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ARTICLE INFO ABSTRACT

Keywords: Objective: To develop machine learning-based prediction models for all-cause and premature
MafChin‘? learning mortality among the middle-aged and elderly population in China.

Epidemiology Method: Adults aged 45 years or older at baseline of 2011 from the China Health and Retirement

All-cause mortality
Cohort study
Prediction model

Longitudinal Study (CHARLS) were included. The stacked ensemble model was built utilizing five
selected machine learning algorithms. These models underwent training and testing using the
CHARLS 2011-2015 cohort (derivation cohort) and subsequently underwent external validation
using the CHARLS 2015-2018 cohort (validation cohort). SHapley Additive exPlanations (SHAP)
was introduced to quantify the importance of risk factors and explain machine learning
algorithms.

Result: In derivation cohort, a total of 10,677 subjects were included, 478 died during the follow-
up. The stacked ensemble model demonstrated the highest efficacy in terms of its discrimination
capability for predicting all-cause mortality and premature death, with an AUC[95 % CI] of 0.826
[0.792-0.859] and 0.773[0.725-0.821], respectively. In validation cohort, the corresponding
AUC[95 % CI] were 0.803[0.743-0.864] and 0.791[0.719-0.863], respectively. Risk factors
including age, sex, self-reported health, activities of daily living, cognitive function, ever smoker,
levels of systolic blood pressure, Cystatin C and low density lipoprotein were strong predictors for
both all-cause mortality and premature death.

Conclusion: Stacked ensemble models performed well in predicting all-cause and premature death
in this Chinese cohort. Interpretable techniques can aid in identifying significant risk factors and
non-linear relationships between predictors and mortality.

1. Introduction

Life expectancy and mortality are key indicators of public health. The seventh national census in 2020 revealed that the percentage
of individuals aged 60 and above in China is approximately 18.70 %. The confluence of an aging population and evolving lifestyles has
yielded a perceptible rise in the incidence of chronic illnesses, subsequently impacting mortality rates [1,2]. Given the changing
circumstances, it became paramount to precisely discern risk stratification and implement timely interventions [3,4].
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Extensive prior studies have endeavored to explore the intricate relationships between specific predictors and death. These factors
encompassed a range of aspects, including physical activity, alcohol consumption, and self-reported health status [5-7]. Furthermore,
some studies have aimed to amalgamate risk factors from diverse domains to enhance predictive accuracy. For instance, Ganna and
Ingelsson [8] constructed Cox regression models, utilizing 13 risk factors for men and 11 for women. Their approach yielded pre-
dictions of 5-year all-cause mortality, with area under the curve (AUC) of 0.8 (95 % CI 0.77-0.83) and 0.79 (95 % CI 0.76-0.83),
respectively. Recently, the utilization of machine learning techniques has been increasing in constructing prediction models [9-13].

In contrast to traditional regression models, machine learning models offer an alternative approach to building prediction models,
and may fit the non-linear interactions between variables by minimizing errors between predicted and observed labels. Previous
research have used machine learning models to predict death in different databases [14-19]. Notably, numerous studies have har-
nessed diverse machine learning algorithms to forecast mortality using various databases. For instance, a prospective cohort study [18]
conducted in the UK employed ways such as random forest (RF), deep learning and Cox regression to predict premature death.
Remarkably, RF (AUC 0.783, 95 % CI 0.776-0.791) and deep learning (AUC 0.790, 95 % CI 0.783-0.797) exhibited superior predictive
performance in comparison to standard regression methods (AUC 0.751, 95 % CI 0.748-0.767). In another study [14] using data from
15,933 patients who newly visited the cardiovascular institute, five machine learning methods were constructed to predict death, and
support vector machine (SVM) algorithm had the best AUC (0.900) among all machine learning algorithms.

However, most of the studies predicting mortality were based on a single machine learning classifier. This framework may un-
derestimate model uncertainty and lead to overconfidence in prediction model performance. To mitigate this limitation, the approach
of ensemble learning was the method to enhance model performance by integrating multiple classifiers to solve the same problem
[20-22]. The ensemble technique usually reduced the variance in the model, and leads to the most possible stable models with the best
performance. Ensemble learning has exhibited its effectiveness across a spectrum of applications, including cognitive impairment
prediction [9], cancer prediction [23], heart disease detection [24] and so on. Furthermore, in addition to building a prediction model
using ensemble machine learning, we also used the SHapley Additive exPlanations (SHAP) method, which provides various in-
terpretations according to the contribution of each predictor in the algorithm. The SHAP method has been used in many research to
interpret machine learning models [25,26].

The China Health and Retirement Longitudinal Study (CHARLS) cohort [27] was an nationally representative cohort. Our study
used these data to build risk prediction models with stacking ensemble technique, and identified top predictors by explaining complex
machine learning algorithms with Shapley values. Our study further explored non-linear relationships of biomarkers or physical ex-
amination factors with the risk of mortality.

2. Method
2.1. Study sample

The CHARLS study started in 2011, with subsequent follow-up visits conducted in 2013, 2015, and 2018. The probability pro-
portional to scale sampling method was performed to select a representative sample of Chinese individuals. Medical history and
physical examination were collected in each wave, and biomarkers were collected in 2011 and 2015 waves. Details information about
study design and cohort profile have been published elsewhere [27].

In our study, derivation cohort were derived from the 2011-2015 CHARLS cycles (n = 17,708). After excluding participants at
baseline who did not participate in the later follow-up survey (n = 1417), those who did not participate in blood measure at baseline (n
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Fig. 1. Subject selection flowchart.
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= 5572), and individuals with more than 80 % predictors missing at baseline (n = 42). Finally, 10,677 subjects were available for
analysis (Fig. 1).

2.2. Data collection

The CHARLS questionnaire included demographic information, lifestyle factors, medical conditions, physical examination, health
indicators and biochemical indicators. Systolic blood pressure (SBP), diastolic blood pressure (DBP) and pulse were measured thrice,
and the average of three measurements was calculated. Health indicators included self-reported health, activities of daily living (ADL),
cognitive function and CES-D score. Self-reported health was answered in five categories: very good, good, fair, poor, and very poor.
The ADL included six indexes: bathing, dressing, eating, getting in/out of bed, using the toilet, and controlling urination. Individuals
who reported some difficulty or could not do the activity were scored 1 point, and those without difficulty were scored 0 point (total
ADL score ranged from 0 to 6). In CHARLS 2011, the 10-item version of the CES-D [28] was applied to investigate condition of
depression (total score ranged from O to 30), and lower sum scores indicate better mental status. Cognitive performance was calculated
using three cognitive tests including Telephone Interview of Cognitive Status (TICS) [29,30] (total score ranged from 0 to 10), figure
drawing test (total score ranged from O to 1), and word recall (total score ranged from 0 to 20) [31,32]. Cognitive performance was the
sum score of TICS, figure drawing test and word recall test (ranging from 0 to 31), and higher sum scores indicate better cognitive
function. Finally, after excluding variables with more than 30 % missing, 49 variables were included as potential predictors in this
study (Table S1 in Supplementary material).

2.3. Outcome ascertainment

The date of death was documented as occurring between the date of the last survey and the date of the survey in which the death
was reported (the midpoint between the 2 surveys). We then calculated the survival time as the interval between the first survey and
the time of death. In our study, premature mortality was defined based on the average life expectancy in China in 2011, with men dying
before 72.7 years and women dying before 76.9 years [33].

2.4. Statistical analysis

Continuous predictors of derivation cohort were depicted as mean =+ standard deviation, while categorical predictors of derivation
cohort were depicted as number (percentage). Between group differences were performed using ANOVA for continuous predictors and
Chi-square test for categorical predictors.

@ Data splitting

The CHARLS 2011-2015 cohort was utilized as the derivation cohort, while the CHARLS 2015-2018 cohort was utilized as the
validation cohort. We randomly split the derivation cohort into train and test datasets at a 7:3 ratio.

@ Data processing

The RF imputation algorithm was developed using only the training set [34]. Imputation was conducted separately for the train and
test datasets, utilizing the imputation method derived from the training dataset. This approach ensures that the testing set remains
unaffected during the imputation process. Categorical predictors were transformed into binary parameters using one-hot encoding,
and numerical predictors were transformed using Z-Score standardization. Subjects who died or survived during the follow-up were
considered as positive or negative labels, respectively.

@ Feature selection

We used LASSO regression to reduce the number of predictors using the L1 norm to penalize the regression coefficients, some of
which shrunk to zero [35]. Variable selection was based solely on the training set without any information from the testing set. This
prevents any knowledge about the testing data from influencing the variable selection process, thus maintaining the independence of
the testing set. After that, predictors with non-zero regression coefficients (N = 40) were used in both the train and test datasets during
the modelling process.

@® Model construction and evaluation

A 5-fold cross-validation was conducted on the training set to acquire optimal hyper-parameters values based on the AUC [36].
Seven commonly used classifiers were initially applied, and five classifiers (RF, SVM, logistic regression (LR), light gradient boosting
machine (LightGBM), and extra trees (ET)) were selected based on the performance of AUC. Models were trained and evaluated on
training set and testing set (derivation cohort), and externally evaluated on evaluation cohort. Metrics including accuracy, sensitivity,
specificity, AUC and Brier score were utilized to evaluate the model performance. Delong’s test was conducted to assess the difference
in AUCs between fusion model and base algorithms [37].
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The stacked ensemble modelling strategy was used to improve the model performance (Fig. S1). The stacking technique mainly
consists of two layers: base models and meta models. The predictions of base-level models were selected as the input of meta-level
models [21]. In our study, five base models (LR, RF, SVM, LightGBM and ET) were constructed to obtain a new training set for the
meta-level classifier. Among this training set, each base model provides a prediction probability over the outcome values. The LR
classifier was used to reduce the complexity of the model at the meta-level. We also assessed the stacked ensemble model for all-cause
mortality across age and sex.

In our derivation cohort, only 478 participants (4.48 %) died during follow-up.

Given the imbalanced nature of our data, we applied the “class_weight” hyperparameter [38]. The “class_weight” was set to
“balanced,” which means that the model automatically adjusts the weights of the classes inversely proportional to their frequencies.
This method assigns higher weights to the minority class and lower weights to the majority class, enabling the model to prioritize the
minority class during the training process.

SHAP was utilized to evaluate the importance of the various predictors [39]. SHAP was based on cooperative game theory and
computes Shapley values to attribute the model’s output to different features. By using SHAP values, we can understand how each
predictor contributes to the model’s output, thereby gaining valuable insights into the model’s decision-making process. SHAP
summary plot were generated to observe the importance of each predictor. We also conducted stratified analyses using SHAP summary
plot to explore whether the meaningful risk factors of mortality varied by age of 70 years old or sex. To explore the non-linear re-
lationships of biomarkers or physical examination factors with the risk of mortality, we reconstructed the RF model to fit the raw data
(without data scaling), and generated a SHAP dependency plot. Tree-based models, such as decision trees and random forests, typically
do not require scaling of numerical features. The SHAP dependency plot can facilitate the exploration of the association between the
raw variables and outcomes.

In our study, two-sided P-values <0.05 were deemed statistically significant. Construction and interpretation of the machine
learning models were conducted using scikit-learn and shap package in Python (3.6.5). We utilized R software (4.0.2) for additional
statistical analyses.

Table 1
Selected baseline characteristics of participants in our study sample.
Characteristics Survival (n = 10199) Died (n = 478) P-value
Age(year) 58.68 + 9.09 68.40 + 10.52 <0.001
Sex
Women 5435(53.29 %) 195(40.79 %) <0.001
Men 4764(46.71 %) 283(59.21 %)
Education level
Primary school and below 9169(89.9 %) 453(94.77 %) 0.002
Middle school degree 903(8.85 %) 20(4.18 %)
College degree and above 127(1.25 %) 5(1.05 %)
Marital status
married 10118(99.21 %) 471(98.54 %) 0.113
single 81(0.79 %) 7(1.46 %)
Site
urban 3609(35.39 %) 142(29.71 %) 0.011
rural 6590(64.61 %) 336(70.29 %)
Ever drinker
no 6222(61.01 %) 263(55.02 %) 0.008
yes 3966(38.89 %) 215(44.98 %)
Current drinker
no 6813(66.8 %) 329(68.83 %) 0.363
yes 3382(33.16 %) 149(31.17 %)
Ever smoker
no 6225(61.04 %) 223(46.65 %) <0.001
yes 3972(38.94 %) 255(53.35 %)
Current smoker
no 7048(69.1 %) 305(63.81 %) 0.191
yes 2970(29.12 %) 147(30.75 %)
BMI(kg/m"2) 24.11 + 28.72 22.10 £ 3.72 <0.001
SBP(mmHg) 129.23 + 21.26 138.60 + 24.12 <0.001
DBP(mmHg) 75.29 + 12.15 76.67 + 13.55 0.065
Waist(cm) 84.38 +£12.57 83.36 £ 12.36 0.064
Weight(kg) 58.88 + 11.63 54.90 + 11.64 <0.001
Self-reported health
very good 567(5.56 %) 12(2.51 %) <0.001
good 1657(16.25 %) 49(10.25 %)
fair 5107(50.07 %) 184(38.49 %)
poor 2400(23.53 %) 173(36.19 %)
very poor 463(4.54 %) 60(12.55 %)
Cognitive function 13.00 £+ 5.81 9.77 £ 6.12 <0.001
CESD score 8.54 + 6.35 10.17 + 6.98 <0.001
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3. Result
3.1. Baseline characteristics

In derivation cohort, a total of 10,677 subjects aged 45 or older were participated in the baseline wave of 2011, and 478 subjects
died, including 282 premature death. Participants who died during the follow-up tended to be older, male, single, with low education
level, with poor cognitive function and self-reported health status, and more likely to smoke or drink alcohol (Table 1).

3.2. Model performance

The outcomes of the all-cause mortality prediction are presented in Table 2 and Fig. S2 in supplementary material. In the derivation
cohort, the stacked ensemble algorithm demonstrates the highest AUC[95 % CI] of 0.826[0.792-0.859], compared to LR (0.818
[0.783-0.854, P < 0.05), RF (0.81[0.777-0.844], P > 0.05), SVM (0.815[0.777-0.852], P > 0.05), lightGBM (0.798[0.761-0.834], P
< 0.01) and ET (0.811[0.775-0.848], P > 0.05). In the validation cohort, the stacked ensemble model also exhibits the highest
discriminatory capability (AUC[95 % CI]: 0.803[0.743-0.864]). Similar results are seen in the stacked ensemble model employing
limited features using LASSO feature selection, with an AUC[95 % CI] of 0.824[0.788-0.86] and 0.807[0.749-0.866] in derivation and
validation cohort, respectively. To predict premature death (Table 3 and Fig. S2 in supplementary material), the stacked ensemble
algorithm demonstrates the highest AUC[95 % CI] of 0.773[0.725-0.821] in derivation cohort, compared to LR (0.772[0.724-0.819]1,
P > 0.05), RF (0.758[0.704-0.813], P > 0.05), SVM (0.749[0.692-0.806], P > 0.05), light GBM (0.747[0.695-0.798], P < 0.05) and ET
(0.698[0.643-0.754], P < 0.001). In the validation cohort, the stacked ensemble model also exhibits the highest discriminatory
capability (AUC[95 % CI]: 0.791[0.719-0.863]). Similar results are seen in the stacked ensemble model employing limited features
using LASSO feature selection, with an AUC[95 % CI] of 0.771[0.724-0.819] and 0.781[0.706-0.856] in derivation and validation
cohort, respectively. Furthermore, among the various models, the stacked ensemble, SVM and LightGBM models demonstrated a good
calibration ability for predicting all-cause mortality (Fig. S3 in supplementary material).

3.3. Model interpretation

SHAP values of the top 15 features for predicting all-cause mortality and premature death using stacked ensemble model are
presented in Fig. 2. In SHAP summary plot, a negative SHAP value represents a reduced risk of death, while a positive SHAP value
represents an increased risk of death. As expected, age emerged as the top-ranked predictor for all-cause mortality, followed by
Cystatin C, cognitive function, pulse, mean corpuscular volume and self-reported health (Fig. 2A). In terms of premature mortality,
important predictors included age, Cystatin C, self-reported health, pulse, ever smoker and cognitive function (Fig. 2B).

The SHAP dependency plot was applied to observe the SHAP value among different quantitative biomarkers and physical exam-
ination indicators using RF model estimation. Interaction effects were also represented by vertical dispersion of the data points (Fig. 3
and Fig. S5 in Supplementary material). In the case of SBP and DBP, the plots show a J-shaped relationship between SBP or DBP level
and the SHAP value. The relationship between cholesterol levels (LDL, HDL, TC and TG) and the SHAP value was U-shaped, with low
and high concentrations indicating a higher risk of death. We observed a higher SHAP value in participants with low level of weight,
waist, or BMI, and higher level of pulse, especially for the elderly population. Cystatin C has the highest SHAP value among all bio-
markers. It can be confirmed that the SHAP value of Cystatin C remained stable in the beginning, and shapely increased at a Cystatin C
of 1 mg/L, especially for elderly adults.

4. Discussion

In this study, we used stacked ensemble models to predict death in 10,677 Chinese individuals. The stacked ensemble model
reached notably high discrimination ability. In addition, we found age, sex, self-reported health, activities of daily living, cognitive
function, ever smoker, levels of SBP, Cystatin C and LDL-C were strong predictors of either all-cause mortality or premature mortality.

Previous mortality prediction models were mostly developed based on traditional Cox regression models. A study [8] included 498,
103 UK Biobank participants explored the sex-specific associations of 655 variables (demographics, disease history, health indicators
and lifestyle) with the risk of 5-year all-cause mortality, 13 variables for men and 11 variables for women were finally selected to
construct the Cox regression model that predicted 5-year all-cause mortality, with an AUC of 0.80 (95 % CI 0.77-0.83) and 0.79 (95 %
CI 0.76-0.83), respectively. Recently, machine learning has proven to be an invaluable tool for developing predictive models [40-43].
Weng et al. [18] constructed traditional Cox models, random forest and deep learning models to predict premature mortality using 60
baseline variables among nearly 0.5 million participants, and the models reached an AUC of 0.751 (95 % CI 0.748-0.767), 0.783 (95 %
CI 0.776-0.791) and 0.790 (95 % CI 0.783-0.797) respectively. Machine learning models theoretically have higher discrimination
ability compared with traditional regression models because they could reflect complex relationships between different variables. In
another retrospective cohort study [15] of 6520 patients, EuroSCORE II, traditional regression models, and machine learning clas-
sifiers were used to predict the in-hospital mortality after elective cardiac surgery: the machine learning model reached an AUC of
0.795 (95 % CI 0.755-0.834), which was significantly higher than the EuroSCORE II (AUC = 0.737, 95 % CI 0.691-0.783) or
traditional regression model (AUC = 0.742, 95 % CI 0.698-0.785). However, using a single machine learning algorithm may suffer
from limitations such as uncertainty. In the current study, instead of using single machine learning models, we applied stacked
ensemble models, which fused the results of all five machine learning algorithms (base learner), and improved the model performance



Table 2

Performance of different models for predict all-cause mortality.

Model All features LASSO features
accuracy sensitivity specificity Brier score AUCI[95 % CI] accuracy sensitivity specificity Brier score AUC[95 % CI]
Derivation cohort
LR 0.774 0.678 0.779 0.171 0.818[0.783-0.854]* 0.769 0.72 0.772 0.164 0.814[0.776-0.852]**
RF 0.828 0.587 0.839 0.179 0.81[0.777-0.844] 0.796 0.629 0.803 0.195 0.807[0.773-0.842]
SVM 0.765 0.727 0.766 0.039 0.815[0.777-0.852] 0.765 0.72 0.767 0.039 0.817[0.779-0.854]
lightGBM 0.807 0.601 0.816 0.148 0.798[0.761-0.834]** 0.782 0.657 0.788 0.168 0.816[0.783-0.849]
ET 0.772 0.713 0.774 0.208 0.811[0.775-0.848] 0.775 0.72 0.778 0.204 0.817[0.782-0.851]
Fusion model 0.769 0.699 0.773 0.17 0.826[0.792-0.859] 0.764 0.713 0.767 0.17 0.824[0.788-0.86]
Validation cohort
LR 0.784 0.667 0.787 0.171 0.794[0.734-0.854] 0.782 0.698 0.785 0.164 0.801[0.74-0.861]
RF 0.83 0.619 0.835 0.178 0.782[0.72-0.844] 0.803 0.651 0.807 0.192 0.784[0.724-0.844]
SVM 0.771 0.698 0.773 0.026 0.798[0.738-0.858] 0.773 0.714 0.775 0.026 0.809[0.752-0.867]
lightGBM 0.823 0.667 0.827 0.135 0.778[0.71-0.845] 0.77 0.73 0.771 0.176 0.782[0.717-0.847]*
ET 0.791 0.651 0.794 0.206 0.781[0.717-0.846] 0.778 0.651 0.781 0.204 0.782[0.723-0.842]
Fusion model 0.788 0.746 0.789 0.168 0.803[0.743-0.864] 0.778 0.714 0.78 0.169 0.807[0.749-0.866]

RF: Random forest, LR: Logistic regression, SVM: Support vector machine, LightGBM: Light gradient boosting machine, ET: Extra trees.
*P < 0.05,**P < 0.01,***P < 0.001 for difference of AUCs between fusion model and base models.
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Table 3
Performance of different models for predict premature all-cause mortality.
Model All features LASSO features
accuracy sensitivity specificity Brier score AUC[95 % CI] accuracy sensitivity specificity Brier score AUC[95 % CI]
Derivation cohort
LR 0.756 0.647 0.759 0.187 0.772[0.724-0.819] 0.755 0.612 0.759 0.19 0.77[0.722-0.818]
RF 0.766 0.624 0.771 0.229 0.758[0.704-0.813] 0.75 0.624 0.754 0.204 0.749[0.698-0.801]
SVM 0.732 0.647 0.735 0.027 0.749[0.692-0.806] 0.734 0.6 0.738 0.027 0.758[0.707-0.809]
lightGBM 0.77 0.576 0.776 0.183 0.747[0.695-0.798]* 0.77 0.576 0.776 0.184 0.746[0.695-0.7981*
ET 0.728 0.482 0.736 0.21 0.698[0.643-0.754]*** 0.758 0.553 0.764 0.238 0.728[0.673-0.783]**
Fusion model 0.72 0.682 0.721 0.196 0.773[0.725-0.821] 0.734 0.647 0.737 0.193 0.771[0.724-0.819]
Validation cohort
LR 0.765 0.717 0.766 0.187 0.786[0.713-0.859] 0.765 0.739 0.766 0.189 0.778[0.703-0.854]
RF 0.762 0.587 0.765 0.23 0.764[0.694-0.834] 0.787 0.565 0.792 0.197 0.755[0.679-0.83]
SVM 0.711 0.717 0.711 0.019 0.788[0.719-0.857] 0.753 0.717 0.753 0.019 0.773[0.694-0.853]
lightGBM 0.627 0.783 0.624 0.233 0.75[0.671-0.829]* 0.688 0.696 0.688 0.212 0.739[0.656-0.821]*
ET 0.7 0.674 0.701 0.213 0.756[0.685-0.828] 0.764 0.565 0.768 0.238 0.738[0.659-0.816]
Fusion model 0.719 0.783 0.718 0.2 0.791[0.719-0.863] 0.744 0.761 0.743 0.191 0.781[0.706-0.856]

RF: Random forest, LR: Logistic regression, SVM: Support vector machine, LightGBM: Light gradient boosting machine, ET: Extra trees.
*P < 0.05,**P < 0.01,***P < 0.001 for difference of AUCs between fusion model and base models.
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Fig. 2. SHAP plot of the stacked ensemble model for predicting all-cause mortality (A) and premature all-cause mortality (B).

In dot plot, the dot colors indicates values of predictor: red represents a larger value, and blue represents a smaller value. A negative SHAP value
represents a reduced risk of death, while a positive SHAP value represents a increased risk of death. In bar plot, each bar signifies the importance of
the respective variable.

even higher.

In a study included 13,611 adults aged 52 or older from the National Health and Retirement Study [16], Cox regression and
machine learning models were performed to identify the most important risk factors of mortality over a 6-year follow-up period.
Smoking, alcohol and lack of physical activity were found to be the strongest predictors of mortality among older American adults.
What’s more, in the study [8] using UK Biobank data, the authors explored the sex-specific associations of 655 variables (de-
mographics, disease history, health indicators and lifestyle) with the risk of 5-year all-cause mortality, and found that self-reported
health status was most closely associated with all-cause mortality in men and a former cancer diagnosis was most closely associ-
ated with all-cause mortality in women. Moreover, in a study [44] using data from CHARLS, plasma Cystatin C and hsCRP were found
to be independent indicators for all-cause mortality. We found that age, sex, self-reported health, activities of daily living, cognitive
function, ever smoker, levels of SBP, Cystatin C and LDL-C were associated with the risk of mortality, which is to some extent consistent
with previous findings.

The SHAP method can also identify the nonlinear relationship between exposure and outcome variables. We observed a U-shaped
association between cholesterol level (LDL-C, HDL-C, TG and TC) and all-cause mortality. A recent study [45] with 108,243 Danish
general population using Cox regression model also suggested that low and high levels of LDL-C were associated with higher risk of
death. Another systematic review [46] including 30 cohorts with 68,094 elderly adults showed that lower LDL-C was associated with
all-cause mortality, particularly for individuals aged 60 years or older. Consistent with previous research [47,48], our study observed a
J-shaped association of SBP and DBP with mortality risk. What’s more, we have obtained a stronger association between mortality and
low weight, waist, and BMI, especially for the elderly population. Previous observational research have also reported death risk of
weight loss for elderly adults [49,50]. In the current study, Cystatin C contributed the most to mortality prediction among all
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Fig. 3. SHAP dependence plot of biomarker and physical examination indicators of the RF model for predicting all-cause mortality.
The dot colors indicates values of predictor: red represents a larger value, and blue represents a smaller value. A negative SHAP value represents a
reduced risk of death, while a positive SHAP value represents a increased risk of death.

biomarkers, particularly for elderly individuals. This association has been observed in another study using HRS cohort [51].

By incorporating diverse base models that capture different aspects of mortality risk, the ensemble method can better account for
the complexity and variability present in data [52]. In our findings, although the stacking ensemble model exhibited a modest
enhancement in discriminative ability compared to the base model, a slight enhancement in the predictive model’s discriminative
ability within a large-scale population can yield substantial advantages in risk stratification. In contrast, a simple algorithm for
mortality prediction was well-suited for areas with limited clinical data and low-resource settings due to its ease of use and under-
standing. Furthermore, explainable techniques, such as SHAP method, can provide clinicians with transparent insights by identifying
significant variables related to death and complex relationships between variables.

The current study has a few limitations that should be noted. First, some risk factors including disease history or general health
indicators were based on self-reported. In addition, some potential predictors such as dietary patterns or physical activity level were
not included. Second, participants who did not provide fasting blood samples at baseline were excluded. However, it is unlikely that
these missingness were differential. Third, due to the absence of specific data on the time of death within the cohort, we were unable to
accurately estimate the participants’ survival time or further construct time-to-event prediction models. Fourth, modeling and vali-
dation were conducted using CHARLS data, without external database validation. However, we utilized participants newly enrolled in
2015 for external validation, which differ from the baseline population in 2011. Future studies regarding Al application tool can be
developed to promote clinical utility.

However, there are some strengths as well. One important advance of our study was that the data were from a well-conducted
cohort with a relatively large sample size, providing a representative sample of general Chinese populations. Second, the current
study developed stacked ensemble models for predicting all-cause and premature death. We observed a relatively high AUC and
showed that the ensemble model performed better than single machine learning models. Third, unlike previous prediction models that
mainly focused on explaining the importance of predictors, this study performed a comprehensive interpretation of the machine
learning models based on complex feature contributions.
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5. Conclusion

Based on a nationwide cohort of Chinese adults, we successfully constructed machine learning models to predict all-cause and
premature mortality using basic demographics, physical examinations, lifestyle, comorbidity and biomarkers. We analyzed and
identified important risk factors of mortality using the SHAP method. The current study showed the feasibility, practicability, and the

advantages of applying ensemble models in constructing prediction models. Future studies that utilize trajectories of important
mortality predictors may further improve the model performance.
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