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ABSTRACT

Single-cell RNA sequencing has enabled researchers
to quantify the transcriptomes of individual cells,
infer cell types and investigate differential expres-
sion among cell types, which will lead to a bet-
ter understanding of the regulatory mechanisms of
cell states. Transcript diversity caused by phenom-
ena such as aberrant splicing events have been
revealed, and differential expression of previously
unannotated transcripts might be overlooked by
annotation-based analyses. Accordingly, we have de-
veloped an approach to discover overlooked differ-
entially expressed (DE) gene regions that comple-
ments annotation-based methods. Our algorithm de-
composes mapped count data matrix for a gene re-
gion using non-negative matrix factorization, quanti-
fies the differential expression level based on the de-
composed matrix, and compares the differential ex-
pression level based on annotation-based approach
to discover previously unannotated DE transcripts.
We performed single-cell RNA sequencing for hu-
man neural stem cells and applied our algorithm to
the dataset. We also applied our algorithm to two
public single-cell RNA sequencing datasets corre-
spond to mouse ES and primitive endoderm cells,
and human preimplantation embryos. As a result, we
discovered several intriguing DE transcripts, includ-

ing a transcript related to the modulation of neural
stem/progenitor cell differentiation.

INTRODUCTION

The advancement of single-cell technology has enabled to
investigate various tissues (1,2) and species (3,4) with single-
cell RNA sequencing (scRNA-seq), which enables compre-
hensive cell typing and the elucidation of cell compositions
and dynamics. In particular, scRNA-seq can reveal the sub-
tle differences among cell states, such as intermediate stages
of differentiation. By investigating differentially expressed
(DE) genes among such cell states, we can elucidate regula-
tory processes including cell fate determination (5). In addi-
tion to traditional gene-level differential expression analy-
ses, various novel analyses have been proposed for scRNA-
seq studies, including the detection of differential distribu-
tions of expression levels (6) and differential splicing (7,8),
isoform-level differential pattern analysis (9), discriminative
learning approach for differential expression analysis (10)
and dynamic prediction through the comparison of spliced
and unspliced mRNAs (11). Thus, the development of var-
ious computational analysis methods that utilize informa-
tion at the single-cell level is essential to advance the current
understanding of RNA biology.

Recent comprehensive analyses of RNA-seq data have re-
vealed the existence of various overlooked transcripts (12).
For example, a comprehensive tumor analysis revealed that
many tumors contain aberrant splicing patterns (neojunc-
tions) that are not detected in normal samples (13). Addi-
tionally, numerous genetic variants are related to aberrant
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splicing associated with certain diseases (14). Therefore, it is
important to detect novel splicing patterns, as well as detect
differential expression of annotated transcripts. The tran-
scriptomes of unstudied cell types, including rare cell types,
can be revealed by scRNA-seq analyses, and we can now
discover such cell type-specific splicing events.

In addition to major types of alternative splicing (AS),
underappreciated classes of AS events, such as retained in-
trons and microexons, are known to have essential roles, for
example, in neuronal development (15). Intron retention,
which is common in tumors, can generate peptides and be
a source of neoepitopes for cancer vaccines, and therefore
the detection of novel intron retention events is medically
important (16). Furthermore, alternative polyadenylation,
which produces isoforms that have 3′-untranslated regions
(UTRs) of different lengths, is also known to be associated
with several biological processes (17).

To reveal such complex AS patterns, several computa-
tional approaches have been developed that can detect pre-
viously unannotated splicing patterns. For example, spliced
aligned reads (exon–exon junction reads) are beneficial in
identifying the spliced mRNA structures (18,19). As an-
other example, non-negative matrix factorization (NMF)
has been used to decompose data into essential patterns and
predict AS patterns from microarray data (20) and RNA-
seq data (21).

In addition to these complex AS patterns, other types of
transcripts, such as antisense transcripts transcribed from
gene regions, are known to be essential regulators of gene
expression (22). In light of such complex transcript struc-
tures, typical differential expression analysis based on previ-
ously annotated transcript structures might overlook some
important DE genes (12). To find DE genes without rely-
ing on existing annotation, distinct approaches have been
proposed that identify DE regions from read coverage data
(23,24).

In single-cell RNA-seq technologies, there are two dif-
ferent trends: one aims to quantify the expression of huge
number of cells to understand cellular composition and
function, and the other aims to quantify the comprehen-
sive gene expression of each cell to deepen our understand-
ing of precise gene expression landscape. In this research,
we used the data of latter scRNA-seq technologies to re-
veal complex transcript structures. Full-length scRNA-seq
data such as Smart-seq (25,26) provide powerful data that
can reveal these structures. Other scRNA-seq protocols,
such as SUPeR-Seq (27), which can capture non-poly(A)
transcripts, will also be useful to detect various overlooked
DE transcripts. In particular, we have developed a single-
cell full-length total RNA-seq (RamDA-seq) method and
have validated that it precisely captures full-length tran-
scripts and also captures various types of RNAs such as
enhancer RNAs (28). By utilizing such scRNA-seq data,
we can perform differential expression analyses between cell
states more precisely.

Accordingly, we have developed an approach to dis-
cover Overlooked Differentially Expressed Gene Regions
(ODEGRs), which is derived from several kinds of tran-
scripts such as novel AS patterns, intron retention and anti-
sense transcripts, to complement the annotation-based dif-
ferential expression analysis of single-cell data (Figure 1).
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Figure 1. Graphical abstract of the overlooked ODEGR. Coverage of
scRNA-seq data and annotated transcripts in the region (A) and previ-
ously unannotated transcripts such as novel alternative splicing patterns,
intron retention and unannotated antisense transcripts (B). Although
annotation-based expression profiling and the following differential ex-
pression analysis is an effective approach to find DE transcripts (C), such
a method might overlook the differential expression of unannotated tran-
scripts (D).

Our approach utilizes the composition of scRNA-seq data,
which contain information from many samples (i.e. cells),
and decomposes the mapped count data for gene regions
using NMF. With NMF, we can computationally extract
reproducible signals corresponding to transcript structures
and their associated expression profiles without relying on
transcript annotations (Figure 2A). In addition, the non-
negative constraint of NMF, which is its principal differ-
ence from other matrix decomposition methods, is effec-
tive in preserving the relation of the magnitude of expres-
sion. Next, we developed the following scores for a gene re-
gion: T±

NMF, T±
TPM, and �TNMF − TPM. T±

NMF represents the
scores that quantify the differential expression levels be-
tween two groups based on the NMF result (Figure 2B),
while T±

TPM represents the scores that quantify the differen-
tial expression levels for annotation-based expression data
(Figure 2C). Thus, �TNMF − TPM represents the score that
quantifies the differential expression that is not detected
in the annotation-based approach (Figure 2D). We inves-
tigated gene regions with high �TNMF − TPM values in order
to discover ODEGRs.

We applied our algorithm to three real datasets: (i) mouse
embryonic stem (ES) cells and primitive endoderm (PrE)
cells, (ii) neural stem cells (NSCs) derived from human in-
duced pluripotent stem (iPS) cells and (iii) human day 3
and day 4 embryonic cells. First, we evaluated whether the
NMF-based approach could quantify and find local DE re-
gions from simulated data. We also evaluated whether it
could detect AS switches within a gene, as determined by
annotation-based analysis. Our algorithm was indeed able



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1 3

Figure 2. Graphical abstract of our algorithm to discover ODEGRs. First, we use NMF to decompose the mapped read count matrix (X) for a gene region
(A), and then use t-statistics to quantify the differential expression level while keeping the positive maximum and negative minimum values (B). We also
quantify the differential expression level using an annotation-based expression profile (in a transcripts per million (TPM) matrix) (C). At last, we quantify
the unexpectedness of differential expression based on the above values (D).

to detect such DE regions without relying on transcript an-
notations. Then, we applied our method to real datasets
to detect ODEGRs and found several intriguing examples.
From the perspective of previous research, our results cor-
respond, for example, to unannotated splicing patterns, an-
tisense transcript and unannotated 3′-UTRs of adjacent
genes. In particular, some ODEGRs are related to criti-
cal regulatory mechanisms such as the modulation of dif-
ferentiation and tissue-specific imprinting. Thus, our novel
differential expression analysis method identified some im-
portant ODEGRs and can complement annotation-based
methods, making it a useful method for analysis in the in-
creasing number of scRNA-seq experiments.

MATERIALS AND METHODS

NMF-based approach for discovering ODEGR

In this research, we focused on detecting DE gene regions
that were overlooked in the differential expression analy-
sis of previously annotated transcripts from mapped read
count data. We divided a gene region into 100-bp bins and
described a read count matrix for a gene region with a C ×
L matrix X, where C is the number of cells and L is the num-
ber of bins (The effect of bin size is shown in Supplemen-
tary Paragraph 2, and our method is robust for bin size). We
investigated the property of X and showed that full-length
scRNA-seq datasets do not contain many missing values
(see Supplementary Paragraph 3). First, we decomposed X
into two non-negative matrices (using NMF):

XT ≈ WH (1)

where W and H are L × K and K × C non-negative matri-
ces (K is the factorization rank) referred to as ‘metagenes’
and ‘metagene expression profiles’ in previous studies, re-

spectively (29,30). In this research, we hypothesized that W
corresponds to the transcript structure including splicing
patterns and that H corresponds to the expression for each
structure in each cell.

Second, we quantified the differential expression level of
a structure k ∈ (1...K) between two groups A and B based
on Welch’s t-test:

T(K)
NMF,k = Hk,CA − Hk,CB√

s2
k,A

|CA| + s2
k,B

|CB|

, (2)

where CA is the list of cells whose labels are A and Hk,CA,
s2

k,A, and |CA| are the sample mean of Hk,·, variance, and size
of group A, respectively. Owing to the non-negative con-
straint, the relation between the two groups (i.e. Hk,CA −
Hk,CB can be greater or smaller than 0) will be consis-
tent with the relation in the original expression space. Our
goal was to identify overlooked differential expression, and
therefore, such relations, as well as their absolute values,
were effective indicators for discovering ODEGRs. There-
fore, we defined the following two scores, which correspond
to the relation Hk,CA > Hk,CB and Hk,CA < Hk,CB , respec-
tively:

T(K)+
NMF = max(0, max

k
T(K)

NMF,k),

T(K)−
NMF = min(0, min

k
T(K)

NMF,k).
(3)

In NMF, the factorization rank (K) must be decided in
advance, and the value is critical for analytical results. The
various transcript structures cannot be separated with small
K values and are excessively separated with large K values.
In either case, the expression profiles become ambiguous,
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and we might overlook the DE regions if an inappropriate
K value is selected. Therefore, we decomposed the data with
several K values (K ∈ (2, 5, 10) in this research) and calcu-
lated the positive maximum and negative minimum values:

T+
NMF = max

K∈(2,5,10)
T(K)+

NMF ,

T−
NMF = min

K∈(2,5,10)
T(K)−

NMF .

(4)

Next, we defined similar scores for the TPM (transcripts
per million) matrix, which represents the expression profile
based on annotated transcripts (we used log10(TPM + 1) in
actuality). We described the list of transcripts for the gene
region using T and calculated Welch’s t-statistic as before
for a transcript t ∈ T, which is referred to as TTPM, t. Then,
the scores for the gene region were defined by the positive
maximum and negative minimum among transcripts of the
gene as follows:

T+
TPM = max(0, max

t∈T
TTPM,t),

T−
TPM = min(0, min

t∈T
TTPM,t).

(5)

At last, we developed a score to detect ODEGRs as fol-
lows:

�TNMF−TPM

= max(T+
NMF − T+

TPM,−(T−
NMF − T−

TPM)).
(6)

Because these is no global NMF optimization algorithm,
we calculated �TNMF − TPM using three different random
seeds and also used minimum �TNMF − TPM to obtain re-
liable ODEGRs. We investigated the ODEGRs based on
their ranked �TNMF − TPM values in descending order, and
detailed procedure, pseudo-code, and the reproducibility of
NMF results are described in the Supplementary Paragraph
9.

We also developed a score �TNMF − Mean that mea-
sured the overlooked differential expression merely using
the mean of the coverage. We used this score to evaluate
whether the NMF-based approach separates the signal and
detects complex DE patterns. We calculated the mean of

the logarithm of data for a cell c(
(∑L

l=1 log10(Xc,l + 1)/L
)

,

where L is the number of bins) as well as the corresponding
Welch’s t-statistic as before and �TNMF − Mean likewise.

Dataset

In this research, we used scRNA-seq data from the follow-
ing three experiments.

mES-PrE dataset. The first dataset is derived from mouse
ES cells and primitive endoderm (PrE) cells subjected to
RamDA-seq and was examined in our previous study (28).
We used the data from 5G6GR mouse ES cells samples at
0 and 72 h after dexamethasone induction and defined the
cell type at each time point as ES cells (92 cells) and PrE
cells (93 cells), respectively.

hNSC-NC dataset. The second dataset corresponds to hu-
man NSCs derived from iPS cells measured by RamDA-seq.
There is heterogeneity within the population, and some sub-
populations other than the NSC subpopulation were iden-
tified (Supplementary Paragraph 1 and Figure S1). After
clustering these cells and defining the cell types based on
marker gene expression, we identified 515 NSCs and 80 par-
tially differentiated neural cells (NCs).

hE3-E4 dataset. The third dataset is measured by differ-
ent scRNA-seq technology, Smart-seq2 (26), and is derived
from Smart-seq2 for human preimplantation embryos (31).
We used the data from day 3 embryonic (E3) cells (81 cells)
and day 4 embryonic (E4) cells (190 cells).

Data processing

The mouse ES-PrE dataset was derived from our previ-
ous work (28), and we regarded cells 0 h and 72 h after
induction as ES and PrE cells, respectively. The scRNA-
seq reads were aligned to the mouse mm10 genome using
HISAT2(v2.0.1) (32) with the parameters ‘–dta-cufflinks -
p 4 -k 5 -X 800 –sp 1000,1000,’ and uniquely mapped reads
were selected using the BAMtools ‘filter’ command with the
parameters ‘-isMapped true -tag NH:1’ and the SAMTools
‘view’ command with the parameter ‘-q 40.’ The genome-
wide coverage data were generated from these mapped data
using the ‘bamCoverage’ command in deepTools(2.7.10)
(33) with the parameters ‘–binSize 1 –smoothLength 1
–normalizeUsingRPKM.’ We also quantified transcript-
level expression data (i.e. TPM matrix) from scRNA-seq
data using the Sailfish(v0.9.2) (34) ‘quant’ command with
the parameter ‘-l U’ and GENCODE vM9 annotation.

The human NSC-NC dataset was measured using
RamDA-seq for cell populations derived from NSCs dif-
ferentiated from iPS cells. The scRNA-seq reads were
aligned to the human hg38 genome with STAR(v2.5.2a)
(35), and the coverage data was constructed with ‘bam-
Coverage’ command as mentioned above. We also quan-
tified the transcript-level expression data (TPM matrix)
with Sailfish(v0.10.0) based on GENCODE v24 gene an-
notation. Based on the known marker gene expression,
we identified subpopulations in the data (see Supplemen-
tary Figure S1). In particular, we found that a subpopula-
tion expressed some stemness marker genes, such as SOX2,
LIN28 and POU5F1, and another subpopulation expressed
neural marker genes, such as ASCL1. We regarded the cell
types corresponding to those two subpopulations as NSCs
and NCs, respectively.

The human E3–E4 dataset was derived from Smart-seq2
dataset produced by Petropoulos et al. (31). The scRNA-seq
reads were aligned to the human hg38 genome with STAR,
and the coverage data was constructed with ‘bamCoverage’
command as mentioned above, and transcript-level expres-
sion data (TPM matrix) was calculated with Sailfish based
on GENCODE v24 gene annotation. We also calculated the
TPM matrix with Salmon(v0.14.1) (36) and confirmed that
�TNMF − TPM with Sailfish and that with Salmon were al-
most equivalent (see Supplementary Paragraph 7). Due to
the data processing failure, we removed one E3 cell data and
used 80 E3 cells and 190 E4 cells for our algorithm.
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For all datasets, we generated a mapping count data ma-
trix for each gene region as follows. First, we extracted the
transcript list so that the mean expression of a transcript t
is over a set threshold (i.e.

∑
clog10(TPMt, c + 1)/C > 0.5,

where C is the number of cells). Next, we constructed the
unique protein-coding gene list, which corresponds to the
above transcript list. Then, we selected 6921, 9359 and 5486
genes from each dataset and constructed a count data ma-
trix (100-bp bins) for each gene region from the genome-
wide coverage data of each cells. The gene regions were
defined by the genomic start location and end location of
the row of the gene in the GENCODE GTF files (vM9 for
the mES-PrE dataset and v24 for the hNSC-NC dataset
and hE3-E4 dataset). We filtered the bins that contained
various genes because the target gene might falsely be re-
garded as occurring in an ODEGR owing to the differen-
tial expression of other overlapping genes. We also filtered
the bins that were derived from regions with low mappabil-
ity. This is because such bins might falsely be regarded as
a DE region owing to the misalignment of reads. In this
research, we defined bins with low mappability as those
for which the minimum of 24-bp mappability (downloaded
from https://bismap.hoffmanlab.org (37)) was 0.5 or less.
Then, the genes that remained with bin sizes under 100 were
filtered. In this way, 4965, 6491 and 2230 genes were selected
for differential expression analysis.

Implementation and computational cost

We computed NMF with the NMF package in the R sta-
tistical computing environment (30) and used the objective
function based on the Euclidean distance between the data
matrix X and the reconstructed matrix WH as calculated
by factorization (38). We also implemented our algorithm
that used sparse NMF (39), and results are shown in Sup-
plementary Paragraph 6. The raw count matrix data has ex-
cessively large values in some bins, and such large values
cause the underestimation of the influence of the remain-
ing bins in the objective function. Therefore, we applied
a log10(count + 1) transformation to the count values be-
fore NMF calculation. The scripts are available at GitHub
(https://github.com/hmatsu1226/ODEGRfinder).

Since the NMF calculations of all gene regions are in-
dependent from each other, we performed NMF for each
gene region in parallel using Sun Grid Engine. In the NMF
analysis with K = 10 for the first 1000 gene regions, the com-
putational times were about 1.7 and 10.9 h with maximum
memory usage of about 240 and 544 Mb for the mES-PrE
and hNSC-NC datasets, respectively.

Validation method

Simulation dataset. We constructed simulation data from
the mES-PrE dataset. First, we calculated the mean
of the logarithm of the coverage of a gene region(∑L

l=1 log10(Xc,l + 1)/L
)

, where L is the number of bins

and c is the index of a cell. We then calculated the p-value of
the t-test comparing this value between the ES cells and PrE
cells and extracted the top 100 most significant DE genes.

Second, we randomly selected a sample of count data (X)
from these 100 DE genes, and reshaped the C × L matrix
X into a C × L′ matrix X′ (L′ < L) by averaging Xc,i from
i = �(b − 1)(L − 1)/L′� to �b(L − 1)/L′� for each bin b
corresponding to X′

c,b. Then, we randomly selected a gene
from among 4,965 genes and combined the count data for
the gene using the above matrix X′ so that the combined
matrix had the local DE pattern. However, if the two se-
lected genes had the same DE trend, that is, both satisfied
−log10(p-value) > 10 for the same side in the correspond-
ing t-test, the combined matrix did not have the local DE
pattern, and so we selected one of the 4965 genes at ran-
dom again. We generated a positive-control datasets with
1000 datapoints as above for L′ = 10, 50 and 100, and we
regarded the raw data as the negative-control set.

Alternative isoform expression definition. We defined genes
with alternative isoform expression based on the TPM ma-
trix. We defined a gene that satisfied −log10(p-value) for a
corresponding t-test for T+

TPM and T−
TPM over � as belong-

ing to the positive-control set, and the remaining genes as
belonging to the negative-control set. We used α = 5, 10 and
15 and the number of genes in the positive-control set were
75, 25 and 8 for the mES-PrE dataset and 333, 95 and 51
for the hNSC-NC dataset, respectively.

RESULTS

Validation on simulation dataset

At first, we investigated the performance of NMF-based
differential expression quantification and whether our ap-
proach can quantify the local differences in a region using
simulation data. We evaluated whether T+

NMF and T−
NMF are

reasonable values to quantify the local differences. We com-
pared these values to the t-statistics based on the difference
of the mean read count in the local DE region and showed
that these values are almost equivalent (see Supplementary
Paragraph 4). We also calculated T+

NMF and T−
NMF for label-

shuffled data and confirmed that these values did not be-
come large by chance due to over-decomposing the read
count matrix (see Supplementary Paragraph 4).

Next, we regarded the simulation and raw data as
positive-control and negative-control datasets, respectively,
and evaluated the ability to detect local DE regions based
on �TNMF − Mean. We also compared the performance when
we used K = (2, 5, 10), as mentioned in Equation (4), or one
fixed value (i.e. K = 2, 5 or 10) for calculating T+

NMF and
T−

NMF.
The area under the ROC curve (AUROC) values for all,

K = 2, K = 5 and K = 10 were 0.98, 0.93, 0.93 and 0.90, re-
spectively for simulation data with L′ = 100 (Figure 3A).
The AUROC values for the L′ = 50 dataset were 0.98,
0.91, 0.96 and 0.93, respectively, and those for the L′ =
10 dataset were 0.94, 0.64, 0.86 and 0.94, respectively (Fig-
ure 3B and C). In all cases, our algorithm using multiple K
values showed high performance, and therefore, our NMF-
based approach is useful for discovering various local dif-
ferences.

https://bismap.hoffmanlab.org
https://github.com/hmatsu1226/ODEGRfinder
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Figure 3. The ROC curves for the simulated dataset. Simulation results for (A) L′ = 100, (B) 50 and (C) 10, where L′ is the length of local differential
expression patterns.

Validation with alternative isoform expression

We also investigated whether the NMF-based approach
can quantify the complex DE patterns associated with
genes that have alternative isoform expression. Based on the
TPM matrix calculated from the annotation, we defined the
positive-control and negative-control datasets. The former
consists of the gene set with different isoforms expressed in
different groups, while the latter consists of the remaining
genes (see the ‘Materials and Methods’ section for detailed
definitions). Then, we evaluated the ability to detect such
complex DE patterns based on �TNMF − Mean.

The positive-control examples of alternative isoform ex-
pression in the mES-PrE dataset were Frmd4a and Pde4d,
which are known for frequent transcription start site (TSS)
switching events (40) (Figure 4A and B). Based on our cri-
teria, both Frmd4a and Pde4d were highly ranked (53rd and
23rd out of 4965 genes, respectively).

The examples in the hNSC-NC dataset were RTN4, also
known as NOGO, which encodes the Nogo-A isoform that
contains exon 3 and is expressed in neural precursor cells
(41) (Figure 4C), and MAP4, which is known for its alterna-
tive isoform expression across neural cell types (42) (Figure
4D). These genes were highly ranked in our criteria (40th
and 1st out of 6491 genes, respectively.) Thus, the typical
genes with alternative isoform expression are highly ranked
in our criteria �TNMF − Mean.

Overall, the AUROC values (for threshold 15) were about
0.79 and 0.83 for the mES-PrE and hNSC-NC datasets, re-
spectively (Figure 5). Although our algorithm overlooked
some alternative expression patterns, the high AUCROC
values demonstrated the effectiveness of our algorithm for
discovering previously unannotated DE transcripts.

Discovery of ODEGRs

Next, we investigated the existence of ODEGRs by us-
ing �TNMF − TPM. In brief, the values of Welch’s t-statistics
based on NMF (T+

NMF and T−
NMF) and TPM (T+

TPM and
T−

TPM) were highly correlated (Pearson’s correlation coef-
ficients for the mES-PrE dataset, hNSC-NC dataset and
hE3-E4 dataset were about 0.83, 0.84 and 0.77, respec-
tively), and large �TNMF − TPM values were observed for
only a small fraction of genes (Supplementary Figure S6).

Therefore, we ranked genes by �TNMF − TPM in descend-
ing order to identify ODEGRs. Only a small fraction of
genes had large positive values of �TNMF − TPM (Supple-
mentary Figure S6). Five genes in the mES-PrE dataset had
�TNMF − TPM Z-scores over 3, 39 genes in the hNSC-NC
dataset did, and 16 genes in the E3-E4 dataset did. Although
the number of ODEGRs discovered by our algorithm were
few, several intriguing ODEGRs were identified. We also
proposed some approaches, such as permutation-based test,
to evaluate the significance of these ODEGRs (see Supple-
mentary Paragraph 8).

mES-PrE dataset. The read coverage and transcript an-
notation for the six highest-ranking genes in the mES-PrE
dataset are shown in Figure 6.

The 1st and 4th ranked genes were Zmynd8 and Brd1,
and numerous reads were mapped to the specific intron
regions of these genes (Figure 6A and D). We confirmed
the ES cell-specific expression of unannotated transcripts
in these regions using qRT-PCR (see Supplementary Para-
graph 9.5). The novel enhancer-associated antisense tran-
scripts for these genes have previously been reported in
mESCs (43), and this suggests that our approach can detect
several kinds of DE transcripts, including antisense tran-
scripts.

The 2nd ranked gene was Utrn, and two distinct cover-
age patterns of peaks that correspond to exons were ob-
served in ES and PrE cells, respectively (Figure 6B). Since
the annotation contains only one isoform, this DE pat-
tern was overlooked in the annotation-based approach. We
used GENCODE vM9 such that the analytical results were
consistent with previous work (28), and we also consid-
ered the possibility that the latest annotation includes the
isoforms corresponding to such patterns. We recalculated
the TPM values using GENCODE vM18, and T+

TPM = 46.2
and T−

TPM = −15.5 for vM18, in comparison to T+
TPM = 0.0

and T−
TPM = −4.4 for vM9 (Supplementary Paragraph 9.2

and Figure S9). This result suggests the existence of DE
transcripts that were not annotated in vM9. A similar result
was observed for the 7th ranked gene Arid5b (Supplemen-
tary Figure S9). These results demonstrate the potential of
our approach for discovering previously unannotated iso-
forms.
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Figure 4. Examples of alternative isoform expression. The visualizations of read coverage and transcript annotations for (A) Frmd4a, (B) Pde4d, (C)
RTN4 and (D) MAP4, respectively. (A) and (B) are the examples from the mES-PrE dataset, while (C) and (D) are the examples from the hNSC-NC dataset.
These figures are visualized with Millefy, which provides genome-browser-like visualizations of scRNA-seq datasets https://github.com/yuifu/millefy (51).

The 3rd ranked gene was Echdc2, which had numerous
reads mapped to its 3′ intron region (Figure 6C). Although
such a pattern is consistent with intron retention, this map-
ping pattern is continued from adjacent gene Zyg11a (see
Supplementary Paragraph 9.3 and Figure S10). We per-
formed qRT-PCR with several primer sets and confirmed
ES cell-specific expression of the unannotated transcript
(see Supplementary Paragraph 9.5). Zyg11a also shows ES
cell-specific expression, and the reads at the 3 intron of

Echdc2 might correspond to an unannotated long isoform
of Zyg11a that overlaps with the Echdc2 region.

The 5th ranked gene was Macf1, and numerous reads
were mapped to the specific intron region of the gene in PrE
cells (Figure 6E). An exon was annotated for the region in
vM18, and the DE transcript including the exon was over-
looked in differential expression analysis using vM9, which
was also the case for Utrn and Arid5b (Supplementary Fig-
ure S9).

https://github.com/yuifu/millefy
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Figure 5. The ROC curves for detecting genes with alternative isoform ex-
pression. The results for the (A) mES-PrE and (B) hNSC-NC datasets.

The sixth ranked gene was Gata6 (Figure 6F). The ex-
ogenous Gata6, which lacks a 3′-UTR end, is arbitrarily ex-
pressed in these ES cells. After dexamethasone induction,
Gata6 is transported into the nucleus, ES cells differenti-
ate into PrE cells, and the level of expressed endogenous
Gata6 increases. Because the annotation file does not in-
clude exogenous structure, annotation-based TPM cannot
reflect the exogenous expression patterns, which resulted in
high �TNMF − TPM values.

hNSC-NC dataset. In comparison to the results of the
mES-PrE dataset, the results of the hNSC-NC dataset
contained uninteresting patterns among the most highly
ranked genes (Supplementary Paragraph 9.1 and Figure
S8). Therefore, we show six high-ranking genes of great in-
terest in the hNSC-NC dataset (Figure 7).

The second ranked gene was PSMB7, and many reads
from NSCs were mapped to its 3′ intron region, which is
similar to the result for Echdc2 in the mES-PrE dataset (Fig-
ure 7A). The coverage pattern was continued from the ad-
jacent gene NEK6, and the coverage of the intron region is
correlated with the that of NEK6 (Supplementary Figure
S10). This result suggests the existence of an unannotated

long transcript of NEK6 that overlaps with the PSMB7 re-
gion.

The sixth ranked gene was COPG2, and numerous reads
were mapped to its 3′ intron regions, resembling the results
for Echdc2 and PSMB7 (Figure 7B). These reads are also
likely to be derived from transcripts of the adjacent gene
MEST, which may have an unannotated long transcript. In-
triguingly, in mouse, Mest is an imprinted gene, and a long
isoform of Mest (referred to as MestXL) is expressed in the
developing central nervous system, which results in the re-
pression of Copg2 on the same paternal allele (44). There-
fore, the long transcript of MEST and the tissue-specific im-
printing of COPG2 depending on the long transcript are
thought to occur in human. Thus, the detection of overlap-
ping unannotated transcripts can be associated with regu-
latory mechanisms.

The 10th and 15th ranked genes were GREB1L and
GRB10, and distinct AS patterns are suggested by the differ-
ence in mapped read counts between NSCs and NCs, espe-
cially for the intron region (Figure 7C and D). In GREB1L,
several reads mapped to the 5′ intron region (left side of
the heatmap in Figure 7C), and the long isoform appears
to be expressed in NSCs. Our NMF-based algorithm de-
tected such overlooked differences (T+

NMF = 13.8) in con-
trast to the annotation-based approach (T+

TPM = 0.8). Since
RamDA-seq detects not only mature mRNAs but also pre-
mRNAs, many reads mapped to intron regions are consid-
ered to be derived from pre-mRNA expression (28). Be-
cause the annotation-based algorithm does not usually use
intron-mapped reads, our proposed algorithm that utilizes
such information is effective for AS pattern identification,
especially for genes with alternative TSSs.

For GRB10, numerous reads were mapped to its 5′ in-
tron, and cell-type-specific TSS switching likely occurs for
this gene (Figure 7D). GRB10 is an imprinted gene and is
known for its unique TSS switch mechanism in mouse (45).
In the differentiation of mESCs into motor neurons, the ex-
pression of Grb10 changes from the maternal to paternal
allele. The upstream promoter is used for maternal expres-
sion, and the downstream alternative promoter is used for
paternal expression. Therefore, the 5′ intron-mapped reads,
which are detected in only NSCs, support the alternative
TSS based on the above mechanism and reflect DE patterns,
observable by utilizing intron reads.

The 17th ranked gene was PTPRN2, and long transcript
is highly expressed in NCs, and besides, there appears to be
a short unannotated transcript in NSCs (Figure 7E). No-
tably, in mouse, an alternative promoter exists downstream
of Ptprn2, and the transcription from the promoter drives
the miR-153 precursor transcript embedded in the Ptprn2
gene region (46). Moreover, miR-153 is highly expressed
in mouse neural stem/progenitor cells (NSPCs), and the
repression of miR-153 leads to differentiation, and hence,
miR-153 modulates NSPCs (47). Human miR-153 is lo-
cated in PTPRN2 (48), and therefore, the short transcript
in the 3′ region is likely a key factor that distinguishes hu-
man NSCs and NCs but is overlooked by annotation-based
analysis.

The 18th ranked gene was GPI, and numerous reads from
NCs were mapped to its central intron region (Figure 7F).
In GPI, the existence and conservation of a minisatellite in
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Figure 6. Examples of high-ranking genes in the mES-PrE dataset. The results for the six top-ranked genes (in descending order) (A) Zmynd8, (B) Utrn,
(C) Echdc2, (D) Brd1, (E) Macf1 and (F) Gata6 are visualized.
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Figure 7. Examples of high-ranking genes in the hNSC-NC dataset. The results for (A) PSMB7, (B) COPG2, (C) GREB1L, (D) GRB10, (E) PTPRN2 and
(F) GPI, the 2nd, 6th, 10th, 15th, 17th and 18th ranked genes, respectively, are visualized.
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its intron have been reported (49). Although the increase
in such reads might be an artifact caused by repetitive se-
quences, a NC-specific transcript might exist in the region.

hE3-E4 dataset. Unlike the previous two datasets that
are derived from single-cell full-length total RNA-seq
(RamDA-seq), the hE3-E4 dataset is derived from single-
cell full-length polyA RNA-seq (Smart-seq2). We discov-
ered several novel isoforms (Figure 8), and therefore, our al-
gorithm will be useful for analyzing various single-cell full-
length RNA-seq technologies.

The third ranked gene was CDA and numerous reads
from E3 cells were mapped to specific intron region (Fig-
ure 8A). There were several spliced aligned reads between
the region and CDA exon (Supplementary Figure S11),
which suggest the existence of unannotated exon. The sev-
enth ranked gene CCDC12 shows a similar result, and there
will be a novel isoform including unannotated exon (Figure
8D and Supplementary Figure S11).

The fifth and sixth ranked genes were NFE2L3 and
FEZ2, respectively (Figure 8B and C). There were several
reads mapped to the intron region in E3 cells and E4 cells,
respectively, but spliced aligned reads were not observed be-
tween these genes exon and these intron regions. In particu-
lar, there were numerous spliced aligned reads in the intron
region of FEZ2 in E4 cells (Supplementary Figure S11),
which suggest the existence of unannotated short gene.

The eighth ranked gene was TRAM2, and the high cov-
erage in the intron region continued from the adjacent exon
was observed mainly in E3 cells (Figure 8E). Because spliced
aligned reads were not observed between the intron region
and opposite exon, the coverage pattern suggests the exis-
tence of novel exon corresponds to 3′-UTR end. The simi-
lar result was also observed in the 16th ranked gene TPX2
(Figure 8F).

DISCUSSION

In this research, we developed a novel computational ap-
proach for differential expression analysis of scRNA-seq
data based on matrix factorization of mapped count data
to discover overlooked DE gene regions. Matrix factoriza-
tion methods, such as principal component analysis, are a
practical approach to extract essential structures and un-
cover biological knowledge from large-scale biological data
(50). To take advantage of the large number of cells assayed
in scRNA-seq data, we proposed an NMF-based approach
to extract reproducible patterns and quantify differences in
these patterns among groups. In particular, we used non-
negative constraint to quantify DE patterns while preserv-
ing information about the group in which the patterns were
expressed, and we developed a score that identifies ODE-
GRs by using positive maximum and negative minimum
values. Such computational approaches which utilize nu-
merical constraints based on the biological subjects can fa-
cilitate further omics studies.

We applied our algorithm to three scRNA-seq datasets
and discovered several unannotated DE patterns, including
DE antisense transcripts. In addition, our algorithm uti-
lized mapping patterns in intron regions to discover over-
looked alternative TSS patterns. Specifically, we detected

an unannotated transcript which is a key factor for regu-
lating differentiation. Thus, our approach has the potential
to identify essential overlooked DE genes.

Although our algorithm was able to identify several in-
triguing ODEGRs, it remains difficult to distinguish the
cause of DE transcripts such as those associated with an-
tisense transcripts or the long unannotated transcripts of
adjacent genes. In addition, the detected ODEGRs are few,
and thus the impact on whole expression analyses is quan-
titatively small. However, our approach can discover novel
transcripts and will enable further experimental and com-
putational analyses of these transcripts, which will deepen
the current understanding of the complex gene expression
landscape.

As shown in the validation of alternative isoform expres-
sion, our algorithm overlooked several genes with alterna-
tive isoform expression. One limitation of our algorithm is
that its detection of changes involves small exons, because
small changes have little effect on the objective function and
are overlooked in matrix factorization. In addition, we used
the count data with a 100-bp bin size (see the ‘Materials
and Methods’ section). Although our algorithm is robust to
bin size (see Supplementary Paragraph 2), the differences in
some small exons will be overlooked even if small bin size.
This problem might be solved by using 1-bp resolution data
matrix, NMF computational time and data size increase
substantially with increases in matrix size, so additional im-
provements, such as online NMF to reduce computational
time, are therefore necessary. We can also decrease the com-
putational time by filtering out bins with low read counts,
but we have to be careful so that we do not overlook DE
regions in low read coverage regions like 5′ intron region
of GRB10 (Figure 7D). Moreover, our algorithm overlooks
DE patterns in the filtered regions such as those with gene
overlap or those with low mappability. Therefore, other ap-
proaches, such as methods based on exon–exon junction
reads (18,19), will be useful to make up for each other’s weak
points and to complement annotation-based analyses.

In single-cell technologies, there are two different types
of technologies: one is a high-throughput scRNA-seq tech-
nology with cell barcodes and unique molecular identifiers
(UMIs) that can analyze a huge number of cells, and the
other is full-length scRNA-seq technology that can quan-
tify accurate expression of each cell. In this research, we
used the full-length scRNA-seq data. In comparison to
the high-throughput scRNA-seq data that are usually re-
garded as zero-inflated data, full-length scRNA-seq data
show high-quality and are not zero-inflated (see Supple-
mentary Paragraph 3). However, it is possible to quantify
the expression of each cell with shallow read depth to ana-
lyze a large number of cells, which results in a zero-inflated
data matrix. In such a case, sparse NMF might be an effi-
cient approach to analyze sparse data matrix. Also, our ap-
proach might be useful for analyzing single-cell data such
as scATAC-seq data, and sparsity is an essential property
in analyzing such data.

Several effective computational expression analysis
methods for scRNA-seq data, such as for cell typing
and for reconstructing differentiation trajectories, have
been developed so far. In this research, we have proposed
a novel application of scRNA-seq data for discovering
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Figure 8. Examples of high-ranking genes in the hE3-E4 dataset. The results for (A) CDA, (B) NFE2L3, (C) FEZ2, (D) CCDC12, (E) TRAM2 and (F)
TPX2, the 3rd, 5th, 6th, 7th, 8th and 16th ranked genes, respectively, are visualized.
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overlooked DE transcripts. Here, we have developed an
algorithm for differential expression analysis between two
groups, and this approach might be useful for analyzing
cellular heterogeneity and discovering transcripts with an
overlooked multimodal distribution.

CONCLUSION

The elucidation of hidden transcript diversity is important
(12), and we have developed an algorithm to discover over-
looked DE gene regions from scRNA-seq data in this study.
First, we confirmed that our algorithm could detect com-
plex DE patterns such as simulated local differential ex-
pression and alternative isoform expression. Then, we ap-
plied our algorithm to three single-cell full-length RNA-seq
datasets and discovered intriguing examples of differential
expression, including a transcript related to the modula-
tion of NSPC differentiation. Our approach complements
annotation-based analysis and is an effective approach for
better understanding cellular regulatory mechanisms using
single-cell studies.
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