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In the near future, vehicles will gradually gain more autonomous functionalities. Drivers’
activity will be less about driving than about monitoring intelligent systems to which
driving action will be delegated. Road safety, therefore, remains dependent on the
human factor and we should identify the limits beyond which driver’s functional
state (DFS) may no longer be able to ensure safety. Depending on the level of
automation, estimating the DFS may have different targets, e.g., assessing driver’s
situation awareness in lower levels of automation and his ability to respond to emerging
hazard or assessing driver’s ability to monitor the vehicle performing operational
tasks in higher levels of automation. Unfitted DFS (e.g., drowsiness) may impact the
driver ability respond to taking over abilities. This paper reviews the most appropriate
psychophysiological indices in naturalistic driving while considering the DFS through
exogenous sensors, providing the more efficient trade-off between reliability and
intrusiveness. The DFS also originates from kinematic data of the vehicle, thus providing
information that indirectly relates to drivers behavior. The whole data should be
synchronously processed, providing a diagnosis on the DFS, and bringing it to the
attention of the decision maker in real time. Next, making the information available
can be permanent or intermittent (or even undelivered), and may also depend on the
automation level. Such interface can include recommendations for decision support or
simply give neutral instruction. Mapping of relevant psychophysiological and behavioral
indicators for DFS will enable practitioners and researchers provide reliable estimates,
fitted to the level of automation.

Keywords: driver functional state, automated vehicles, monitoring, drowsiness, level of automation, activation
level, vigilance, road safety

INTRODUCTION: THE PROMISE OF AUTOMATED VEHICLES

Road traffic crashes represent a leading cause of death world-wide, more than 1.35 million lives
each year, 48% of them in four-wheeled vehicles in Europe (World Health Organization, Global
Status Report on Road Safety – Summary, 2018, pp. 2 and 6). Driving is a highly complex activity
requiring considerable perceptual, physical, and cognitive demands on the driver (Sawyer et al.,
2012) despite each of us has learned to drive a car. The human nervous system shows limitations
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in controlling much information in parallel and the human driver
is one of main factors in over 90% of the crashes (Sabey and
Staughton, 1975; Treat, 1977; Hendricks et al., 2001; Otte et al.,
2009; Singh, 2015).

With the aim to increase safety, Advanced Driving Assistance
Systems (ADAS) have progressively been integrated into vehicles
and can either worn the driver or actively intervene in the vehicle
operation. Many systems are now likely to assist the drivers
both in usual driving (e.g., cruise control or electronic stability
program) and in critical situations (e.g., antilock braking system,
collision avoidance system). Merat and Lee (2012) considered
that the automation process is now inevitable, and rapidly
evolving vehicle automation will change vehicles more in the
next 5 years than during the preceding fifty, until the driver may
no longer be needed (Ivanco, 2017). To date, Waldrop (2015)
underlined that automation is one of the main topics that could
yield completely driverless cars within the next decade.

Until driverless cars are available, there is an urgent need
to consider the effect of increasingly automated vehicles on
the ability of drivers to operate the vehicle, monitor both
environment and automation, and efficiently take over driving
responsibility. These tasks require allocating mental resources
to help the process of information from multiple cues (e.g., the
environment, in-cabin signals). Ironically, while automation may
free the driver from some of the traditional driving tasks, new
operations are added (monitoring automation, responding to
“take over” requests) and attention (the main focus of the driver
mental resources) is expected to more frequently be directed
to secondary tasks (Jamson et al., 2013; Llaneras et al., 2013).
Thus, it is likely that automation will have mixed effects on
the amount of mental resources drivers are now required to
allocate. Hockey et al. (2003) refer to the general concept of
“operator functional state” dealing with the operator ability to
allocate the required resources to meet the task demands. The
overall load originating from such demands impacts the operator
functional state. Determining the extent by which the driver
functional state (DFS) is suitable for the current driving challenge
is most imperative.

The recording of physiological indices seems appropriate
while considering the level of automation, but also environmental
conditions (e.g., traffic density, type of roadways or weather
conditions), driver characteristics (e.g., driving experience,
automation intrusiveness, and trust in automation). All the
aforementioned categories are likely to influence the DFS. The
importance of selecting the appropriate physiological indices
determines the reliability of assessing the DFS accurately. Future
vehicles will need to incorporate a DFS estimation system that
can potentially support interventions to maintain safety. Some
examples for such interventions include switching to a more
acceptable level of automation, issuing alerts to the driver or
nearby road users, and applying interventions to increase arousal.

The main objective of this article is to review how associating
vehicles automation with drivers functional state assessment
systems. This literature review will be organized along with the
five following research areas: We will first describe how different
levels of vehicle automation should mediate the allocation of
attentional resources to driving. The next section will detail

the available methods of assessing the DFS. The complexity
of assessing the DFS should point out the need to rely on
different methodological solutions that must be integrated into
a unique system. We will then propose a multimodal dataset
acquisition requiring a close collaboration between the fields
of engineering and behavioral neurophysiology thus leading
to the redefinition of usual theoretical models. The whole of
the preceding analysis will also have to take into account the
singular characteristics of the drivers but also the external driving
conditions. We will conclude by highlighting the contributions
of our study to better understanding the relationships between
vehicles automation and drivers functional state. We will also
underline its limitations by acknowledging the path that remains
to be done before we can propose complete autonomous
driving solutions. This will not be done without the close
collaboration between engineering sciences, neurophysiological
and behavioral sciences.

Levels of Automation and Allocation of
Mental Resources
The Society of Automotive Engineers (SAEs) ranges vehicles
automation capabilities from no automation (level 0) to complete
automation (level 5). Level 0 accounts for most vehicles on
the road today, where all driving tasks are manually handled.
In level 1 (driving assistance), the vehicle has a single aspect of
automation that assists the driver. Such automation level control
either steering, speed (e.g., adaptive cruise control), or braking
(e.g., automated emergency braking), but no more than one of
these. In level 2 (partial automation), the vehicle can control both
the steering and acceleration/deceleration, although the driver
must always remain in complete control of the vehicle. This
includes, among others, helping vehicles to stay in lanes and self-
parking features. In level 3 (conditional automation) vehicles can
make decisions for themselves such as overtaking slower moving
vehicles. However, unlike the higher rated autonomous vehicles,
this requires human override when the vehicle is unable to
execute the task, or when the system fails. In this level, the driver
must monitor automation and allocate attention to the driving as
no information is provided about system failure. Level 4 (high
automation) differs from level 3 in the sense that vehicles can
intervene themselves in case of system failure. Thus, level 4
vehicles do not need human intervention in specific situations
and will inform the driver on the need to take over in other
situation as in occurrences of system breakdown or somehow
underperformed or when in unfamiliar conditions (e.g., off-
road driving, extreme weather). In level 5, complete automation
does not require human interaction. Level 5 vehicles provide a
much more responsive and refined service. These include off-
road driving and other terrains that level 4 vehicles may not
necessarily be able to detect or intelligently comprehend. In
sum, the vehicle ability to monitor and “understand” the vehicle
surroundings determines the level of automation. The main leaps
in automation is between levels 2 and 3 in which the vehicle
is already able to take complex tactical maneuvering decisions
(e.g., changing lanes), and between levels 3 and 4 when human
interaction is, in some circumstances, not required.
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Whether one accepts the SAE scale of automation or proposes
a different one, the discussion on the safety benefits of automation
should consider the level of automation. While there is a broad
agreement on the generally positive effect of automation, not all
agree on the magnitude of this effect. As early as, Young and
Stanton (2002) underlined that vehicle automation systems could
reduce the required mental resources for driving and preserve
safety by allowing the drivers to delegate some of their actions
to the driving automation system. Therefore, drivers’ functions
are shifting from operating their vehicles to supervising their
automation (Shen and Neyens, 2017) and would require a lower
level of general activation in the central nervous system and a
more relaxed functional state. It is thus believed that monitoring
a system cost less than operating it. However, no real comparison
of the involvement of mental resources has been provided by the
scientific literature and workload may be higher since the driver
is now responsible for monitoring not only the environment
but also the way in which the vehicle operates. Monitoring a
highly complex system without a situated mental model or the
requisite diagnostic skills may be proven challenging. Caldwell
et al. (1994) defined ‘vigilance’ as the “sustained readiness to
detect and respond to changes in the environment” (p. 14) and
linked it to general arousal. On the one hand, arousal impacts
vigilance in the sense that we cannot be vigilant if we are not
sufficiently aroused. On the other hand, being activated does
not imply that we adequately orient our attention toward useful
indices, while inhibiting competing indices (distractors). People
who actively generate responses in a system have greater situation
awareness than those who passively monitor the same outputs
performed by an automated agent (Metzger and Parasuraman,
2001). Many studies pointed out the risk for disengagement and
distraction from the road scene and the driving task (Lewis
et al., 2018). Increases in automation reduced driver vigilance
as shown by braking reaction time, emergency steering (Saxby
et al., 2013), and in decreased ability to maintain lane position
(Shen and Neyens, 2017). Young and Stanton (2007) also
observed decrements in attentional resources negatively affecting
driving performance. Another aspect of impaired vigilance is
the possible increasing involvement in secondary tasks (Shen
and Neyens, 2017) that would possibly increase the whole
allocation of mental resources but not due to the requirements
of the main task.

The above review suggests that driver capacities as maneuver-
ing, managing secondary tasks, situational awareness, vigilance
in monitoring automation, and responding to take-over requests
at least partly depend on the DFS. We argue that estimating
the DFS (as we subsequently described in section “Estimating
the DFS”) may have different strategies depending on the
level of automation. To develop this argument, we refer to
Figure 1 presenting three radar subplots, each corresponding to
a different level of automation. Each radar subplot specifies a
list of driving capacities (maneuvering, situational awareness. . .).
Black line indicates the level of capacity that is required in
each of the selected driving aspects. The Figure 1 presents
how, with increased automation, maneuvering (i.e., correctly
perform basic driving actions as braking and accelerating) and
situational awareness capacities are becoming less and less

required. The Figure 1 also presents the capacity of the driver
according to his functional state (in blue).

If the DFS allows greater driving capacity (in blue) than what
is required (in black), the probability of a crash remains low.
However, a sudden increase in required capacity will also increase
the risk of a critical situation. As the DFS can change from time
to time, the reader should view the information suggested by
the figure as an example for an arbitrary driver in an arbitrary
time. To demonstrate that the figure presents plausible scenarios,
we added references (indicated by the brackets []) for studies
indicating when DFS (in blue) did not meet the requirements
(in black). But clearly, more research is needed to accurately
detect the relevant driving aspects, and their required capacities
in the various automation levels. The information in Figure 1,
therefore remains a schematic illustration of a possible future.
Merat and Lee (2012) have also pointed out that little research
has considered the consequences of high level of automation
with most focusing on the effects of specific ADAS as lane-
keeping or speed control (adaptive cruise control). This is an
important concern despite some optimistic viewpoints (Merat
and Lee, 2012; Waldrop, 2015), at this stage of autonomous
vehicles development, automated driving is not yet reliable and
safe (Dixit et al., 2016). Thus, research should study different
levels of automation and accurately evaluate the effects of each on
the DFS and consequently on drivers’ performance. For example,
Eriksson and Stanton (2017b) tried to determine the time drivers
needed to take-over control from a highly automated vehicle
when confronted with non-critical driving scenarios.

As described in Figure 2, the ability to take-over is
not required in automation levels 0 and 4 but may prove
critical in levels 2 to 3. Whether the DFS is well-adapted
when the need to take-over occurs is one of the key-points
determining the “DFS/levels of automation” interrelationships.
Several hypothesizes may be stated:

• The driver’s arousal level decreases under the automated mode
as there is no need for him (her) to be aroused at that time.
Taking-over may thus take more time than when the driver
is less aroused and this is generally observed when taking-
over occurs on urgent scenarios which could not be anticipated
(Eriksson and Stanton, 2017a).

• Conversely, monitoring the automated system working may
be demanding and may require an arousal level higher than
at rest. In this case, the relationships between DFS and
levels of automation are rather complex. When drivers were
under reduced time constraint, Eriksson and Stanton (2017a)
observed that taking over did not affect driving performance,
however, with a large standard deviation thus attesting strong
inter-subjects variations in behavior.

ESTIMATING THE DFS

Estimating the DFS can take several approaches: in low
automation levels, the DFS is visible by monitoring kinematic
indices of driving. Such indices are based on vehicle dynamic, e.g.,
the intensity of braking events, driving speed, lane position and
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FIGURE 1 | Illustration of required capacities (black) and available capacities (blue) by level of automation (subplot). Level 5 is not present in the figure since driver
involvement is not required in complete automation.

distance to the lead vehicle. However, with increasing automation
some of these actions are automated and may not reflect the
DFS. Thus, the automated system operates well while the DFS
is with low levels. Another, and perhaps more direct approach to
estimate the DFS aspects is to tap into driver physiological indices
as heart rate (HR), heart rate variability (HRV), skin conductance,
and electroencephalography (EEG).

There is a large body of research that links driving
performance with physiological arousal which clearly influence
sensorimotor performance (Hockey et al., 2003). We cannot
perform well without being aroused enough because the arousal
level (tonic activity of brain structures associated to adequate
muscles activation) determines the choice of useful information,
its processing, and the motor response to be then implemented

(Näätänen, 1973). Thus, functional state belongs to a conceptual
framework including a quantitative dimension, i.e., energetic
level supposing adequate (optimal) level of arousal which, in turn,
influences a qualitative dimension, i.e., the ability to well process
the information (adequate orientation of the attention, selection
of useful cues, potential processing of concurrent information
and inhibition of competing information). Boucsein and Backs
(2009) elaborated an integrated model of arousal with four
different levels, including sensory arousal, affective and memory
arousal and arousal for action preparation. This is directly
inspired from the earlier model by Näätänen (1973) supposing
that performance directly depended upon both energetic and
directional factors. On the basis of previous studies, general
arousal is believed to impact behavioral efficiency since it involves
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FIGURE 2 | Steps from recording the driver’s functional state through body
sensors until informing the emergency services, the driver himself and the
environment. Adapted from Reyes-Muñoz et al. (2016), with permission of the
editorial board of the journal “Sensors.” ECG, electrocardiography; EDA,
electrodermal activity; EEG, electroencephalography; EMG,
electromyography; EOG, electro-oculography.

the ability to mobilize the energy of the organism to face
task requirement. Thus, DFS may be described through tonic
variations of physiological indices, i.e., quantitative dimension
associated with phasic physiological variations of the same
indices, thus attesting information perception and processing (see
Näätänen, 1973 for historical reference and Caldwell et al., 1994,
for defining the activation/vigilance interrelationships).

In this context, we have the potential to assess the cost
of taking-over from a highly automated vehicle (SAE level 3
and 4), the time needed for this and the quality of taking
the vehicle back in hands (Payre et al., 2016; Eriksson and
Stanton, 2017b). Carsten et al. (2012) studied to which extent
driver attention to the road scene was affected by the level of
automation provided to assist or to take over the basic task of
vehicle control. Autonomous vehicles may thus be viewed with
skepticism in their ability to improve safety when automated
driving fails, or is limited, the autonomous mode disengages
and the drivers are expected to resume manual driving (Dixit
et al., 2016). An accurate and comprehensive approach to these
factors is necessary to assess their effects on DFS. Thus, studying
human-automated system interaction should consider the need
to maintain attention during prolonged periods. In this context,
the ability to detect and respond to rare and unpredictable events
is of highly importance (roadway hazards that automation may
be ill equipped to detect, according to Greenlee et al., 2018).
Recording DFS at the same time would allow to verify whether it
is adapted for safely driving (during both continuous monitoring
and periods where taking-over is necessary). Finally, we should
also include environmental factors in our analysis, e.g., the
impact of traffic density and any additional task which could
be performed simultaneously by the driver in highly automated
driving (Zeeb et al., 2016). Here, we see that DFS determination

depends on variable factors that are relatively difficult to identify.
This tends to complicate the linking of the DFS with the level of
automation of the vehicle.

In the following section, we will consider two main challenges:

(i) Which physiological indices are the best candidates to
determine the DFS under naturalistic conditions?

(ii) How integrate redundant information into the
recording system, redundancy ensuring its reliability?

A related requirement would be to eliminate false positives
and negatives. If not, this will reduce driver’s trust in the
system, or worse, drivers will consider the system unreliable.
In this context, neuroergonomics1 can provide heuristic solutions
since physiological indices can give useful information about
DFS while being easily recordable with low intrusiveness. We
could thus restrict the potential candidates to some central
and peripheral indices (Lee et al., 2007; Clarion et al., 2009;
Fernández et al., 2016).

Physiological Indices From the Brain
At the central level, we should only consider ambulatory methods
and not those from functional neuro-imagery (fMRI, MEG).
Several tools with the ability to be used inside the vehicles are now
available, e.g., electroencephalography (EEG – Lin et al., 2014;
Damian et al., 2015) and functional near infra-red spectroscopy
(fNIRS – Liu et al., 2016; Wang et al., 2016). EEG and fNIRS can
provide information about DFS as they directly record intrinsic
signals from the brain. Functional NIRS measures the cerebral
microcirculation in the capillary networks and describes brain
activations during actual driving sessions in real environments
(Liu et al., 2016). Although it is premature to conclude that
fNIRS will soon be integrated into real-time monitoring of DFS,
several studies reported experimental designs both in simulated
and actual driving (Liu et al., 2016; Wang et al., 2016).

Tonic variations of EEG waves are closely correlated to arousal
states and can detect changes in brain activation. This is a
real challenge to record EEG from inside vehicles (Caldero-
Bardaji et al., 2016). Papadelis et al. (2007) requested sleep-
deprived participants to drive in real field driving conditions and
observed increase in brief paroxysmal bursts of alpha activity
prior to severe driving errors. Anticipated EEG alpha bursts thus
correlated with the risk to be involved in car crash. Damian
et al. (2015) used mobile EEG to estimate the mental effort
during a dual-task paradigm with EEG signal sent from wireless
sensors during driving. Lin et al. (2014) assessed changes in
drivers’ arousal, fatigue, and vigilance with reference to variations
in task performance, by evaluating associated EEG changes.
The same team (Lin et al., 2010) developed a brain-computer
interface integrating a dual module for physiological-acquisition
and signal processing. The embedded modules can monitor
DFS in real time and provide biofeedback to the driver as
early as the drowsy state occurs. Wireless sensors associated
with real-time data acquisition/processing, and with a dedicated

1Mehta and Parasuraman (2013) defined neuroergonomics as an emerging science
studying human brain indices in relation to performance in a workplace and
everyday settings.

Frontiers in Human Neuroscience | www.frontiersin.org 5 April 2019 | Volume 13 | Article 131

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00131 April 30, 2019 Time: 17:57 # 6

Collet and Musicant Drivers’ Functional State and Vehicles Automation

algorithm are the main tools of a system monitoring DFS.
One remaining concern is related to sensors themselves as
conventional physiological measurements techniques required to
have the sensors in close contact with the human body. These
could nevertheless interfere with driving operations as body
segments can come into contact with some elements and as these
are very sensitive to noise and artifacts (mainly caused by head
movements). Sun and Yu (2014) described a non-intrusive driver
assistance system which is likely to detect ECG or EEG signals
through clothes or hair without direct skin-contact. Thus, the
last feature of a brain–computer interface would be to remotely
detect the physiological signals with no physical contact with
human skin. The near future will probably see the development
of such systems. We must acknowledge that asking drivers to
affix sensors on their skin could be perceived as constraining,
by the potential inconvenience to driving, by the time spent
placing sensors, the latter may be made more difficult by the
wearing of certain clothes. Considering that drivers would be
required to wear a recording device on the head, which would
be a prohibitive constraint for many people, data from EEG and
fNIRS have low practical properties at that time. However, they
can be supplemented by information from the peripheral nervous
system, in particular the autonomic and motor nervous systems.

Peripheral Physiological Related to
Driving Performance
Several indices from the autonomic nervous system (ANS) are
sensitive to time-dependent variations in arousal level and to
external stimuli (Clarion et al., 2009; Brookhuis and de Waard,
2010; Johnson et al., 2011; Rigas et al., 2011). As the systems
recording ANS activity are ambulatory and weakly intrusive,
these are good candidate for DFS assessment (Rada et al., 1995;
Axisa et al., 2004; Ramon et al., 2008). HR and electrodermal
activity (EDA, skin conductance) increase with each incremental
increase in cognitive demand (Mehler et al., 2012) and are closely
related to functional state (Hugdahl, 1996). Among others, Porges
(1995) and Hugdahl (1996) early promoted the role of the ANS
in cognition. Porges (1995, for a review) underlined the role of
the parasympathetic branch and particularly the vagus nerve on
attentional processes. Several indices from the peripheral motor
system respect the aforementioned criteria and may be pooled
into three main categories (i) indices from electromyography
(EMG) monitoring, with a special focus on muscles from the
neck and the back of the driver, (ii) indices from the oculomotor
system aimed at giving information on palpebral, dilation of
pupils and eye-gaze related features, and (iii) indices from facial
mimics through emotional face recognition.

Heart rate is a very easily recordable variable even without
bodily placed sensors. Lee et al. (2007) elaborated a non-intrusive
measurement of HR by integrating dry sensors into the steering
wheel with a wireless design for data transmission (the safety
belt can also provide a naturalistic way for recording HR).
No differences from usual HR recordings were found with
the design the authors conceived thus attesting its reliability.
Beside the basal values, HRV has close links with fatigue and
drowsiness detection (Li and Chung, 2013). Yu-Lung et al. (2016)

recorded ECG from wireless thoracic sensors and process the
cardiac signal using HRV. Several parameters (e.g., low-frequency
power spectrum over high-frequency power spectrum or LF/HF
ratio) were closely correlated to several changes in drivers’
behavior, particularly with the frequency of yawning episodes.
By comparison with rest state or high level of arousal, HRV
presents specific alterations during drowsiness episodes (Vicente
et al., 2016). The authors claimed that incorporating drowsiness
assessment on the basis on HRV signal may improve the existing
car safety systems.

Electrodermal activity is closely related with arousal as it is
directly under the control of the sympathetic endings innervating
sweat glands without any influence of the parasympathetic
branch, thus derogating from the well-described principle of
double innervation (Collet et al., 2013). Importantly, EDA is a
witness of sympathetic functioning alone. By confronted drivers
to an unexpected critical crash avoidance situation, Collet et al.
(2005) showed that EDA was a predictive index of drivers’
performance. The recording of EDA basal level along the whole
session evidenced that drivers who avoided the obstacle pulled
onto their traffic lane where those who exhibited the highest
EDA basal values (about 30% above the reference EDA at rest).
Conversely, the drivers who failed to avoid the obstacle showed
a lower EDA level, at about 20% above the reference level at rest.
Thus, drivers who performed well exhibited higher arousal and
were more likely to perform adequately. More generally, when
considering routine driving situations, there is a close positive
relationships between EDA and cognitive demands (Mehler et al.,
2012). Other indices can originate from basal EDA signal, e.g., the
frequency of electrodermal responses was positively associated
with decreased vigilance (Dementienko et al., 2001). When the
drivers exhibited obvious signs of low vigilance, electrodermal
response frequency decreased in parallel. We should nevertheless
indicate that Dorrian et al. (2008) failed to evidence a relationship
between EDA and participants state who were imposed one night
of sustained wakefulness. While they rated increased levels of
sleepiness and fatigue through paper and pencils tests, EDA
did not present any difference between the reference period
and the induced sleepiness and fatigue state. EDA usually
range from 1.5 to 70 µSiemens and data processing should be
done with caution due to the high differences among people.
Preventing metrologic errors due to individual differences may
easily be overcome by normalizing data. Another way to increase
reliability is to simultaneously record other physiological indices.
This is usually done when experiments are designed to study
complex human brain functions, such as DFS. There are thus
many contributions presenting a data set of physiological indices
(Rada et al., 1995; Ramon et al., 2008; Clarion et al., 2009;
Lanatà et al., 2015; Taamneh et al., 2017). Lanatà et al. (2015)
evaluated DFS by analyzing ANS changes through HR, EDA,
and respiratory frequency along with performance indices of
steering wheel angle corrections and response time. This study
was performed under simulated driving conditions, but Healey
and Picard (2005) already provided evidence of physiological
recordings under actual driving conditions. They reported that
EDA and HR were the most closely correlated with driver
strain. Physiological monitoring could thus provide a continuous
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assessment of how different driving contexts but also driver
emotional states affect DFS. These studies clearly show the ability
of peripheral physiological variables to closely correlate with the
DFS. They can be supplemented by behavioral variables.

Behavioral Indices Related to
Driving Performance
Reyes-Muñoz et al. (2016) identified five behavioral indices that
are close correlated to drowsiness, i.e., frequent yawning, frequent
eye-blinking, pupil movement (gaze), head movement and facial
expression. Fernández et al. (2016) also provided a thorough
review focused on the role of computer vision technology applied
to the development of monitoring systems. They considered that
seven factors could evaluate the DFS with highly acceptance:
reliability, real-time performance, low cost, small size, low power
consumption, flexibility, and short time-to-market.

Yu-Lung et al. (2016) elaborated an intelligent driver
assistance system including a camera in front of the driver for
facial monitoring. Frequency of yawning was one of the main
index predicting the occurrence of drowsiness (see also Sigari
et al., 2014). Fernández et al. (2016) considered that the eyes
are the most remarkable information sources in face analysis
as they reflect affective states and focus of attention. There are
nevertheless several methodological obstacles to overcome before
providing a reliable set of information from the visual system
(e.g., keeping the camera closely orienting on the eyes despite
head movements). Song et al. (2013) described the main factors
challenging accurate eyes localization, due to variations in facial
expressions, variations of gaze direction, head/eyes movement
coordination and surrounding lighting. The measures may be
hindered by the wearing of glasses especially sunglasses and
makeup (Fernández et al., 2016). Eye-blink and eyelid closure
are of interest in detecting early signs of drowsiness, as these
may be captured by a set of cameras placed on the dashboard
(Hu and Zheng, 2009) and blinking has been reported to change
during cognitive distraction phases (Fernández et al., 2016).
Data acquisition and processing are provided by the seeing
machines which “continuously measure operator eye and eyelid
behavior to determine the onset of fatigue and micro sleeps
and deliver real-time detection and alerts” (Fernández et al.,
2016, p. 25 of 44).

Recordings of EMG activity have a high potential to bring
information about the DFS. The alteration of muscles function
may be associated with impairment in driving abilities and
fatigue. Surprisingly, there are little scientific contributions from
this field. Fu and Wang (2014) showed that the peak factor
and the maximum of the cross-relation curve, two indices from
surface EMG of the biceps femoris, were related to drivers’
fatigue. EMG recorded from the neck and the back muscles
are likely to provide information about sleepiness and driver
fatigue. However, muscles activity is difficult to capture given
the driver’s sitting position, with the risk of sensors contact
with the seat or headrest, thus affecting data reliability. Finally,
head movements recordings by embedded cameras can provide
similar information to that provided by EMG. Methodological
difficulties may explain the weak number of works involving

EMG in actual driving. Despite behavioral indices of drowsiness
occurrence are promising methods, Sahayadhas et al. (2012)
underlined that the reliability and accuracy of driver drowsiness
detection by a set of physiological indices is higher than that
coming from other methods such as vehicle-based measures and
behavioral measures.

AN OBVIOUS REQUIREMENT: A
MULTIMODAL DATASET ACQUISITION

Beside the methods used in laboratories, the challenge is
to propose pragmatic, integrated systems, including a set of
behavioral and physiological indices, simultaneously recorded
in real time, both from the driver and the environment.
This involves selecting indicators for their reliability and
complementarity. Maglione et al. (2014) simultaneously recorded
high resolution EEG data associated with heart and eye blinks
rates. Then, fusion of data provided a robust method in
studying complex human activities, involving several functions
(Noori and Mikaeili, 2016). Rigas et al. (2011, 2012) described
a set of physiological signals (ECG, EDA, and respiration)
associated with driving history from the GPS and the vehicle’s
controller area network-bus (CAN) data. They incorporated
these data into a Bayesian network (BN) and estimated that
the system could detect stressful events with an accuracy of
82%. The development of an intelligent algorithm capable of
recognizing the drivers’ affective state was proposed by Singh
et al. (2013). It was based on several physiological indices
including EDA and blood flow through photo-plethysmography
during on-road driving. Their neural networks are believed to
predict DFS with a nearly 90% average precision. According
to Reyes-Muñoz et al. (2016), recording physiological variables
for DFS assessment could allow rescuers to make a faster and
more accurate diagnosis in case of an accident, if the data is
transmitted to the rescue services (Figure 2 summarizes the
successive steps from data acquisition/processing until provided
feedback to the driver and eventually to the road control or
emergency services).

DRIVERS’ INDIVIDUAL FEATURES AND
EXTERNAL CONDITIONS

In addition to the variables used to evaluate the DFS, we
must take into account two intrinsic factors, the individual
characteristics of the drivers and the external driving conditions.
One of the main concerns in providing feedback to the drivers
is their high behavioral variability. There is thus considerable
dispersion around the median behavior depending upon driver’s
characteristics in age, gender, driving experience and perhaps
more importantly their psychological particularities or specific
individual traits. Ranney (1994) underlined that the inherent
variability of human behavior may be responsible of errors
associated with an important rate of roadway crash causation.
By comparison, systematic errors attributable to the well-
known limits of the human information-processing system seems
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rarer. In fact, all driving activities are believed to associate
fast sensorimotor and automatic components with slower and
more deliberate controlled cognitive processes. This refers to
intra-individual behavioral variations as a function of time
(according to specific individual differences, mental state and
environmental context). Determining the boundaries around
which the automated system could provide useful information
to the drivers, i.e., with a high probability to take it into
account for its meaning, is a key-component to be resolved in
the next future. Little is known about how personality traits
lead people to consider or ignore a given information. If the
personality traits are stable features, and can be taken into
account, the emotional states are more transient and therefore
more difficult to detect. Yet, we know that they influence driving
(Chan and Singhal, 2013) with a high probability of diverting
the driver from the road scene. Another important concern
is about how old drivers perceived the integration of more
and more automated devices into their vehicles. First, Molnar
and Eby (2017) question their motivation for technology use
and assigned meanings. Second, they wonder whether the in-
vehicle monitoring technology will be used and how transfer of
control between automated and manual driving would occur in
the elderly population. The role of trust in automation and its
interaction with practice of partially or fully automated vehicles
is also a key-variable. Payre et al. (2016) observed that drivers
who had high trust in the automated vehicle exhibited longer
reaction time when they were required to take-over by manual
control recovery. Thus, over-trust may have deleterious effect
on performance, a well-known effect of what high-technology is
believed to bring (Collet et al., 2005). Overconfidence in vehicle
equipment made drivers less efficient and this correlated well
with a weak arousal level. This is well summarized by Endsley
(2017): “more autonomy is added to a system and its reliability
and robustness increase, the lower the situation awareness of the
driver and the less likely that he will be able to take over manual
control if needed.”

These examples clearly advocate for education in the use of
automated systems. Strauch (2017) deplores that drivers have not
gained enough expertise needed to effectively operate automated
systems. Instead, they are forced to obtain the expertise ad hoc
during system operations. We nevertheless suppose that the in-
vehicle intelligent devices should identify the driver (through
face identification), retrieve his previously stored profile from its
data to then intelligently prescribe specific accident prevention
tools and driving environment customizations, as proposed by
Sawyer et al. (2012). At least, we should be informed and
trained about how the automated device works so that we
can improve take over whenever necessary. We should also
change our representation about automated systems, as suggested
by Figure 3 where the interactions with them can include
three modes:

• The first is the adequacy when the driver understands some
features of the system and uses them (in green).

• The second corresponds to the disjunction between the partial
knowledge of system functionalities by the driver and the
representation that s/he has some. In fact, the user does not

FIGURE 3 | Real assistance capacity of an automated system based on the
knowledge of the user.

know some features of the automated system and thus can
obviously not use them (in yellow).

• The third is false representations as the user wrongly thinks
that the automated system can fill certain functions while it
cannot (in blue).

Reducing the discrepancy between drivers’ representation of
the system functioning and its actual abilities and functionalities
(e.g., levels of automation) would probably imply to redefine the
procedures of learning to drive.

CONCEPTUAL CHANGES FOR
CURRENT MODELS OF DRIVING
PERFORMANCE AND LEARNING

Over the years, human factors research proposed several models
for driver performance (Shinar, 1978; Michon, 1985; Endsley,
1995; Fuller, 2005; Wickens et al., 2015). These regard the
driver as an information processing unit. Such information and
attention models describe how the driver obtains data using
his/her sensorial systems (vision, audition, etc.), process them
to gain significant insights, apply a decision-making mechanism
(e.g., slow down), adapt the decision to the actual context
(e.g., adjust the braking intensity) and execute the decision
with success determined by his/her abilities. According to these
models, the driver limited capacity to collect and process
the information from the environment explains driver error
and misjudgment.

Here, we examine a model that was developed almost 40
years ago by Shinar (1978). We show how, in some ways, this
model is still useful, and how it should be updated to incorporate
new abilities to monitor the DFS. We explain how such updates
may have potential safety benefits. In Figure 4A, the black lines
depict the original connections in the model by Shinar (1978).
The red dashed lines depict original connections that now serve
to transfer information and driving decisions about the DFS
as well as information and driving decisions that stem from
knowledge about the environment. The red lines did not appear
in the original model and represent new contributions. The
original model (black lines) describes how the driver sensory
system receives various cues, the information is then processed
according to the driver perceptual and attentional capabilities
to facilitate decision making and response. These cues do not
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FIGURE 4 | (A) A limited-capacity model of driver information processing (adapted from Shinar, 1978) with added paths for DFS. Reproduction with permission of
the author. (B) A hybrid limited-capacity model of driver information processing paths for DFS (adapted from Shinar, 1978 and Sanders et al., 1990). Here, we
integrate all the factors that are supposed to make the DFS varying. The operations of information processing (perception, attention, memory access, decision
making, and motor adjustments) require the mobilization of mental resources (attentional effort) and, thus change the DFS so that the driver is able to drive efficiently
and safely. The DFS can be evaluated by a set of physiological and behavioral indices, and adjust as a function of the level of vehicle automation.

include DFS information. Next, the driver response impacts the
vehicle dynamics. It is interesting that so long-ago, Shinar (1978)
included a path for an autonomous system that can (1) display
feedback to the driver (e.g., as done by level 0 systems as collision
warning systems and navigation systems), and (2) control vehicle
dynamics (e.g., as done by level 1 systems as adaptive cruise
control and automatic emergency braking system). Despite the
time passed since this model formulation, similar modes still

guide research teams in international meetings (Keith et al.,
2005). The red lines represent the transfer of physiological cues
related to the DFS. Determining the DFS can be based on
ECG (HRV), EDA, and EEG. The driver himself may be aware
of his physical and mental states through sensory feedbacks
(e.g., fatigue, or other temporal impairments), and can decide to
take measures to adjust (e.g., stop for a rest) or, in the near future,
to engage an automated driving mode.
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However, with the advances of physiological monitoring
technology, these data can be picked up by electronic sensors
(e.g., sit sensors or wearables). In automation level 0, the system
can display this information back to the driver (e.g., a coffee
icon can suggest that s/he should rest, other displays can warn
about increase in mental effort, decrease in general activation or
any other physiological condition). In levels 1–3, an automatic
action can take two directions: the first is to increase driver
perceptual and attentional capabilities. Numerous interventions
can be suggested here. When mental workload is high, such
intervention can lower the volume of the music, adjust air
condition, shut off infotainment and message. In very low mental
workload, the automated system can propose Trivia Games and
even increase the volume of the music. On the second path, the
autonomous system can control the vehicle dynamics to reduce
demands from the environment. An interesting study by Hajek
et al. (2013) investigated the safety benefit and acceptance of an
adaptive cruise control that selected the optimal safe distance
to the lead vehicle according to the DFS (estimated by the
driver physiological indices). Another example is the ability to
use physiological indices to predict intentions for emergency
braking (Kim et al., 2015), such an ability may be use either
to trigger the automatic emergency braking system (level 1) or
to release a distress signal to the autonomous system (level 5)
which can learn to avoid such stressful conditions for its driver
(supervisor) in the future. In sections two and four, we mapped
several physiological and behavioral indices that can be used to
estimate these closely related aspects of driving. In Figure 4B, we
offer that physiological indices for activation and vigilance also
have a link for the automated sensors.

CONCLUSION

Research into the effects of automation on DFS is expending
due to understanding that in the near future, the human
factor will remain an important component in driving and in
monitoring automation. This manuscript points on: (1) The need
of accurately assessing DFS, (2) Estimating the DFS may have
different strategies given the level of automation, (3) Estimating
the DFS can infer on interventions that are also related to
automation (e.g., switching between levels of automation). Based
on these understandings (points 1–3), we reviewed methods for
estimating the DFS and described the potential characteristics of

an in-vehicle system. With regard to the first point, commuting
executive functions usually performed by the driver to ADAS is
likely to make her/him less concentrated on driving. The driver
can monitor the system working or be engaged in other tasks
with a connection with driving (supervising the route plans
through the GPS) or not (reading or phoning or discussing
with other passengers). Depending on these different activities,
DFS may stay at a level comparable to that required for driving
(parallel activity with the same demand as driving) or can change
drastically and reach a level incompatible with driving (decrease
in arousal level). This seems of particular importance in case
of sudden need of taking-over. With regard to point 2, the
extent by which driver’s DFS remains at an adequate level is
still pending and depends on different but interrelated factors
(level of automation, driving conditions, driver’s personality).
With reference to point 3, an acceptable alternative would be to
propose an intelligent system where we would choose the level of
automation according to the objective of our trip (professional
or leisure trip) of our state of fatigue (strong delegation or
conservation of driving control) or conditions of external driving
(traffic density, weather conditions). For example, traffic density
has been shown as influencing the way in which the take-over is
performed, with higher time to proceed and less accuracy when
traffic is dense (Gold et al., 2016).

An integrated system capable of monitoring DFS in real time,
should be based on several physiological indices recorded inside
the vehicle. This would probably be the best way to ensure
safety provided that it is built on sufficiently powerful algorithms
capable of including all the driving scenarios that can potentially
occur, thus depending on the external conditions (where driving
takes place with traffic and weather conditions). It should also
be able to provide useful feedback, from simple information
about his functional state to even delivering graduated alerts,
depending on their severity and urgency. Finally, we contributed
to show how monitoring DFS can serve to update existing
driving performance models to provide feedback to drivers and
to automatically adjust autonomous behavior.
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