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Abstract

Background: The problem of prostate cancer progression to androgen independence has been extensively studied. Several
studies systematically analyzed gene expression profiles in the context of biological networks and pathways, uncovering
novel aspects of prostate cancer. Despite significant research efforts, the mechanisms underlying tumor progression are
poorly understood. We applied a novel approach to reconstruct system-wide molecular events following stimulation of
LNCaP prostate cancer cells with synthetic androgen and to identify potential mechanisms of androgen-independent
progression of prostate cancer.

Methodology/Principal Findings: We have performed concurrent measurements of gene expression and protein levels
following the treatment using microarrays and iTRAQ proteomics. Sets of up-regulated genes and proteins were analyzed
using our novel concept of ‘‘topological significance’’. This method combines high-throughput molecular data with the
global network of protein interactions to identify nodes which occupy significant network positions with respect to
differentially expressed genes or proteins. Our analysis identified the network of growth factor regulation of cell cycle as the
main response module for androgen treatment in LNCap cells. We show that the majority of signaling nodes in this network
occupy significant positions with respect to the observed gene expression and proteomic profiles elicited by androgen
stimulus. Our results further indicate that growth factor signaling probably represents a ‘‘second phase’’ response, not
directly dependent on the initial androgen stimulus.

Conclusions/Significance: We conclude that in prostate cancer cells the proliferative signals are likely to be transmitted
from multiple growth factor receptors by a multitude of signaling pathways converging on several key regulators of cell
proliferation such as c-Myc, Cyclin D and CREB1. Moreover, these pathways are not isolated but constitute an
interconnected network module containing many alternative routes from inputs to outputs. If the whole network is
involved, a precisely formulated combination therapy may be required to fight the tumor growth effectively.
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Introduction

Prostate cancer is one of the most commonly diagnosed cancers

and the second leading cause of cancer-related death in North

American men [1]. While androgen withdrawal therapy is often

effective initially, most cases progress to the much more aggressive

androgen-independent phenotype. Despite significant research

efforts, the mechanisms underlying tumor progression are poorly

understood. Roles for several signaling pathways have been

established, but not a systemic picture. For example, IGF signaling

has been implicated in the progression from androgen-dependent to

androgen-independent states [2], but also has been shown to suppress

AR trans-activation via FoxO1 and thus have inhibitory effects on the

growth of prostate cancer cells [3], EGF was reported to mimic effects

of androgen on the gene expression and independently stimulate

growth of androgen-dependent prostate cancer cells [4]. Other

studies have produced evidence of interplay between androgen

signaling and TGF-beta [5],[6], FGF [7],[8] and VEGF [9].

Most of the research cited above has been hypothesis-driven

rather than data-driven. Hypothesis formulation is susceptible to

bias due to investigators’ preferences and current research trends

about what is perceived as ‘‘interesting’’. A complementary data-
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driven approach using high-throughput molecular profiling and

advanced data analysis algorithms could enhance understanding of

the many cellular processes that underlie progression of prostate

cancer to the androgen-independent stage and could pave the way

to new therapies and to achieve greater efficacy from better

directed use of existing therapies.

Genome-wide expression profiling haven been widely

applied to complex diseases, including prostate cancer

[4],[10],[11],[12],[13],[14]. Several recent studies also systemat-

ically analyzed gene expression profiles in the context of biological

networks and pathways, uncovering novel aspects of prostate

cancer [15],[16],[17]. Despite this progress, truly systemic analysis

which would take into account both gene expression and

proteomic data from the same sample remains an elusive goal.

A critical challenge is to perform robust integrated analysis of the

datasets produced by so different molecular platforms. This is a

hard informatics problem because microarray and proteomics

data could not, in most cases, be directly compared to each other.

For example, studies in yeast have shown that correlation between

levels of mRNA and corresponding proteins were insufficient to

make reliable predictions about protein levels from gene

expression data [18]. A recent study of prostate cancer specimens

showed concordance between proteomic and genomic data

ranging from 46% to 68% based on the ‘‘absent/present’’ calls;

however, correlations were low when actual levels of expression

were compared [19]. As shown in a recent work [20], much more

extensive quantitative protein characterization leads to significant

improvement in correlation between levels of protein and gene

expression. Still, there are multiple intrinsic sources of the

discordance, including mRNA degradation, alternative splicing,

translational regulation, post-translational modifications, and

protein degradation [21]. These cannot be overcome by

technology improvements alone and have to be addressed by

new analytical approaches to data integration. Earlier efforts in

this area utilized pre-defined sets of genes (pathways, Gene

Ontology categories) to look for concordance between proteomic

and genomic data on this level [22],[23].

Recently we have developed a new computational methodology

which may help to advance integrated analysis of multiple types of

data one step further [24]. Our approach combines disease- or

condition-specific, high-throughput molecular data with the global

network of protein interactions to identify nodes which occupy

significant network positions with respect to differentially

expressed genes or proteins in the presented molecular datasets.

Even when there is significant noise and discordance in the data

itself, predictions of the algorithm are likely to converge on a

common set of signaling proteins in the pathways responsible for

changes in the expression of target genes and proteins. Often the

activity of such signaling proteins is modified by subtle post-

translational modifications, binding to second messengers, or

recruitment to a particular sub-cellular locale. These events are

not explicitly reflected in corresponding molecular profiles; thus,

they remain ‘‘hidden’’ from the standard molecular assays. Our

methodology is able to find many such ‘‘hidden’’ proteins by

identifying sets of their likely downstream targets and assessing

enrichment of such sets by differentially expressed genes or

proteins. We call this procedure ‘‘topological scoring’’ (refer to

‘‘Methods’’ section for more details).

In our earlier work this method was tested on a set of microarray

gene expression data from psoriatic patients where it was able to

correctly identify many key regulatory proteins whose relation to the

disease is confirmed by independent studies [24]. In the present study

we have applied the topological scoring approach to investigate the

response of LNCap prostate cancer cells to treatment with synthetic

androgen (R1881), as a well-studied model system for prostate cancer

progression. We took a data-driven approach, without having any

preconceived hypothesis regarding cellular processes activated by

androgen in these cells. We have collected and analyzed both gene

expression and proteomic data in order to cross-validate predictions

based on different types of data and evaluate the utility of this

approach to integrative data analysis.

Results

Genes and proteins affected by androgen treatment
identified by microarray and protein mass-spectrometry

In order to interrogate the role of androgen in prostate cancer,

the androgen-responsive prostate cancer cell line LNCaP was

treated with synthetic androgen R1881 (see ‘‘Methods’’ section for

details). LNCaP cells treated with androgen showed increased cell

proliferation whereas the control cells stopped growing in the

androgen depleted medium. Using statistical analysis of gene

expression data we have identified 347 and 257 genes that were

up- and down-regulated, respectively, in treated vs. untreated cells

(FDR#1%) (Table S1). The up-regulated genes included known

androgen-induced genes such as Kallikrein 3 (KLK3; a.k.a. PSA),

FK506 binding protein 5 (FKBP5), N-myc downstream regulated

1 (NDRG1) and fatty acid synthase (FASN). Using iTRAQ 2DLC-

MS/MS-based proteomic profiling of androgen-treated vs.

untreated LNCap cells, we have identified 70 and 39 proteins

that were elevated or down-regulated, respectively, in treated cells

compared to untreated cells (Table S1) (Details of the mass

spectrometry and statistical analyses are described in [25]). The

androgen-regulated protein data set included gene products for the

known up-regulated genes mentioned above, as well as several

other proteins previously known and unknown to be regulated by

androgen. Sets of up-regulated genes and proteins have 13

common members which is ,17% of the smaller set. For down-

regulated genes and proteins the level of concordance is ,8%.

Topologically significant nodes in the global signaling
network

In order to investigate putative signaling mechanisms which

activate gene and protein expression after androgen stimulation, we

have applied our recently developed technique of topological

significance analysis [24]. We submitted the lists of up-regulated

genes and proteins to the on-line version of our topological

scoring tool (http://topology.genego.com/zcgi/topology_scoring.

cgi) to identify key regulatory proteins whose activity in treated cells

might have accounted for changes in gene and protein levels. Gene

expression and proteomic data were submitted to the scoring

procedure separately, resulting in two sets of topologically significant

regulatory proteins. Each node in the global network of protein

interactions was assigned topological scores (topological p-values) with

respect to each set of molecular data. To control the false discovery

rate (FDR) the significance level filter was applied. Using FDR#5%

we identified 962 topologically significant proteins from gene

expression data and 577 topologically significant proteins from

proteomic data (Table S2). Interestingly, the two sets of topologically

significant proteins contain 301 common elements (or 52% of the

smaller set).This result is in stark contrast with only 17% overlap

between lists of up-regulated genes and up-regulated proteins.

Growth factor signaling network is highly implicated in
androgen response

For functional analysis, both sets of the topologically significant

proteins were loaded into the MetaCoreTM software package

Networks in Prostate Cancer
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(GeneGo, Inc.) where we calculated enrichment in the ontology of

functional processes as defined by ‘‘GeneGo process networks’’.

We used all proteins in the MetaCore network (‘‘default’’ setting)

as the reference list for calculating enrichment p-values. As would

be expected, the top-scoring process is ‘‘Androgen receptor

nuclear signaling’’ (Figure 1a). Surprisingly, however, this process

is highly enriched only in proteins whose topological scores are

derived from the gene expression profile; 82 of 126 nodes in this

process network are deemed significant with respect to over-

expressed genes. In contrast, only 19 nodes are deemed significant

with respect to up-regulated proteins from the iTRAQ dataset.

The next highly enriched process network is ‘‘Growth factor

regulation of cell cycle’’. Unlike androgen signaling, this network is

highly enriched in proteins that are topologically significant for

both gene expression and proteomic data. Of 186 nodes in this

network, 95 are highly scored with respect to over-expressed genes

while 63 are highly scored with respect to iTRAQ-identified

proteins up-regulated after androgen treatment. In combination,

49 nodes are confirmed as topologically significant from both sets

of molecular data. Close examination of this process reveals that

topologically significant proteins are present on all levels of

signaling hierarchy, including several Growth factors (EGF, FGF,

VEGF-A), receptors (IGFR, EGFR, ActRIIB, VEGFR-2), signal-

ing kinases (AKT, GSK3, PI3K, JNK, ERK1/2, PKC),

Figure 1. Functional analysis of topologically significant proteins. (A) Enrichment of GeneGo process networks by topologically
significant proteins identified using all up-regulated genes and proteins. (B) Enrichment of GeneGo process networks by topologically significant
proteins identified using truncated sets of data (excluding genes and proteins directly regulated by androgen receptor). Orange bars–
enrichment by significant proteins identified using proteomics data set. Blue bars–enrichment by significant proteins identified using gene
expression data.
doi:10.1371/journal.pone.0010936.g001

Networks in Prostate Cancer
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transcription factors (c-Myc, IRF1, Tcf(Lef), SMAD3, SMAD4,

STAT1, STAT3) and, finally, cyclin kinases (Cyclin D, Cyclin E)

that directly regulate cell cycle (Figure 2). Importantly, topological

significance of many of these proteins was confirmed for both

datasets. For comparison we have also performed pathway

enrichment analysis of the original sets of up-regulated genes

and proteins. Interestingly, the majority of identified pathway

maps for both gene expression and proteomics sets are related to

metabolic processes, most of them to fatty acid metabolism (Table

S3). Additionally, several signaling pathways are revealed by this

analysis, notably Growth factor signaling via MAPK and PIK3,

regulation of lipid metabolism and one pathway map related to

cell cycle. However, none of the signaling pathways is very highly

ranked and overall significance of the enrichment is low compared

to the results obtained for proteins identified by topological

scoring. Enrichment of GeneGo networks by up-regulated

proteins does reveal Androgen signaling network, but it is also at

the bottom of the list (p = 0.007). Except for the insulin signaling

there seem to be no consistency between networks enriched in up-

regulated genes and up-regulated proteins. Overall it appears that

functional analysis of differentially expressed genes and proteins

tends to identify core target pathways, such as metabolism, while

the anaylysis of topologically significant proteins reveals key

signaling processed activated in androgen-stimulated cells.

In order to investigate whether significant differences in sizes of

the sets used in our analysis could have affected the results we

randomly sampled the pool of genes and proteins and added them

to the differentially expressed sets. This step was followed by

enrichment analysis of the extended sets. However, the results

show that no new maps or networks become significant for larger

sets and moreover, significance of previously identified maps and

networks steadily declines as more random genes are added. (See

Table S4).

Delineating androgen-dependent and androgen-
independent activity

The results presented above suggest that a majority of proteins

in the signaling network connecting multiple growth factors to

regulation of cell cycle may become active after androgen

stimulation. The resulting activation of cell proliferation could

become a key contributing mechanism for the switch to androgen

independence in prostate cancer. To further verify this conjecture

we need to investigate whether or not this result depends on the

direct activity of androgen receptor. Thus, our next step was to

delineate signaling effects that are independent of direct activation

of androgen receptor.

First, we used MetaCoreTM to identify which of the over-

expressed genes and up-regulated proteins are direct targets of

transcriptional regulation by androgen receptor. To this end we

built the ‘‘nearest neighbors’’ network around androgen receptor

with the interaction filter in MetaCore set to allow only

‘‘transcriptional regulation’’ type of links. Lists of up-regulated

genes and proteins were mapped onto the resulting network. Using

this network we further selected nodes that are both: ‘‘down-

stream’’ of androgen receptor and have experimental data

associated with them. We found 45 direct targets of androgen

Figure 2. Growth factor regulation of the G1-S transition in cell cycle. Red dots indicate proteins identified as topologically significant using
the gene expression profile. Blue dots indicate proteins identified as topologically significant using the proteomics profile. Red boxes–proteins
identified as topologically significant from both sets of data.
doi:10.1371/journal.pone.0010936.g002

Networks in Prostate Cancer

PLoS ONE | www.plosone.org 4 June 2010 | Volume 5 | Issue 6 | e10936



receptor among over-expressed genes and 9 targets among the set

of up-regulated proteins. These molecules were excluded from the

original lists and truncated sets were re-analyzed with the

topological significance tool with subsequent functional analysis

of topologically scored nodes in MetaCoreTM. We identified 565

significant proteins on the basis of iTRAQ data and 668 significant

proteins on the basis of gene expression dataset (with FDR,5%,

Table S5). One observation immediately noticeable from the

examination of the enrichment diagram is the absence of the

androgen signaling network (Figure 1b). This absence confirms

that many proteins in the androgen pathway received high

topological scores on the strength of over-expression of a large

number of direct targets of androgen receptor. Once these targets

are eliminated from consideration, scores for proteins in the

androgen-regulated pathway dropped below significance level. In

contrast, high enrichment for the network of growth factor

regulation of cell cycle remained virtually intact. While number of

nodes on this network scored on the basis of microarray data

decreased from 95 to 78, the number of nodes scored based on

iTRAQ data increased from 63 to 71. The overlap between the

two sets of significant proteins also increased to 54 (or 76% of the

smaller set). This finding supports the suggestion that activity of

this pathway is independent of direct androgen action and may

represent important mechanisms for the switch to androgen-

independent proliferation in prostate cancer.

Top-ranked regulatory proteins and their pathways
Next we examined the top-ranked molecules in the sets of

topologically scored proteins. Our goal was to determine specific

transcription factors which drive gene expression response after

androgen treatment and identify regulatory cascades that activate

them. There are several transcription factors that can regulate

expression of significant numbers of ‘‘targets’’ among over-

expressed genes or up-regulated proteins or both (Table 1). For

example c-Myc has 25 targets among 70 up-regulated proteins

identified by iTRAQ and 63 targets among 347 over-expressed

genes identified by microarray analysis. c-Myc is ranked #1 in

topological scoring based on iTRAQ data and #11 in the scoring

based on gene expression (still in the top 2%). Other transcription

factors that received high topological scores with respect to both

datasets are SREBP1 and YY1, which are important regulators of

enzymes involved in lipid and fatty acids metabolism. In contrast,

CREB1 and ATF-4 are the top-scoring transcriptional regulators

with respect to microarray data but they do not receive any score

based on the iTRAQ data. The reason for such discrepancy is lack

of significant number of CREB1 and ATF-4 targets among up-

regulated proteins identified by mass-spectrometry (Table 1). This

may indicate activity of some posttranscriptional processes

blocking synthesis or inducing degradation of these proteins at

the time of sampling. While transcription factors often receive high

topological scoring due to the significant number of their direct

targets in the experimental datasets, the upstream signaling

molecules are scored based on the enrichment of sets of their

‘‘remote targets’’–genes and proteins a few steps downstream on

signaling pathways.

Examination of individual signaling cascades leading to the top

transcriptional regulators reveals that PI3K signaling is supported

by consistently high topological scores derived from both

proteomics and microarray datasets. Figure 3 shows this cascade

in the context of IGF signaling. The PI3K cascade is highlighted

by the red line, while all of its elements that achieve high

topological scores with respect to both sets are marked by red

boxes. Such consistent scoring suggests the central role of this

pathway in regulating events that follow androgen treatment. Most

likely, its role in this system is inhibition of GSK3 kinase and its

ability to phosphorylate c-Myc and cyclin D (Fig. 3). Normally

such phosphorylation would target these molecules for proteolysis,

thus limiting cell proliferation. In this situation, however, c-Myc

appears to be persistently activated judging by the high number of

its direct targets present in both sets. One likely reason for the

persistent activity of PI3K signaling is homozygous mutation of

PTEN in LNCaP cells leading to the lack of its expression in this

system [26]. This effect may be exacerbated by the combination of

high level of Kallikrein 3, over-expression of IGF receptor, and

under-expression of IGF-binding proteins (IBPs). Kallikrein 3 (also

known as PSA) is highly up-regulated in prostate cancer and is

consistently over-expressed on both mRNA and protein levels in

our experimental data. It was previously shown that PSA has

proteolytic potential with respect to IGF-binding proteins

[27],[28]. Moreover, it was suggested that this might be a

mechanism by which bioavailability of IGF is increased,

contributing to the growth of prostate cancer cells [29],[30].

In our analysis we have obtained several additional pieces of

evidence to support this hypothesis. First, IGF-binding proteins

received high topological scores based on both microarray and

iTRAQ data. This result confirms that they are highly relevant to

observed changes in gene and protein expression following

androgen treatment of LNCap cells. Second, upon androgen

treatment we found that expression levels of at least one of the

IGF-binding proteins (IBP3) and of IGF receptor shift in opposite

Table 1. Scoring of transcriptional regulators with significant number of direct targets among up-regulated genes and proteins.

Transcription factor iTRAQ data set Affymetrix dataset

# of direct
targets in dataset Scoring percentile

# of direct targets
in dataset Scoring percentile

c-Myc 25 99.9 63 98.6

ATF4 0 Un-scored 10 99.6

CREB1 2 Un-scored 37 99.8

P53 5 Un-scored 37 Un-scored

SREBP1 8 78.0 14 99.3

SP1 15 Un-scored 64 Un-scored

Ikaros 4 93.0 2 Un-scored

YY1 6 95.8 7 90.0

doi:10.1371/journal.pone.0010936.t001

Networks in Prostate Cancer
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directions. IBP3 is 30% under-expressed in treated cells, while

IGF-receptor is 46% over-expressed. Down-regulation of IBP3 on

the genomic level in addition to proteolytic activity of PSA would

contribute to lower concentration of IBP3 protein and increased

availability of IGF. The resulting higher level of IGF is matched by

over-expression of its receptor, leading to high activity of

downstream pathways.

Discussion

Growth factor network as the main response module to
androgen stimulation in LNCap cells

Our topological analysis identified the network of growth factor

regulation of cell cycle as the main response module for androgen

treatment in LNCap cells. As described in the introduction,

different aspects of growth factor signaling have been extensively

investigated in the context of the prostate cancer switch to

androgen-independent mode. Our results support these earlier

observations from a complementary systems-level, data-driven

perspective. Instead of focusing on activity of individual proteins,

we show that the majority of signaling nodes in the network

connecting multiple growth factors to key regulators of cell cycle

occupy significant positions with respect to the observed gene

expression and proteomic profiles elicited by androgen stimulus.

This network contains multiple conventional ‘‘pathways’’ trans-

mitting signals from growth factor receptors. These include

signaling via MAP kinases, PI3K pathway and signaling via

SMADs and cross-talk among these systems. Thus it is reasonable

to conclude that in prostate cancer cells the proliferative signals are

transmitted from growth factor receptors by a multitude of

signaling pathways converging on several key regulators of cell

proliferation such as c-Myc, Cyclin D and CREB1. Moreover,

these pathways are not isolated but constitute an interconnected

network module containing many alternative routes from inputs to

outputs.

Our results further indicate that growth factor signaling

probably represents a ‘‘second phase’’ cell response to androgen

stimulus. When all direct targets of androgen receptor are

removed from consideration, most proteins in the growth factor

network are still highly scored with respect to the remaining sets of

Figure 3. Map for IGF signaling showing topologically significant genes identified from using ‘‘truncated’’ sets of Affymetrix and
iTRAQ data. Red level in the ‘‘thermometers’’ represents relative rank (percentile) of a protein in the corresponding list of topologically significant
proteins. The number identifies the dataset from which significance was calculated: 1-iTRAQ, 2-Affymetrix. Red boxes and highlighted path illustrate
signaling cascade with strongest support from both sets.
doi:10.1371/journal.pone.0010936.g003

Networks in Prostate Cancer
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over-expressed genes and proteins. This response might be

mediated by combined effects of high levels of PSA and growth

factor receptors and low levels of growth factor inhibitors, such as

IGF-binding proteins (IBPs) (Fig. 3). Proteolytic action of PSA may

further contribute to the lowering of IBPs levels. At the same time,

PSA expression can be sustained independently of androgen

receptor by CREB1 and some other transcription factors [31].

When these factors are activated via growth factor signaling

pathways, a positive feedback loop arises that can sustain high

levels of PSA and cell proliferation even in the absence of activated

androgen receptor. We have noted that CREB1 is ranked #1 in

topological scoring of gene expression data, implying that it is

highly active in this system.

Although further experimental work, such as siRNA studies is

needed to confirm these inferences, if proved correct they may lead us

to reconsider our approach to finding targeted therapies for prostate

cancer. Biological networks are robust in a sense that there are many

alternative ways to transmit a molecular signal from one point to

another. Given high mutation rates of genes in cancer cells, it is likely

that, even if we block a certain cascade with a targeted drug, there will

be at least a sub-population of cells in a tumor which could

circumvent such a block by using an alternative signaling route. If the

whole network is involved, a precisely formulated combination

therapy will be required to fight the tumor growth effectively.

Moreover, such combination therapies might have to be specific for a

small subpopulation of patients or even individual patients given

patient-specific properties of oncogenic networks.

Dynamic nature of cellular responses and integration of
data generated by different technologies

In this study, concurrent measurements of gene expression and

protein levels following the treatment with synthetic androgen were

performed, and hundreds of genes and dozens of proteins whose

levels increased following the stimulus were indentified. However,

there is only modest overlap (about 17%) observed between the sets of

up-regulated genes and proteins. While initially this sounds

surprising, this result should be expected. Cells are complex dynamic

systems in which processes occur on multiple time scales. When we

assay a biological sample we are taking a static snapshot of this

dynamic behavior. For example levels of mRNA may increase after

20–60 min following the treatment but the protein synthesis could be

further delayed, and statistically significant change in protein

concentrations will take much longer to develop and have smaller

ratios. By the time proteins are synthesized some mRNA could be

degraded, leaving no trace of gene over-expression. Thus, when

studying microarray or proteomic data, we are dealing with

fragmented traces of activity that are left behind by transient

dynamic processes on different levels of cellular machinery. Even in

the experiments where samples are assayed at several different time-

points we are still looking at a small collection of individual snapshots

rather than the full picture of cellular dynamics.

Here we used the concept of topological significance to

reconstruct upstream pathways that might have resulted in these

traces of dynamic activity which we detected as observable

molecular profiles. The results indicate that this approach was

successful in predicting key regulatory proteins and pathways such

as androgen signaling, growth factor signaling and regulation of

cell cycle that mediate responses of LNCap cells to treatment with

synthetic androgen (R1881). Most importantly, we have discov-

ered that the degree of overlap between sets of regulatory proteins

predicted from gene expression and proteomic data is much

higher than the overlap between the experimental sets themselves

(52% vs. 17%). Moreover, for the growth factor regulation of the

cell cycle which appears to be a key process in this system, the

overlap reaches 76%. This provides a good indication that

predictions converge on the same set of regulatory proteins despite

significant paucity in the experimental data. Taken together, these

observations show that our approach could be instrumental in

translating high-throughput datasets generated by vastly different

technologies into consistent predictions of activity of underlying

signaling pathways and key regulatory proteins.

Methods

Cell culture and androgen treatment
Detailed procedures of cell culture and androgen treatment are

described in the recent PLoS publication [25]. Briefly, LNCaP

(ATCC number: CRL-1740TM) cells were grown in RPMI 1640

medium (Invitrogen, Carlsbad, CA) supplemented with 10% fetal

bovine serum under 5% CO2 and 90% humidity. At 70%

confluence, the cells were subjected to androgen deprivation in

phenol red-free RPMI 1640 medium supplemented with charcoal-

stripped fetal bovine serum. After two days, androgen (R1881) was

added at 1 nm final concentration for 48 hrs. The control cells

were treated with corresponding amount of ethanol used to

dissolve androgen.

RNA Isolation and Microarray Analysis
Total RNA isolation was performed using TRIZOL reagent as per

the manufacturer’s instructions (Invitrogen) [25]. Control and

androgen treated cells were washed with PBS (phosphate buffered

saline) and scraped in TRIZOL reagent. 250 ml of chloroform was

added to 1 ml of sample and mixed by inversion. The sample was

centrifuged at 13,000 rpm for 15 min at 4uC. 500 ml of isopropyl

alcohol was added to supernatant and centrifuged at 13,000 rpm for

15 min at 4uC. The resulting pellet was washed with 70% ethanol,

and centrifuged at 13,000 rpm for 10 minutes at 4uC. The RNA

pellet was dried and purified using RNeasy mini kit (QIAGEN Inc.,

Valencia, CA). The amount and integrity of purified RNA was

checked by NanoDrop ND-1000 Spectrophotometer (NanoDrop

Technologies, Wilmington, DE) and Agilent Bioanalyzer (Agilent

Technologies). RNAs isolated from three biological replicates were

used for microarray analysis performed on Affymetrix U133 Plus 2.0

arrays (Affymetrix, Inc., Santa Clara, CA). Complementary DNA

synthesis, cRNA synthesis, hybridization, washing, and scanning

were done following the manufacturer’s protocols (Affymetrix, Inc.).

Expression values were calculated after normalization of the data

based on previously published procedure [32]. Statistical Q test was

done to calculate false discovery rate (FDR), a FDR#1% was applied

to identify androgen-regulated genes. The data is publicly available at

GEO public repository website (accession number is GSE17044). All

data is MIAME compliant as detailed on the MGED Society website.

Proteomic analysis
Details of the iTRAQ- mass spectrometry and data analysis are

described in detail in [25]. Briefly, a double duplex iTRAQ

experiment was performed using the four-plex iTRAQ reagent

(iTRAQH Reagents Multiplex Kit, Applied Biosystems, Foster

City, CA). Proteins from duplicate sets of androgen-treated and

control cells were isolated using urea-thiourea containing buffer

and equal amounts of proteins were used for labeling by iTRAQ

reagents as per the manufacturer instructions (Applied Biosys-

tems). After labeling, all four samples were combined, and

subjected to two-dimensional fractionation by strong cation

exchange (SCX) and reverse phase liquid chromatography (RP-

LC). The RP-LC fractions were directly plated onto MALDI

plates online by infusing with the MALDI matrix alpha-cyano-4-

hydroxycinnamic acid. Tandem mass spectrometric data were
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acquired using 4800 Proteomics Analyzer -TOF/TOFTM

(Applied Biosystems) linked to 4000 Series Explorer software (v.

3.0). MS/MS spectra were extracted from the raw data in Mascot

Generic File format and converted to mzXML using IP

Framework (www.proteomecommons.org) for SEQUEST search

against Human IPI database version 3.24 appended with an equal

number of decoy sequences. In total, 8580 SEQUEST search

results (all from singly-charged spectra) were obtained and further

processed using PeptideProphet and ProteinProphet, leading to

the identification of 3686 peptides mapping to 904 proteins. Of

these, 3550 peptides were quantified with post-data normalization,

which mapped to 875 proteins. The estimated FDR using target-

decoy strategy was below 0.5%. After a median centered

normalization of peak areas of peptides, relative protein expression

(treated vs. control) ratios were determined for each protein. A

threshold ratio for defining differentially expressed proteins was set

based on control replicate sample; proteins with iTRAQ ratios of

. = 1.2 and , = 0.83 were considered up-regulated and down-

regulated, respectively.

Algorithm for topological scoring of regulatory proteins
The identification of key regulatory proteins was performed using

freely available online tool provided by GeneGo Inc. (http://topology.

genego.com/zcgi/topology_scoring.cgi). The algorithm starts with a

set of differentially expressed genes or proteins derived from biological

samples. Typically these genes or proteins are identified by the

Figure 4. ‘‘Hidden’’ regulatory proteins in signaling pathways. (A) FGFR3 and p90RSK2 in this simple network are not affected on the gene
expression level, therefore remaining ‘‘hidden’’ from a microarray assay. We identify sets of remote targets associated with each of the signaling
molecules and assess their enrichment with differentially expressed genes. Remote targets of FGFR3 and p90RSK2 are proteins within the blue box.
They could be many steps downstream of signaling proteins. Topological significance is assigned to regulatory nodes based on the enrichment of
associated sets of target genes. Red boxes indicate topologically significant nodes in this network. (B) Topological scoring of regulatory nodes in
complex networks with competitive regulation. (See text for details).
doi:10.1371/journal.pone.0010936.g004
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standard statistical analysis of data produced by one of the available

experimental high-throughput techniques. We map such sets of genes

or proteins onto a global database of protein-protein interactions. The

online tool used in this study utilizes GeneGo’s MetaBaseTM

knowledgebase containing approximately 300,000 protein-protein

and protein-small molecule interactions manually extracted from the

literature by expert annotators. The simplified concept of topological

scoring is illustrated in Fig. 4a. This figure shows a signaling cascade

leading from FGFR3 receptor to a handful of target genes

downstream of transcription factor ATF-4. Gene expression data

from the present study are mapped onto this network. Up-regulated

genes are indicated by red circles associated with gene symbols. While

ATF-4 itself is over-expressed, neither the receptor nor the kinase

p90RSK2 which mediates signaling are up-regulated on genomic

level. To identify whether or not signaling proteins occupy

topologically significant positions with respect to up-regulated genes,

we consider network dependency graphs for each of them. Tracing

these graphs downstream to target genes allows us to associate a subset

of downstream targets with each of the signaling molecules. On Fig. 4a

the target genes in the blue box on the right can be associated with

FGFR3 and p90RSK2 as their ‘‘remote targets’’, while for ATF-4

they are direct targets. The final step is to calculate enrichment of

target gene-sets (remote or direct) associated with each regulatory

node with experimental data and determine the statistical significance

of such enrichment. A set of targets enriched in differentially expressed

genes would imply activity of corresponding regulator(s). In our

example, 10 out of 36 target genes are over-expressed, rendering

FGFR3, p90RSK2 and ATF-4 topologically significant. To summa-

rize, the general concept is to use topological properties of the global

protein interaction network to identify non-local regulation patterns

and associate a set of putative targets with each signaling molecule of

interest, then assess expression profiles of these targets and infer

activity of corresponding regulators. Given the role of network

topology in this assessment, we have named this procedure

‘‘topological significance scoring’’.

One caveat regarding the example above is that in real protein

interaction networks the picture is more complicated than simple

tree-like structures like the one shown on Fig. 4a. Most likely one has

to deal with a highly interconnected web of interactions where many

competitive cascades can regulate the same target. Additionally,

dependency graphs for many important signaling proteins are huge,

containing thousands of potential targets. For example, the full

dependency graph of p90RSK2 contains 49 potential ‘‘remote

targets’’ many of which can also be regulated by competitive

pathways. Our algorithm overcomes these issues by considering

overlaps of dependency graphs originating from different regulatory

nodes, thus taking into account competitive regulation of target genes.

The idea is illustrated in Fig. 4b which shows an extended fragment of

dependency graph of p90RSK2. In addition to target genes regulated

via ATF-4 this network contains signaling via transcription factor YB-

1. None of the additional target genes is up-regulated in our dataset.

This significantly reduces the overall enrichment of the whole set of

remote targets of p90RSK2. The solution is to find a subset of targets

within the dependency graph of p90RSK2 that are fairly ‘‘specific’’ to

this kinase, so that the pattern of their expression bears more

relevance to its activation status. To this end we consider alternative

regulators to which some of the downstream nodes could be

attributed. In this example we identify node in this graph are at least

as close or closer to the competitive regulator AKT1 as they are to

p90RSK2. The proximity can be calculated either using simple

network distance metrics (number of steps) or taking into account

additional information such as trust levels of interactions and

knowledge on well established ‘‘canonical’’ pathways. The nodes

that are at least as close to AKT1 are excluded from consideration

and enrichment is calculated for the remaining part of the

dependency graph (At this point the problem is reduced to the

analysis of gene set enrichment and any of the existing methods can

be applied [33],[34],[35]. In our technique this procedure is repeated

for multiple competitive regulators. We select the best score to

characterize protein of interest (p90RSK2 in this example).

Supporting Information

Table S1 The list of up- and down regulated genes and proteins.

We have performed concurrent measurements of gene expression

and protein levels following the treatment of LNCaP prostate

cancer cells with synthetic androgen. Using statistical analysis of

gene expression data we have identified 347 and 257 genes that

were up- and down-regulated, respectively, in treated vs. untreated

cells (FDR,1%). Using iTRAQ 2DLC-MS/MS-based proteomic

profiling of androgen-treated vs. untreated LNCap cells, we have

identified 70 and 39 proteins that were elevated or down-

regulated, respectively, in treated cells compared to untreated cells.

Found at: doi:10.1371/journal.pone.0010936.s001 (0.23 MB

PDF)

Table S2 List of topologically significant genes and proteins

determined from gene expression and proteomics data. The list of

up-regulated genes and proteins were submitted to the scoring

procedure separately, resulting in two sets of topologically

significant regulatory proteins. We identified 962 topologically

significant proteins from gene expression data and 577 topolog-

ically significant proteins from proteomic data (FDR,5%).

Found at: doi:10.1371/journal.pone.0010936.s002 (0.52 MB

PDF)

Table S3 Enrichment analysis of up-regulated genes and

proteins. The list of pathway maps and GeneGo process networks

significantly enriched in up-regulated genes and proteins. An FDR

threshold of 0.05 was used for maps and 0.2 for networks.

Found at: doi:10.1371/journal.pone.0010936.s003 (0.07 MB

PDF)

Table S4 Enrichment analysis of randomly extended up-

regulated genes and proteins. In order to investigate whether

significant differences in sizes of the sets used in our analysis could

have affected the results we randomly sampled the pool of genes

and proteins and added them to the differentially expressed sets.

Found at: doi:10.1371/journal.pone.0010936.s004 (0.07 MB

PDF)

Table S5 List of topologically significant genes and proteins

determined from truncated sets of up-regulated genes and proteins.

We removed the direct targets of androgen receptor from the list of

up-regulated genes and proteins. Direct targets were determined as

those proteins to which androgen receptor has a direct ‘‘transcription

regulation’’ type of interaction. The resulting truncated sets were re-

analyzed with the topological significance tool and 565 significant

proteins and 668 significant genes identified (FDR,5%).

Found at: doi:10.1371/journal.pone.0010936.s005 (0.43 MB

PDF)
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