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Abstract: Aging is intrinsically linked with physiologic decline and is a major risk factor for a broad
range of diseases. The deleterious effects of advancing age on the vascular system are evidenced by
the high incidence and prevalence of cardiovascular disease in the elderly. Reactive oxygen species
are critical mediators of normal vascular physiology and have been shown to gradually increase
in the vasculature with age. There is a growing appreciation for the complexity of oxidant and
antioxidant systems at the cellular and molecular levels, and accumulating evidence indicates a
causal association between oxidative stress and age-related vascular disease. Herein, we review the
current understanding of mechanistic links between oxidative stress and thrombotic vascular disease
and the changes that occur with aging. While several vascular cells are key contributors, we focus on
oxidative changes that occur in platelets and their mediation in disease progression. Additionally, we
discuss the impact of comorbid conditions (i.e., diabetes, atherosclerosis, obesity, cancer, etc.) that
have been associated with platelet redox dysregulation and vascular disease pathogenesis. As we
continue to unravel the fundamental redox mechanisms of the vascular system, we will be able to
develop more targeted therapeutic strategies for the prevention and management of age-associated
vascular disease.
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1. Introduction

Aging is a biological phenomenon in living organisms that is characterized by a grad-
ual decline in physical and mental capacity [1]. It represents an accumulation of adverse
changes over time that increases the risk of disease and, ultimately, death. Cardiovascular
disease is the leading cause of death in the United States [2] and worldwide [3], and it is well
established that myocardial infarction and stroke increase significantly with age [4]. These
observations are, in part, due to the high prevalence of associated comorbid conditions
(e.g., diabetes, obesity, hypertension, hyperlipidemia, etc.) that are frequently observed
in the elderly [5]. As the average human life expectancy and, consequently, the number
of elderly in the population are expected to grow in the coming decades, the burden of
chronic diseases, including cardiovascular and cerebrovascular disease, is projected to have
a more significant impact on human health and healthcare costs [1,6,7]. While several cell
types are known to contribute to vascular pathologies, this review will focus on platelets as
the key mediators in the progression of thrombotic vascular disease (Figure 1).
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Figure 1. Overview of the relationship between aging and vascular disease, highlighting the
pathogenic role of platelets. Cardiovascular comorbidities and oxidative stress are increased with
advancing age, which can promote platelet activation and thrombus formation.

2. Platelets and Thrombotic Vascular Disease

Platelets are anucleate cells derived from megakaryocytes that are key components of
the vascular system, and they are traditionally recognized for their vital role in hemostasis
through the enhancement of coagulation and thrombus formation at sites of vascular in-
jury [8]. Platelet activation is central to thrombus formation and, thus, plays a critical role in
the pathogenesis of thrombotic vascular diseases [9–11]. In addition to their fundamental
roles in hemostasis and thrombosis, platelets can also act as mediators of inflammation and
immunity through functional interactions with the vascular endothelium and circulating
hematopoietic cells [10,12–14]. Altered platelet function and platelet hyperactivity have
been associated with aging. Early epidemiological and functional studies suggested that
platelet activity is enhanced in elderly individuals, although the precise mechanisms for
these changes were not entirely clear [15–18]. Below, we discuss the recent literature on the
redox mechanisms that regulate platelet activation while highlighting specific alterations
that occur with age. In addition, we will discuss the role of platelets in cardiovascular
comorbidities that are more prevalent in the elderly and can provide mechanistic insights
into age-associated vascular disease. Understanding the fundamental cellular and molec-
ular processes that occur in platelets with aging will provide opportunities to develop
novel therapeutic strategies to prevent age-associated vascular pathologies and reduce the
burden of disease in the elderly.

3. Oxidative and Antioxidative Mechanisms in Regulation of Platelets in Aging

It is well recognized that there is an age-associated increase in reactive oxygen species
(ROS), and oxidative modifications to macromolecules (i.e., DNA, proteins, lipids) have
been implicated as fundamental drivers of age-associated pathologies [19]. In the vascular
system, accumulating evidence has demonstrated critical roles for ROS in the regulation
of a variety of cellular and molecular processes, which, when dysregulated, can increase
disease burden.

The relationship between oxidative stress and platelet activity has been a growing
area of interest in studying the mechanisms of cardiovascular diseases and other age-
related thrombotic vascular conditions. Initial studies in the 1970s first demonstrated
the capacity of platelets to generate superoxide (O2

•−) [20], a highly reactive species
with a relatively short half-life. Several studies subsequently have demonstrated that
exogenous and endogenous O2

•− enhance platelet function, which can be reversed in the
presence of SOD enzymes or O2

•− scavengers [21,22]. Superoxide can be generated by
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several sources in the vasculature, including nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, uncoupled endothelial nitric oxide synthase (eNOS), xanthine oxidase,
and mitochondrial sources [23]. Studies in our lab found that platelets isolated from aged
mice displayed enhanced activation responses compared to those from young mice, which
was prevented by the NADPH oxidase inhibitor apocynin [24]. Platelets from aged mice
also had increased mRNA expression of the p47phox NADPH oxidase subunit. However,
the mRNA levels for another subunit, Nox2, were not significantly different between
platelets from aged and young mice, and the mRNA for Nox1 and Nox4 was not detectable
in these studies [24]. The Nox family consists of seven isoforms, of which four (Nox1, 2,
4, and 5) are found in vascular cells [25]. Nox proteins are the catalytic component of the
NADPH oxidase and, together with p22phox, comprise the large heterodimeric cytochrome
subunit [26]. The Nox2 NADPH oxidase isoform consists of additional cytosolic regulatory
subunits that include p47phox, p40phox, and p67phox. Further, studies in our lab found
that Nox2 is not an essential source of platelet ROS and is not significantly involved in
platelet activation and arterial thrombosis in young mice [27]. Some studies have reported
a limited role of Nox2 in GPVI-dependent platelet responses [28], while other studies have
found that Nox2 is important for collagen and thrombin-induced platelet responses in
mice [29]. Using an EPR-based technique to measure intracellular platelet ROS, Vara et al.
further elucidated the differential roles of Nox1 and Nox2 in platelet activation [30]. They
found that Nox1 is important for collagen-induced platelet responses and that intracellular
but not extracellular O2

•− was critical for platelet activation by collagen, while Nox2 is
important for thrombin-induced platelet activation [30]. Subsequent studies by the same
group reported that a combined triple deficiency of Nox1, Nox2, and Nox4 in mice resulted
in impaired platelet aggregation responses and decreased susceptibility to experimental
thrombosis, while knockouts of single Nox isoforms showed no significant vascular effects
in mice [31]. These studies indicate that Nox proteins are important for platelet activation
and thrombosis in vivo, but there is redundancy in the O2

•− generating system, given
that single knockouts of individual Nox proteins produced minimal functional effects
on platelets.

Studies have demonstrated that hydrogen peroxide (H2O2) can also be released from
platelets [32]. H2O2 has a relatively long half-life and is an important intracellular signaling
molecule, given its ability to diffuse across cellular membranes [33]. The conversion of O2

•−

to H2O2 is catalyzed by superoxide dismutase (SOD), which consists of three major isoforms
in mammals, copper-zinc SOD (SOD1), manganese SOD (SOD2), and extracellular SOD
(SOD3), that differ in their cellular localization and metal cofactors in the catalytic site [34].
The major antioxidant enzymes responsible for the catalytic inactivation of H2O2 include
catalase, glutathione peroxidase (GPx), thioredoxin (Trx), and peroxiredoxin (Prdx). In
humans, decreased activity of GPx-1 has been associated with both platelet hyperreactivity
and an increased risk of cardiovascular events [35–38]. Studies in humans have also
demonstrated that platelet activation is associated with the production of H2O2, and pre-
treatment with catalase eliminated platelet H2O2 and inhibited collagen-induced platelet
aggregation ex vivo [39]. Studies from our lab demonstrated that aged mice also exhibited
increased susceptibility to thrombosis under experimental conditions and were protected
from this phenotype by transgenic overexpression of intracellular GPx-1 [24]. Furthermore,
platelets from aged mice displayed increased expression of not only the p47phox NADPH
subunit but also SOD-1, providing a mechanistic explanation that age-dependent platelet
hyperactivation is mediated by increased platelet O2

•− generation and its conversion to
H2O2 intracellularly [24]. These findings are in concordance with a more recent study using
both human and mouse platelets that found that thrombin-induced platelet responses
are dependent on the dismutation of O2

•− to H2O2 [30]. In a separate study, Jin et al.
demonstrated enhanced platelet aggregation responses and increased susceptibility to
pulmonary thromboembolism and thrombotic stroke in mice with a deficiency of the
circulating H2O2 metabolizing enzyme GPx-3 [40]. Together, these studies indicate a
protective role for endogenous GPx in age-associated thrombotic consequences.



Antioxidants 2022, 11, 995 4 of 16

In a recent elegant study, Jain et al. stratified high cardiovascular risk patients into
several age cohorts and measured the redox changes in platelets compared to younger
healthy individuals [41]. A progressive age-associated increase in platelet reactivity and
intracellular ROS was observed up until ~80 years of age, whereby a decline in platelet
reactivity and ROS was seen. These findings were attributed to a decline in platelet
antioxidants, including SOD-1, GPx-1, Prdx-6, and catalase, in patients aged 60–79 years
and then an upregulation of these enzymes in people aged 80 or older that likely lowered
the intracellular ROS burden. Using cross-sectional and longitudinal aging studies in mice,
the authors recapitulated the findings of the human cohort [41]. These findings suggest that
in the very elderly (i.e., 80 years or older), platelet antioxidant responses may be elicited
as an adaptive mechanism to counterbalance the increase in oxidative stress and platelet
hyperactivation associated with aging [42,43].

4. Platelet Mitochondria in Aging

Another important cellular source of ROS is mitochondria, which are key sites of
the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Oxygen consumption
in the mitochondria is central to these processes. Its utilization to generate ATP through
the electron transport chain is not completely efficient, and if electron transfers occur
prematurely to oxygen, O2

•− and its subsequent conversion to H2O2 can be generated
as by-products [44]. Initially proposed by Denham Harman in the 1950s, the free radical
theory of aging aimed to link aging with oxidative stress [45]. Subsequent revisions to
this theory have focused on mitochondria as the primary source of ROS, and they are
hypothesized to promote aging and age-related diseases through the accumulation of
oxidative damage to protein, DNA, and lipid [46]. Although some studies have supported
this theory [47,48], other observations have questioned a direct causal relationship between
ROS and aging [49,50]. In fact, some studies have demonstrated increased lifespans in
various model organisms with elevated mitochondrial ROS [51–53]. Thus, there is some
controversy in the literature on the precise role of mitochondrial ROS in aging, which may
reflect the different methods and types of model organisms used in the separate studies.

Despite not having a nucleus, platelets contain functional mitochondria and are
metabolically active [54]. Platelets consume high levels of ATP, and mitochondrial aer-
obic respiration provides approximately 40% of the total basal energy requirements, while
the remaining 60% is generated through glycolysis [54]. Studies have demonstrated that
platelet activation is associated with alterations in mitochondrial processes such as the gen-
eration of ROS, induction of mitochondrial permeability transition pore (MPTP) formation,
loss of mitochondrial membrane potential (∆Ψm), and induction of apoptosis [55–58]. Con-
versely, inhibition of mitochondrial respiratory function inhibits platelet aggregation and
reduces clot formation [59]. A recent study provided evidence that platelet mitochondrial
function is altered with age [60]. It was observed that older individuals (88 ± 2 years)
display significant alterations in platelet bioenergetics, such as lower basal and ATP-linked
respiration, compared to younger individuals (26 ± 5 years). Furthermore, an increased pro-
ton leak was observed in the platelet mitochondria of older individuals; this was attributed
to the upregulation of an uncoupling protein (UCP). Previous studies have shown that UCPs
are upregulated by superoxide and protected from ROS production through a decreased
flow of electrons through the electron transport chain [61]. This process likely serves as an
adaptive response to increased levels of mitochondrial ROS with advancing age in order to
dissipate ROS generation [62,63]. Therefore, future studies could focus on the protective and
harmful effects of key mitochondrial proteins regulating ROS within platelets during aging.

Mitochondrial superoxide overproduction has been shown to potentiate agonist-
induced platelet activation under hyperglycemic conditions [64–66]. Moreover, hyper-
glycemia induces mitochondrial dysfunction and superoxide production in platelets that
can induce both platelet hyperactivation and apoptosis, leading to increased susceptibil-
ity to experimental thrombosis in murine models of diabetes [66]. Despite observations
that SOD2, the mitochondrial-specific antioxidant enzyme that dismutates O2

•− to H2O2,
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is upregulated in patients with type 2 diabetes mellitus [67], studies failed to show sig-
nificant alterations in platelet function or thrombotic susceptibility with platelet-specific
knockouts of SOD2 in non-aged non-diabetic murine models [68]. Interestingly, these mice
displayed increased mitochondrial superoxide production, while total intracellular ROS
was unchanged compared to wild-type mice [68]. It is possible that the relatively low basal
production of mitochondrial superoxide within platelets in young mice is insufficient to
induce pathologic vascular changes, even with a concomitant deficiency of SOD2. Given
the evidence that platelet activation and thrombotic risk are increased with age, it will be
important for future studies using aging models to evaluate the effects of mitochondrial
ROS and antioxidant enzymes in age-associated vascular disease and thrombosis.

Beyond its role in energy and redox metabolism, there is growing appreciation for mi-
tochondria in other processes, including inflammation, stress response, and cell death, that
can impact longevity and contribute to age-associated vascular diseases [69–74]. Autophagy
is a fundamental cellular process that functions to degrade cellular contents and limit the
accumulation of damaged biomacromolecules and organelles [75,76]. It helps in maintain-
ing homeostasis during cellular stress and is presumed to prevent physiologic aging [77].
Autophagy has been demonstrated in platelets and has been shown to be important for
platelet function and can impact hemostasis and thrombosis when dysregulated [72]. A
pathway downstream to ROS in aging could be a mechanistic target of rapamycin complex
1 (mTORC1), which is involved in nutrient homeostasis and is closely integrated with the
autophagy machinery [78]. A study showed that mTORC1 is upregulated in aged mice
in a ROS-dependent pathway, and pharmacologic or genetic silencing of mTORC1 within
platelets reduced the susceptibility to venous thrombosis in murine models [71].

Mitophagy is an autophagic process that is selective for removing damaged and dys-
functional mitochondria [79,80]. Alterations in mitophagy can impact platelet life span
through direct interactions of apoptosis proteins with the mitophagic machinery [81]. Stud-
ies have demonstrated that platelets of diabetic patients are susceptible to oxidative stress,
which can induce the phosphorylation of p53, resulting in mitochondrial dysfunction and
apoptosis that can contribute to vascular thrombosis [66,82]. In parallel, increased ROS
can induce selective mitophagy in human platelets, and this process serves as a protec-
tive mechanism against oxidative stress to remove damaged mitochondria and prevent
apoptosis in the platelets of patients with diabetes [82]. In the same study, disruption
of mitophagy using mice with a genetic deletion of Parkin or PINK1 produced platelets
with increased susceptibility to H2O2-induced mitochondrial damage and apoptosis [82].
Moreover, genetic deletion of PINK1 in a diabetic mouse model produced platelets that
were hyperactive with increased P-selectin surface expression, and the mice exhibited
increased susceptibility to experimental carotid artery thrombosis [82].

Interestingly, platelet mitophagy can be regulated by methionine oxidation (MetO) [83],
which is a reversible post-translational modification on proteins implicated in both aging
and vascular disease [84–88]. In diabetic patients, increased oxidative stress was found to
increase MetO-modified proteins. Specifically, Parkin Met192 can be oxidized and lead to
protein aggregation and the disruption of mitophagy in human platelets [83]. In the same
study, genetic ablation of the mitochondrial-specific methionine sulfoxide reductase MsrB2
also disrupted mitophagy and promoted the apoptosis of murine platelets [83]. Additional
evidence indicates that MsrB2 is released from damaged mitochondria, reduces/reverses
Parkin Met192 oxidation through direct interactions, and initiates mitophagy to prevent
platelet apoptosis [83]. These findings represent a novel redox mechanism to regulate platelet
mitophagy and apoptosis under conditions of increased oxidative stress, such as diabetes.

5. Platelets and Inflammation in Aging

The term “inflammaging” was a concept introduced in 2000 by Dr. Franceschi and
is now commonly used to describe the pathologic consequences of chronic low-grade
inflammation and physiologic stimulation of the innate immune system that occurs with
advancing age [89]. This concept has been used to explain the higher prevalence of chronic
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disorders in the elderly, including obesity, type 2 diabetes mellitus, and cardiovascular
diseases [89]. Platelets are also recognized as immune and inflammatory cells [13,90]. The
immune functions of platelets are evidenced by their direct interactions with vascular and
inflammatory cells and by the presence of various cytokines and chemokines contained in
their granules and cytoplasm [13,90].

A recent article by Davizon-Castillo et al. provides compelling evidence of a link
between inflammation and platelet activity [91], which is also discussed in several accompa-
nying commentaries [92,93]. TNF-α is a key inflammatory cytokine that is highly correlated
with age-associated cardiovascular disease and is intricately linked with ROS [94–97]. It
was observed that both aged humans and mice exhibited elevated plasma TNF-α and
platelet hyperactivation [91]. Utilizing several complementary murine models of TNF-α
elevation or depletion, a direct functional effect of TNF-α in platelet hyperactivation dur-
ing aging was demonstrated [91]. Single-cell transcriptome analysis of the bone marrow
compartment showed significant reprogramming in platelet/megakaryocyte progenitor
populations in aged mice that corresponded to alterations in mitochondrial function, ox-
idative phosphorylation, and inflammatory signaling pathways [91]. These findings are
largely consistent with a prior study that also showed changes in platelet/megakaryocyte
progenitors using murine models of aging [98]. In addition, Davizon-Castillo et al. ob-
served increased mitochondrial mass and altered bioenergetics with increased oxygen
consumption in platelets from aged mice that were mitigated with TNF-α blockage [91],
which provides further evidence for an intriguing role of mitochondria in “inflammaging”.
Phagosome maturation was one of the top pathways identified by Ingenuity Pathway
Analysis software [91], and, as discussed above, autophagy/mitophagy is important for
maintaining platelet function in the presence of Oxidative stress and mitochondrial dam-
age [82]. Overall, Davizon-Castillo et al. provide substantial evidence that TNF-α is a
crucial driver of platelet hyperreactivity during aging. Their findings provide a good
rationale for future aging studies to examine the precise mechanisms of how inflamma-
tory, mitochondrial, and oxidative pathways may converge to induce aberrant platelet
hyperactivity and their pathological impact on age-associated thrombotic diseases.

In other studies, stimulation of TLRs on platelets has also been shown to modulate
TNF-α production in vivo, likely through interactions with other immune or vascular
cells [99]. Platelets express several toll-like receptor (TLR) family members [99,100] that
have classical functions not only in mediating innate immune signaling but also in regulat-
ing platelet function [101–104]. Stimulation of TLR4 by lipopolysaccharide (LPS) enhances
platelet activation and can promote direct interactions with inflammatory and immune
cells such as neutrophils [101,105]. These effects are likely ROS-dependent, based on the
observations that platelet ROS is increased with LPS stimulation, whereas treatment with
antioxidant enzymes such as SOD or catalase prevents LPS-induced platelet activation [105].
Consistent with these findings, other studies have demonstrated that platelet TLR2 stimula-
tion can also promote platelet activation and is associated with increased ROS production
and platelet–neutrophil aggregates [106]. Given that LPS is a key outer membrane compo-
nent of Gram-negative bacteria known to elicit robust inflammatory and immune responses,
these findings may explain the observations of the increased risk of vascular events, such
as MI and stroke, following acute infections that occur more commonly in the elderly
population [107].

6. Oxidative Stress and Platelets in Chronic Diseases

Hyperlipidemia and atherosclerosis are significantly associated with advancing age
and are major risk factors for the development of thrombotic vascular disease [5,108].
Early clinical studies observed enhanced platelet reactivity in patients with hyperlipi-
demia [109–111]. It was discovered that oxidized forms of lipids, such as oxidized low-
density lipoprotein (oxLDL), can promote platelet activation and thrombosis in murine
models of atherosclerosis via direct binding to CD36 [112], a multiligand scavenger receptor
highly expressed on platelets as well as a broad range of other vascular cell types [113].
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Redox-sensitive signaling pathways directly downstream of the CD36 receptor were identi-
fied to mediate oxLDL-induced platelet activation and thrombosis [114,115]. Specifically,
the binding of oxLDL to the CD36 receptor on platelets induces sustained generation
of intracellular ROS and promotes platelet aggregation, which was prevented by the
pharmacologic inhibition of Nox2 in human platelets or the genetic ablation of NOX2
in murine platelets [115,116]. Other groups have shown that both NOX1 and NOX2 iso-
forms contribute to oxLDL-induced platelet activation [30]. It was demonstrated that a
redox-sensitive protein, extracellular signal-regulated kinase 5 (ERK5) of the MAPK fam-
ily, is directly activated by intracellular ROS generated through oxLDL-CD36 signaling
and contributes to platelet activation, aggregation, and thrombus formation in vivo [117].
Moreover, this mechanistic pathway involving CD36 and ERK5 also promotes caspase
activation and phosphatidylserine externalization on platelets that increase its procoagulant
activity and support fibrin formation in vivo under conditions of dyslipidemia [118]. The
CD36 signaling pathway can also activate innate immune signaling cascades in platelets
through TLR activation, contributing to platelet hyperreactivity in the setting of hyperlipi-
demia [103]. The clinical relevance of the CD36 signaling pathway in thrombotic vascular
disease is evidenced by human genetic studies identifying polymorphisms in the CD36
gene that are strongly associated with platelet surface CD36 expression and risk of acute
myocardial infarction [119,120]. Platelet CD36 signaling has also been suggested to play a
role in platelet hyperreactivity and thrombosis in other age-related conditions associated
with increased cardiovascular risk, including diabetes mellitus [121].

Type 2 diabetes mellitus (T2DM) is a well-established cardiovascular risk factor and is
significantly more prevalent in the elderly population [122]. Patients with T2DM exhibit
platelet hyperreactivity, and several groups have provided evidence that hyperglycemia
induces alterations in oxidative pathways in platelets. For instance, the expression of the
P2Y12 receptor has been shown to be significantly increased in platelets from T2DM patients
and is constitutively activated [123]. Stimulation of the P2Y12 receptor under high glucose
conditions in animal models has been shown to induce pathways that increase platelet
intracellular ROS, contributing to platelet hyperactivity and limiting certain antiplatelet
therapies [123]. There is evidence that platelets from patients with T2DM with poor
glycemic control express higher levels of Nox1 [124]. Hyperglycemia also can induce
mitochondrial superoxide generation, potentiating collagen-induced platelet activation [64].
Urinary levels of platelet thromboxane (TX) metabolites are elevated in patients with
T2DM [125], and it was demonstrated that aldose reductase is an important enzyme
that mediates hyperglycemia and collagen-induced platelet activation and TX release
through a pathway involving ROS generation [126]. Moreover, aldose reductase also
contributes to mitochondrial dysfunction/damage and platelet apoptosis in the setting of
hyperglycemia [66]. Other pathways of mitochondrial-ROS-driven platelet activation in
diabetes have been discussed in the section on platelet mitochondria in aging (see above).

Cancer is another disease often associated with aging. The incidence of many cancers
increases dramatically with age, and older individuals are at greater risk for the devel-
opment of advanced disease [127]. Accumulating evidence has indicated that platelets
and tumor cells can interact reciprocally through direct binding or through the secretion
and uptake of cellular factors that can influence immune and vascular responses [128,129].
These interactions have been shown to alter the key pathological processes related to cancer
tumorigenesis [130,131] and metastasis [132–134] and have also provided novel diagnostic
tools for cancer detection [135,136]. Elevations in ROS have been detected in many subtypes
of cancers, and redox dysregulation has been implicated in cellular signaling pathways
associated with both cancer development and clearance [137,138]. Many of the growth
factors and cytokines that can induce ROS generation and exert biological effects on cancer
are abundant in platelets and can be secreted upon stimulation [90,139–141]. However, only
a few studies have directly examined platelet-specific ROS in cancer and chemotherapeutics.
A small study reported increased oxidative and nitrative modifications of platelet proteins
from patients with breast cancer [142]. A separate study provided evidence that metabolites
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of tamoxifen can increase the production of ROS through the activation of NADPH oxidase
and promote platelet aggregation [143]. Further studies elaborating on the specific platelet
redox mechanisms in different cancer subtypes will better determine the role of platelets
and ROS in cancer pathogenesis.

Smoking is significantly associated with increased risk and mortality from cardio-
vascular disease [144]. Several early clinical studies provided the initial evidence that
smoking potentiates platelet aggregation responses [145,146]. Subsequent studies have
shown that smoking can induce platelet thrombus formation ex vivo in patients with
coronary artery disease who are taking aspirin [147]. Several mechanisms involving redox
dysregulation and nitric oxide bioavailability have been implicated in smoking-induced
platelet hyperactivation and thrombosis [148–150]. Interestingly, other studies have associ-
ated smoking with a paradoxical decrease in platelet activation and a reduced recurrence
of cardiovascular events in patients who are taking oral P2Y12 inhibitors (i.e., clopido-
grel) [151–155]. The precise mechanism of this protection is unclear but likely involves
the effects of smoking on hepatic cytochrome P450 enzymes and the complex metabolism
of clopidogrel [156,157]. Overall, the current evidence suggests that smoking increases
platelet reactivity and thrombotic risk but enhances the efficacy of clopidogrel therapy after
thrombotic events.

7. Platelets in COVID-19 Pathogenesis

Coronavirus disease 2019 (COVID-19) is caused by the infection of severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 primarily targets the lung
epithelial cells to induce respiratory distress but can also cause a systemic inflammatory
response and vascular thrombosis [158,159]. Age plays an important role in COVID-19
pathogenesis, with severe illness and mortality disproportionally affecting the elderly. This
is compounded by the higher prevalence of other traditional cardiovascular risk factors
with advancing age, including diabetes, obesity, and hypertension. Vascular thrombosis
and thrombo-inflammatory complications are major causes of morbidity and mortality in
COVID-19, and platelets have been implicated as a key contributor to disease pathogen-
esis [160]. SARS-CoV-2 mRNA can be detected in the platelets of subsets of COVID-19
patients, suggesting that platelets can uptake SARS-CoV-2 mRNA [161,162]. In a study
evaluating 115 consecutive patients with COVID-19, platelets were shown to be hyperac-
tive with increased adhesion, aggregation, degranulation, and extracellular vesicle release
compared to healthy individuals, contributing to alterations in cytokine and growth factor
release [161]. Other groups have also reported hyperactive platelets in COVID-19 and
demonstrated that platelets can associate with monocytes through platelet surface P-selectin
and αIIbβ3 binding, which induces tissue factor expression by monocytes [163]. In fact,
platelets from COVID-19 patients exhibit increased interactions with multiple leukocyte
subsets, including neutrophils, lymphocytes, and monocytes [162].

Interestingly, neutrophil extracellular traps (NETs), which are web-like chromatin
structures containing DNA–histone complexes and antimicrobial proteins released upon
neutrophil activation, are increased in the plasma of COVID-19 patients and correlated
with disease severity in some studies [164–166]. In a small case series of COVID-19 pa-
tients who developed ST-elevated myocardial infarction (STEMI), increased incidence and
density of NETs were observed in the coronary thrombi of COVID-19 patients undergo-
ing primary coronary intervention [167]. NET formation can be induced by activated
platelets [101,168–170], and there is evidence that platelets contribute to NET formation
in COVID-19, with reports of NET-containing microthrombi associated with platelet de-
position in COVID-19 autopsies [164]. These findings are supported by other studies
demonstrating that NET formation can be triggered by platelet-rich plasma from COVID-19
patients [165]. There is evidence of redox dysregulation in COVID-19, with increased Nox2
activity detected by plasma metabolites [171]. Nox2 is able to regulate platelet activation
and NET formation in the lung [172]. Another potential mechanism of redox dysregulation
in COVID-19 is through altered iron homeostasis [173,174]. Studies early in the pandemic
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reported an association between increased serum ferritin and in-hospital mortality [175].
Iron overload is associated with ferroptosis, a form of regulated cell death characterized by
the iron-dependent accumulation of lipid peroxides and redox dysregulation through the
depletion of glutathione and the inhibition of GPx-4 [176,177]. Ferroptosis has been impli-
cated in COVID-19 pathogenesis and is suggested to contribute to multiorgan damage [178].
The release of free iron from heme has been reported to increase lipid peroxidation and
induce platelet activation and cell death through ferroptosis [179]. Nevertheless, the precise
role of ROS and platelets in COVID-19 remains to be determined.

8. Conclusions

Platelets are fundamental vascular cells that regulate a myriad of physiologic processes
through activation and interactions with immune and vascular cells. Although data are
still emerging, accumulating evidence from clinical, translational, and basic science studies
suggests that the process of aging results in alterations in redox biology and platelet
function (summarized in Figure 2), which can have a significant impact on the development
of vascular diseases. The regulation of these processes is complex and is impacted by a
variety of changes that occur with aging, including inflammation, cellular stress, organelle
dysfunction, and cell-to-cell interactions. Understanding the cellular and molecular redox
mechanisms that drive these changes in platelets during aging will enhance our knowledge
and will allow for the development of more targeted therapeutics.
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Figure 2. Selected mechanisms of platelet activation and ROS generation in aging and age-associated
disease. A variety of extracellular ligands can associate with their respective platelet receptors and
induce platelet activation and ROS generation. Multiple sources, including NADPH oxidases and
mitochondria, can increase intracellular ROS in platelets. ROS generation in the cytoplasm can activate
platelet surface receptors and induce granule release mediated by kinase signaling cascades and
increased intracellular calcium. Dysfunctional mitochondria can produce increased ROS and result
in mitochondrial permeability transition pore (MPTP) formation, loss of mitochondrial membrane
potential (∆Ψm), and induction of platelet apoptosis. Antioxidant enzymes localized in both the
cytoplasm and the mitochondria can reduce ROS and prevent platelet activation and apoptosis.
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