15,51]. Such an integrative
approach is now available in the software system ExPlain™
for a mechanistic interpretation of gene expression changes
in eukaryotic cells under various physiological and patholog-
ical conditions [52].
Genome Biology 2008, 9:R36
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Conclusion
We report a new approach based on machine learning tech-
niques for the de novo identification of novel HNF4α binding
sites. The genetic algorithms developed by us significantly
improved data analysis of various experimental sources. The
method described here can be applied to any TF and enables
computational prediction of genome-wide functional TFBSs.
By applying our method, interactions between different TFs
can be taken into account. This provides clues to the mecha-
nisms responsible for promoter activation and even for antag-
onistic binding of TFs, for example, HNF4α and Coup-TF,
which successfully compete for the same binding site but dif-
fer in activity under various biological conditions. Indeed,
while both factors can bind to the same sequence, the individ-
ual local and global sequence contexts determine the actual
binding activity and may, therefore, provide an estimate of TF
activity in particular cellular or physiological conditions.

Materials and methods
Databases
Databases provided by BIOBASE GmbH were used, for exam-
ple, TRANSFAC®, which is a database on gene regulation
[53]. It collects data on TFs and their binding sites in promot-
ers and enhancers of eukaryotic genes as well as a library of
PWMs. This work was done with TRANSFAC® release 9.4.
Additionally, to retrieve promoters of human genes, we used
TRANSPro™ release 2.1 [54], which is based on genomic
sequence from Ensembl release v35, November 2005. Final
verification of the composite modules was done with the help
of the TRANSCompel™ database [4].

HNF4α binding sites in the human genome
In this work, we significantly updated the collection of known
genomic HNF4α sites in TRANSFAC®. Additional data file 1
lists the collected sites with information about the target
genes, positions in the promoters of the genes, and the site
sequence.

First of all, we compiled all known HNF4 binding sites from
the literature and extended them upstream (28 bp) and
downstream (34 bp); this is set as YLocal. Next, we prepared

the background sequences; this is set as NLocal. After that, we
split the YLocal set into two parts: the training set and the test
set (sites included in the training set are indicated in Addi-
tional data file 1 by asterisks). We also split the NLocal set into
two parts: the training background set and the test back-
ground set. The training of the method was done by compar-
ison of training set versus training background set. The
testing of the method and building of the histogram in the
Figure 2 was done on the test set versus the test background
set - on two sets that were not used in the training. This pro-
cedure of preparing four sets is the best possible statistical
procedure for training and testing of the recognition
methods.

Positional weight matrix for HNF4α binding sites
Based on the collection of HNF4α sites we constructed a
PWM (accession number M01031) and two 'half-site' matri-
ces (accession numbers M01032 and M01033) and deposited
them in the TRANSFAC® database (Table 5). The construc-
tion of PWMs was done according to the general outline
described in [51] and as detailed in the protocol of TRANS-
FAC® matrix construction (see the TRANSFAC® documenta-
tion). The half-site matrices were created by manual splitting
of each site into two parts and were used independently for
the alignment. Together with pre-existing HNF4α matrices in
TRANSFAC® (accession numbers M00762, M00764, and
M00967), the new matrices were used to search for HNF4α
binding sites in genomic sequences. For this basic search we
employed the MATCH™ algorithm, calculating scores for the
matches by applying the so-called information vector [55].
This algorithm is implemented in the ExPlain™ software sys-
tem. This software was also used for analysis of the flanking
regions of HNF4α sites to search for other TFBSs from the
most up-to-date library of matrices derived from the TRANS-
FAC® Professional database. The cut-offs for the matrices
were set to minFN to maximize the sensitivity of the site pre-
diction (false negative rate of 10%).

Machine learning techniques for building methods of 
identification of genomic sites
To identify novel and functional HNF4α binding sites in the
human genome, we first analyzed flanking regions of DNA

Table 5

Positional weight matrix for HNF4α sites (TRANSFAC® accession number M01031, identifier V$HNF4_Q6_01)

A 19 5 11 5 2 52 46 49 0 3 3 1 46 17

C 8 2 3 16 48 1 2 0 0 1 19 47 2 15

G 21 46 30 20 2 0 10 9 58 26 7 2 6 14

T 10 5 14 17 6 5 0 0 0 28 29 8 4 12

Consensus* N G G N C A A A G K Y C A N

*Two 'half-matrices' (M01032, V$HNF4_Q6_02; and M01033, V$HNF4_Q6_03) corresponding to the DR1 repeat are shown in bold and refer to 
the frequency of a nucleotide of the matrix.
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binding sites for this factor and determined what kind of
additional contextual rules appeared to be molecular descrip-
tors for these sites. We used two machine learning techniques
for revealing such rules and applied them to building meth-
ods for the recognition of functional genomic HNF4α sites.
The techniques used here are similar to the methods applied
for the recognition of AhR sites [2]. The main features of the
techniques as well as their recent improvements are reported
here.

Defining local context: revealing short sequence motifs with the help 
of an exhaustive feature selection algorithm
Initially, we interrogated short sequence motifs with the help
of an exhaustive feature selection algorithm and searched for
cliques in the feature correlation graph. Specifically, we ana-
lyzed flanking regions of HNF4α bindings sites, 28 bp
upstream and 33 bp downstream, and applied a modification
of the search algorithm that was recently developed [14,33]. It
should be noted that the algorithm searches for a specific
composition of over- and underrepresented short oligonucle-
otides (features of local context) in the flanking regions of
HNF4α sites and uses them for construction of a site recogni-
tion method. In the first step, the algorithm - through an
exhaustive search - selects a set of such features of the local
context. In the second step, it creates a graph of correlations
between the features, selects non-redundant combinations of
them through identification of cliques in the graph and builds
the site recognition method using a final set of features of
local context.

The algorithm compares two sets of sequences of equal length
L: a training set YLocal consisting of the functional HNF4α
sites including their flanking regions (Additional data file 1),
and a background set of sequences NLocal. The NLocal set is
made by running the TRANSFAC® accompanying tool
Match™ [55] in the set of human intergenic regions (located
at least 1 Mb from any known gene) using the HNF4α PWM
(accession number M00967) with score cut-off value qcut-off =
0.8. This cut-off guarantees recognition of all known sites col-
lected in Additional data file 1. Then, we randomly selected
100 matches together with their -28 bp and +33 bp flanks and
placed them into the background set NLocal. Therefore, the set
NLocal consists of sequences that contain a central motif fitting
to the HNF4α matrix; however, because of its position in the
genome so far from any known gene and also since the thresh-
old was so low in the motif matching, a randomly chosen sub-
set is likely to contain mostly false positives. By comparison of
the sets YLocal and NLocal we could reveal contextual features
that characterize the sequence environment (local context) of
functional HNF4α sites. In addition, such comparison
allowed us to reveal features of the core motif at the HNF4α
binding site that are not captured by the PWM method alone
(for example, correlation between positions of the site).

We extended the approach described in Kel et al. [2] and con-
sider now three types of contextual features (φ). First is the

frequency of occurrence of short motifs λ = (a1a2..ak) (a ∈ {A,
T, G, C, W, S, R, Y, M, K, B, V, H, D, N}) (we use the following
one-letter code for different combinations of alternative
nucleotides: W-(A/T (read A or T)); R-(A/G); M-(A/C); K-(T/
G); Y-(T/C); S-(G/C); B-(T/G/C); V-(A/G/C); H-(A/T/C); D-
(A/T/G); N-(A/T/G/C)) of length k ≤ 4 in a window w = [t1,t2]
(0 < t2 < t1 < L - k + 1). Second is the frequency in the same
window of dinucleotide pairs: (λ → δ), where λ = (a1a2) and δ
= (b1b2) with a distance between them varying from rmin to
rmax. Third is the frequency of four-nucleotide repeats λ2 = (λ
→ λ), where λ = (a1a2a3a4) with the varying distance rmin to
rmax.

In our previous work [2,14,33] we described the statistical cri-
teria based on utility theory that permit an identification of
single motifs λ and the windows w that are characterized by a
significant difference in their frequencies f(λ,w,S) in the
sequences S from the sets Y and N. Here, we extend this
algorithm to the identification of significant pairs of dinucle-
otides and four-nucleotide repeats. Found contextual fea-
tures are then used for creating a context analyzer that is able
to perform additional filtering of the potential sites as
revealed by the weight matrix method.

The context analyzer is developed in two steps. In the first
step, we perform feature selection; we analyze the correlation
between all contextual features found by the statistical crite-
ria described above and choose a limited set of features that
are characterized by the lowest level of mutual correlations by
means of an algorithm revealing maximal cliques in a
weighted graph. The contextual features selected at the previ-
ous step (j1, j2, ..., jm) (10-20 relatively independent fea-
tures) are used for construction of a linear classification
function discriminating sets YLocal and NLocal. So, for every
sequence X we calculate the score of context:

where αi and β are the coefficients of the discriminating func-
tion. These coefficients are obtained through the least-square
method of estimating linear regression.

To validate the obtained context analyzer, we applied it to the
control sets, YLocal-Control and NLocal-Control, which do not
contain sequences used at the training steps. The set YLocal-

Control consists of new HNF4α sites annotated most recently in
TRANSFAC® and NLocal-Control was constructed through the
same procedure as described above but using also randomly
chosen but different human intergenic regions compared to
those used to construct NLocal.

It should be mentioned here that repeating the same training
procedure with a new random negative set may result in a dif-
ferent set of features for the context analyzer. This happens
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due to the procedure of feature selection, which does not nec-
essarily select the full set of important features but gives the
most discriminative sub-subset of 'representative' mutually
uncorrelated features. Different independent runs of the
algorithm can result in different subsets of features, although,
often, the most discriminative features do not change, and
several other features, being literally different, nevertheless
represent quite similar oligonucleotides in similar position
windows. Such different sets of contextual features usually
achieve similar recognition power (similar levels of sensitivity
and specificity) and can characterize different 'sub-popula-
tions' of the training set of the sites by looking at it from a dif-
ferent 'angle' of different background sequences. Under the
conditions of a rather limited training set of real sites, and in
order to avoid overfitting, we can not increase the number of
selected features too much. So, for further analysis we take
the set of mutually uncorrelated features obtained in the first
run of the exhaustive feature selection algorithm.

Defining the global context: identification of composite modules in 
HNF4α-targeted promoters using a genetic algorithm
Composite regulatory modules in the promoter regions flank-
ing functional HNF4α binding sites were identified by using
the recently developed software tool CMA [56]. Potential
TFBSs in the flanking regions were identified by Match™ [55]
that uses a library of about 500 PWMs for vertebrate TFs
(TRANSFAC® release 9.4).

CMA was applied for analyzing combinations of TFBSs (CMs)

in promoters of differentially expressed genes. The definition

of a CM is now significantly improved compared to the previ-

ous application [2]. It is defined as a set of individual PWMs

and pairs of PWMs that are characteristic for co-regulated

promoters. CMs are characterized by the following parame-

ters: K, the number of individual PWMs in the module; R, the

number of pairs of PWMs; cut-off value ; relative

impact values φ(k); maximal number of best matches κ(k) that

were assigned to every weight matrix k (k = 1,K); cut-off value

; relative impact values φ(r) and maximal distances

 and maximal number of best matches κ(r) that were

assigned to every matrix pair r (r = 1,R) in the CM. A CM score

is calculated for all sequences X according to the following

equation:

where  is the score of the j-th match of the k-th PWM

and ; and  and  are scores of

two sites in a pair r and  and the

distance between these sites in the pair: .

Normalization is then applied as in Waleev et al. [15]. So, if

ν(X) is higher than a predefined threshold νcut-off, the pro-

gram reports a match of the composite module to the

sequence.

The CMA program is based on a genetic algorithm. It takes as
input two sets of sequences (the set under study, YGlobal, and
the background set NGlobal) and a set of PWMs for TFs. The
program optimizes parameters K and R, the set of matrices
selected, their number, their cut-offs, the relative impact, and
the maximum number of best matches. We defined the fitness
function of the genetic algorithm as a weighted sum of several
statistical parameters characterizing the difference between
two distributions - the distributions of the CM scores (ν(X)) in
the two sets of promoters, as described in Kel et al. [56]. Cal-
culating the fitness function allows us to assess the usability
of the obtained solutions for the classification of individual
sequences. The output of the program is the best discrimina-
tive CM with the optimized parameters.

Molecular biology experiments
To confirm predicted functional HNF4α binding sites, we
performed electromobility supershift assays with nuclear
extracts of Caco-2 cells. Note that this cell line is well charac-
terized for its abundant expression of HNF4α, as reported
elsewhere [57].

Isolation of nuclear extracts
Nuclear extracts from Caco-2 cells were isolated by a modi-
fied method of Dignam et al. [58]. Eleven days after seeding,
cells were washed twice with ice-cold phosphate buffered
saline, scraped into microcentrifuge tubes and centrifuged for
5 minutes at 2,000 × g at 4°C. Cell pellets were resuspended
in hypotonic buffer (10 mM Tris, pH 7.4, 2 mM MgCl2, 140
mM NaCl, 1 mM DTT, 4 mM Pefabloc, 1% v/v aprotinin, 40
mM β-glycerophosphate, 1 mM sodiumorthovanadate and
0.5% TX100) at 4°C for 10 minutes (300 μl for 1 × 107 cells),
transferred onto one volume of 50% sucrose in hypotonic
buffer and centrifuged at 14,000 × g and 4°C for 10 minutes.
Nuclei were resuspended in Dignam C buffer (20 mM Hepes,
pH 7.9, 25% glycerol, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM
EDTA, 1 mM DTT, 4 mM Pefabloc, 1% v/v aprotinin, 40 mM
β-glycerophosphate, 1 mM sodiumorthovanadate, 30 μl for 1
× 107 cells) and gently shaken at 4°C for 30 minutes. Nuclear
debris was removed by centrifugation at 14,000 × g at 4°C for
10 minutes. The extracts were aliquoted and stored at -70°C.

Electrophoretic mobility shift assay
The oligonucleotides were purchased from MWG Biotech
(Ebersberg/Muenchen, Germany); for sequence information
see Table 6 (the central five nucleotides are highlighted in
bold). Nuclear extract (2.5 μg) and 105 cpm (0.027 ng) 32P-
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labeled oligonucleotides were incubated in binding buffer
consisting of 25 mM Hepes, pH 7.6, 5 mM MgCl2, 34 mM KCl,
2 mM DTT, 2 mM Pefabloc, 2% v/v aprotinin, 40 ng of poly
(dI-dC)/μl and 100 ng of bovine serum albumin/μl. Oligonu-
cleotides and nuclear proteins were incubated for 20 minutes
on ice. Free DNA and DNA-protein complexes were resolved
on a 6% polyacrylamide gel. Supershift experiments were
done with an HNF4α-specific antibody (sc-6556x, Santa Cruz

Biotechnology, Heidelberg, Germany). Gels were blotted to
Whatman 3 MM paper, dried under vacuum, exposed to
imaging screens for autoradiography and analyzed using a
phosphor imaging system (Molecular Imager FX pro plus;
Bio-Rad Laboratories GmbH, Muenchen, Germany).

Table 6

Shift-probe sequences

Gene symbol* Gene name† Oligo-name‡ Location 
(rel.TSS)§

Score¶ Sequence¥

TCF1/HNF1 hepatic nuclear factor 1 HNF1 -265 0.988 AAGGCTGAAGTCCAAAGTTCAGTCCCTTC

APOB Apolipoprotein B APOB -86 0.905 GGAAAGGTCCAAAGGGCGCCTTG

SERPINA1/AAT alpha-1-antitrypsin GS21 -134 0.865 CAACAGGGGCTAAGTCCACTGGC

AGT angiotensinogen GS47 -429 0.905 TGCAGAGGGCAGAGGGCAGGGGA

APOC3 Apolipoprotein C3 GS104 -93 0.995 GGCGCTGGGCAAAGGTCACCT GC

CYP2D6 cytochrome P450, family 2, subfamily D, 
polypeptide 6

GS105 -69 0.989 AGCAGAGGGCAAAGGCCATCATC

TF Transferring GS106 -76 0.817 ACGGGAGGTCAAAGATTGCGCCC

ALDH2 aldehyde dehydrogenase 2 family 
(mitochondrial)

GS107 -332 0.817 CATTGGGGTCAAAGGCACACATT

APOC2 apolipoprotein C2 GS108 -159 0.916 TGTCTAGGCCAAAGTCCTGGCCA

PCK1 phosphoenolpyruvate carboxykinase 1 
(soluble)

GS109 -455 0.923 GGTCACAGTCAAAGTTCATGGGA

NCOA2 nuclear receptor coactivator 2 GS110 -485 0.981 ATGGGAGGGCAAAGGGCAATGCC

TFF2 trefoil factor 2 GS111 -495 0.978 AAGATGGGACAAAGGGCATCGTG

CHEK1 CHK1 checkpoint homolog GS112 +5 0.976 AGTGGTGGGCAAAGGACAGTCCG

CD63 CD63 antigen (melanoma 1 antigen) GS113 -182 0.967 CTGCAGGAGCAAAGGACAGAAGT

SH3GL2 SH3-domain GRB2-like 2 GS114 -393 0.964 CGCCAGGCTCAAAGGGCAGGAGG

RND2 Rho family GTPase 2 GS115 0.923 AGGGCAGGTCAGAGTTCAAGCGA

ESRRBL1 estrogen-related receptor beta like 1 GS116 +63 0.91 CAGAACGGACAGAGTCCAGCGTG

DDB1 damage-specific DNA binding protein 1, 
127 kDa

GS117 -295 0.909 GGGGAAGGGCAAAGGGCGCGGAA

NEUROG3 neurogenin 3 GS118 -225 0.896 GATTCCGGACAAAGGGCCGGGGT

IL6 interleukin-6 GS119 -149 0.889 ACTAGGGGGAAAAGTGCAGCTTA

AZI2 5-azacytidine induced 2 GS120 -217 0.793 GGACCCCCCAAAAGGACACTGAG

CFL2 cofilin 2 (muscle) GS121 -676 0.792 CGAGGCGAGAAAAGCCCCCCGCA

GPHN gephyrin GS122 +733 0.79 GACTGAGAGGAAAGGATAGCACA

C14orf119 Chromosome 14 open reading frame 119 GS123 -610 0.786 CAAGCGGCTCAAAGGGGTGAGGA

PPP1R3C protein phosphatase 1, regulatory (inhibitor) 
subunit 3C

GS124 -142 0.772 CGAGACGTGCAGAGAGCTATCTG

AKR1C3 aldo-keto reductase family 1, member C3 
(3-alpha hydroxysteroid dehydrogenase, 
type II)

GS125 -481 0.763 GAAAATGTAAAAAGGCAAATATT

NPAS2 neuronal PAS domain protein 2 GS126 -395 0.759 GAGCCGGCCCAGAGGAGAGGCAA

SAG S-arrestin GS127 -106 0.754 CCTGGGAGACAGAGCAAGACTCC

CLCN3 chloride channel 3 GS128 -377 0.753 AGCGTCACGCAGAGTTCGGATCC

CBX3 chromobox homolog 3 (HP1 gamma 
homolog, Drosophila)

GS129 -525 0.748 GCGGAAGGCTAGAGTCCTGCTAG

*†The gene symbol and gene name of the gene where the corresponding HNF4 site was analyzed. ‡The internal name of the oligonucleotide used in 
the study. §Location of the site in the promoter of the gene. The position of the 5' end of the site is given relative to the TSS. ¶The score was 
computed using the HNF4 PWM constructed in the course of this study (Table 2). ¥Sequence of the oligonucleotide used in the study. The central 
part of the oligonucleotide, which corresponds to the most conserved core of the HNF4 motif, is given in bold.
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