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Introduction
Great efforts have been made, over the last 2 decades, to 
understand how HIV-1 integrates into the human genome 
and how proviral transcription functions at individual inte-
gration positions.1-6 HIV-1 preferentially integrates into 
chromatin-accessible sites within or near transcriptionally 
active regions in CD4+ T cells of patient samples and in ex 
vivo infection studies,7-10 and select integration sites can pro-
mote T cell proliferation ex vivo.11 However, integrated pro-
viruses are detected on every human chromosome, in various 
chromatin landscapes (euchromatic and heterochromatic), 
and at different locations (intergenic or intragenic) and ori-
entations (sense, divergent, or convergent) respective to 
human genes and regulatory elements.12 Because the integra-
tion neighborhood is highly variable in terms of sequence, 
predicted chromatin structure, and transcriptional activ-
ity,13-16 it is possible that integration sites contain information 
regulating the amplitude of proviral transcription and hence 
shaping its fate (active vs latent infection). Indeed, previous 
works on tens of Jurkat CD4+ T cell clones containing HIV-1 
placed in distinct positions suggest that the integration site 
controls basal and immune stimulation-dependent trans-
cription,13,15,17,18 implying that HIV-1 operates in an integration 

site-dependent manner influenced by the human genome 
context and/or architecture. Despite previous research, it is 
still unknown which regulatory features have the most influ-
ence on HIV-1 proviral transcription and whether numerous 
factors contribute in an additive or synergistic manner. Given 
the huge number of possible regulatory features, including 
nuclear sub-compartments, enhancers, expression of genic and 
non-genic domains, genome accessibility, and functional chro-
matin states (Figure 1A), HIV-1 transcription and expression 
could be regulated at multiple levels.

Here, we devise an integrative genomics strategy for deter-
mining the contribution of individual or combinations of regu-
latory features to HIV-1 proviral expression (Figure 1A and B). 
First, we defined the nuclear sub-compartments, transcription 
activity landscape, chromatin accessibility, and chromatin states 
around HIV-1 integration sites by combining HIV-1 integra-
tion and expression datasets with new and open-source, large-
scale datasets including 3-dimensional (3D) genome 
architecture, transcriptome, genome accessibility, and epigenet-
ics (chromatin marks) (Table 1). Second, we predicted upstream 
chromatin accessibility, transcription activity, and categorical 
nuclear sub-compartments as optimal features shaping HIV-1 
expression outcomes through a machine learning (ML) logistic 
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Figure 1. Flowchart of the integrated genomics approach to elucidate human genome codes contributing to HIV-1 proviral transcription and fate. (A) 

Scheme depicting the positions of HIV-1 proviruses relative to the multiple regulatory features evaluated in this study including nuclear architecture (with 

its A and B sub-compartments and lamina-associated domains), typical enhancers (TEs) and super enhancers (SEs), host expression, nucleosome 

density and accessibility, and chromatin marks collectively used to demarcate functional chromatin states. (B) Barcoded HIV-1 Ensembles (B-HIVE) 

expression data are compared with each individual dataset 1-by-1 (“1 × 1”). Then, B-HIVE expression data are compared with datasets that combine 

multiple datasets (“2 plus Omics”) (eg, TEs and SEs combine TT-seq and ChIP-seq). B-HIVE is then compared with “all” datasets with a machine learning 

model. From there, future HIV-1 patients’ datasets can be integrated with the long-term objective to predict human genome codes leading to clinical 

decision-making.



Ruess et al 3

regression model of a 2 kb region around HIV-1 integration 
sites to interrogate neighboring effects.

Materials and Methods
Cell lines

Jurkat, Clone E6-1 (ATCC TIB-152) was obtained from the 
American Type Culture Collection (ATCC, Manassas, VA) and 
Jurkat J-Lat 10.6 clone was obtained from the lab of Dr Eric 
Verdin. Cells were cultured in Roswell Park Memorial Institute 

(RPMI) 1640 Medium (HyClone, Logan, UT, SH30027.FS) 
supplemented with 8% fetal bovine serum (FBS) (Millipore 
Sigma, Burlington, MA, H9268) and 1% Penicillin/Streptomycin 
(MP Biomedicals, Irvine, CA, 091670049).

MNase-seq library preparation

Jurkat CD4+ T cells were cultured in RPMI 1640 media sup-
plemented with 10% FBS and 1× Penicillin/Streptomycin at 
37°C with 5% CO2 at optimal density of 0.5 to 1 × 106 cells per 

Table 1. Genomics datasets used in this study.

SEqUENCING 
TyPE

TARGET SRA/ENCODE INPUT SRA/
ENCODE

REPLICATE REFERENCE

DNase-seq DNase I hypersensitive ENCFF001DPG N/A 1 Encode Consortium

DNase I hypersensitive ENCFF001DPF N/A 2 Encode Consortium

MNase-seq Micrococcal nuclease GSM4295147 N/A 1 This study

ChIP-seq H3K27me3 GSM569085 GSM569086 1 R. young Lab, unpublished

H3K4me3 ENCLB868HNG GSM945268 1 Encode Consortium

H3K4me3 ENCLB676HDJ GSM945268 2 Encode Consortium

H3K4me3 GSM1603213 GSM1603229 3 Reeder et al19

H3K27ac GSM1697882 GSM1697880 1 Hnisz et al20

H3K27ac GSM1519638 GSM1519637 2 Mansour et al21

H3K27ac GSM1519642 GSM1519640 3 Mansour et al21

H3K27ac GSM1603211 GSM1603229 4 Reeder et al19

H3K4me1 GSM1603225 GSM1603229 1 Reeder et al19

H3K36me3 GSM1603209 GSM1603229 1 Reeder et al19

H3K79me3 GSM1603215 GSM1603229 1 Reeder et al19

H3K9me3 GSM1603227 GSM1603229 1 Reeder et al19

RNA-seq Total RNA GSM4290736 N/A 1 I. D’Orso Lab, unpublished

Total RNA GSM4290737 N/A 2 I. D’Orso Lab, unpublished

Total RNA GSM4290738 N/A 3 I. D’Orso Lab, unpublished

TT-seq Transient transcriptome GSM2260187 N/A 1 Michel et al22

Transient transcriptome GSM2260188 N/A 2 Michel et al22

Hi-C 3D genome architecture GSM3489136 N/A 1 Lucic et al8

3D genome architecture GSM3489137 N/A 2 Lucic et al8

DamID-seq Lamina-associated 
protein lamin B1

GSM2492607 GSM2492606 1 Robson et al23

Lamina-associated 
protein lamin B1

GSM2492609 GSM2492608 2 Robson et al23

B-HIVE 
(Barcoded HIV-1 
Ensembles)

HIV-1 Expression DNA GSM2182756, GSM2182757 N/A 1 Chen et al24

HIV-1 Expression DNA GSM2182758, GSM2182759 N/A 2 Chen et al24

HIV-1 Expression RNA GSM2182760, GSM2182761 N/A 1 Chen et al24

HIV-1 Expression RNA GSM2182762, GSM2182763 N/A 2 Chen et al24
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mL. Cells were passaged every 2 days at a 1/3 dilution. Cell 
suspensions were transferred to 50 mL conical tubes and pel-
leted at 420 × g for 10 min. Cells were then resuspended in 
phosphate-buffered saline (PBS) at a density of 1 × 106 cells/
mL for crosslinking with 0.5% methanol-free formaldehyde 
(ThermoFisher, Waltham, MA, 28908) at room temperature 
with rotation for 10 minutes. The reaction was then quenched 
with 150 mM glycine (PBS buffer pH 7.5) for 10 minutes at 
room temperature. Cells were then pelleted by centrifuging at 
420g for 10 minutes at 4°C and then washed twice with 20 mL 
cold PBS each time. Nuclei were collected by lysing the cells in 
Farnham’s lysis buffer (5 mM PIPES pH 8.0, 85 mM KCl, and 
0.5% NP-40 freshly supplemented with 1 mM PMSF [phe-
nylmethylsulfonyl fluoride] and EDTA-free Protease inhibitor 
cocktail), washed once with cold MNase buffer (20 mM Tris-
HCl pH 7.5, 15 mM NaCl, 60 mM KCl, and 2 mM CaCl2) 
and then resuspended in MNase buffer at a concentration of 
10 × 106 cells/mL before digestion. Micrococcal nuclease 
(New England BioLabs, Ipswich, MA, M0247S) digestion was 
performed using 1100 U enzyme/106 cells at 37°C for 10 min-
utes to achieve roughly 80% mono-nucleosome–20% di-nucle-
osome populations. The reaction was interrupted with Stop 
buffer (20 mM EDTA pH 8.0, 20 mM Ethylene glycol 
tetraacetic acid (EGTA) pH 8.0, and 0.4% Sodium lauryl sul-
fate (SDS)) and then centrifuged at 21 000g for 5 minutes at 
4°C. The supernatants were saved, and the small white pellet 
discarded. Samples (100 μL) were mixed with 1 volume of 2× 
Proteinase K buffer (4 mM EDTA pH 8.0, 40 mM Tris-HCl 
pH 6.8, 1M NaCl, and 1 mg/mL Proteinase K) for reverse 
crosslinking at 65°C for 16 hours. After reverse crosslinking, 
the samples were first extracted with 1 volume of phenol-chlo-
roform-isoamyl alcohol (25:24:1 ratio) with centrifugation at 
21 000g for 5 minutes at 4°C and later with 1 volume of chlo-
roform-isoamyl alcohol (24:1 ratio). The aqueous phase was 
transferred to a 1.5 mL epitube and precipitated with 2.5 vol-
umes of 100% cold ethanol and 1/10 volume of 3M NaOAc 
with centrifugation at 21 000g for 15 minutes at 4°C. Samples 
were finally washed with 75% ethanol, air dried for ~5 minutes, 
and resuspended in 20 μL of water. The DNA concentration 
was measured by Qubit/Nanodrop. About 3 μg of DNA were 
loaded onto a 1.5% DNA agarose gel to verify the expected 
nucleosomal size distribution (80% mono- and 20% di-nucle-
osome). The mono-nucleosome band (~150 bp size) was 
excised, and gel cleaned up using DNA Clean & Concentrator 
kit (Zymo Research, Irvine, CA, D4013) following the manu-
facturer’s instructions. The DNA was eluted with 20 μL water 
(25 ng/μL final concentration). Replicate DNA samples were 
analyzed on high-sensitivity DNA tape on Agilent 2200 
TapeStation and used for library preparation. Library was pre-
pared with ~375 ng of mono-nucleosomal DNA using the 
KAPA Hyper Prep Kit (KAPA Biosystems, Wilmington, MA, 
KK8502) according to the manufacturer’s instructions. For the 
PCR amplification step, we inputted ~7.5 ng and performed 9 

cycles of amplification, obtaining 700 ng (~35 ng/μL). The 
quality control of the MNase-seq library was done on Agilent 
2200 TapeStation. A single peak with average size of 306 bp 
(including ligated adapters) was observed. The MNase-seq 
DNA library was diluted to 4.2 nM for sequencing on an 
Illumina NextSeq 500 instrument as a 2 × 75 bp library. 
Illumina bcl2fastq (v 2.19.0) software was used for 
basecalling.

Barcodes and HIV-1 integration site mapping on 
the human genome and HIV-1 barcode clustering 
and quantif ication

We re-analyzed the Barcoded HIV-1 Ensembles (B-HIVE) 
dataset24 in the human genome (GRCh38) to prevent problems 
that can arise with lifting over data from previous genome ver-
sions. The B-HIVE data were processed with the B-HIVE for 
single provirus transcriptomics docker container (https://
github.com/gui11aume/BHIVE_for_single_provirus_tran-
scriptomics) with a change to the expr.nf file (see GitHub 
scripts for the updated script). For HIV-1 integration and 
expression analysis from B-HIVE dataset, we first identified 
barcodes in the HIV-1 proviruses (DNA barcodes), then 
mapped barcodes to integration sites, and quantified their 
expression, Quantitative Reverse Transcription PCR 
(RT-qPCR) normalized to the copy of DNA barcodes 
(log10[RNAmean / DNAmean]). The B-HIVE expression dataset 
was subdivided into 6 different groups: (1) Intergenic—Same, 
(2) Intergenic—Convergent, (3) Intergenic—Divergent, (4) 
Intragenic—Same, (5) Intragenic—Convergent, and (6) 
Intragenic—Overlapping (which consists of 3 subgroups; 
Figure 2A) depending on the relationship to the nearest gene 
from GENCODE version 25. For each group, a Circos plot 
version 0.69625 was created to show the relationship of HIV-1 
expression to genome location (Figure 2C to H). HIV-1 expres-
sion versus distance to nearest transcription start site (TSS) was 
plotted in R version R/3.3.2-gccmkl26 using ggplot2.27

ChIP-seq data analysis

The Nextflow28 BICF ChIP-seq Analysis Workflow version 
1.0.029 processed all ChIP-seq files, merging separate experi-
ments as technical replicates. Briefly, reads were trimmed with 
trimgalore version 0.4.130 (parameters: -q 25 --illumina --gzip 
--length 35), aligned with bwa aln (-q 5 -l 32 -k 2) and then 
bwa samse (standard parameters) version 0.7.12,31 sorted and 
indexed with SAMtools version 1.332 (-F 1804 -q 30), and 
duplicates removed with Sambamba version 0.6.633 (standard 
options). Bam files were converted to tagAlign with bedtools 
version 2.26.0 bamtobed,34 after which, samples were checked 
for quality control using deeptools version 2.5.0.1 multiBam-
Summary, plotCorrelation, plotCoverage, and plotFingerprint 
(all standard protocols),35 and cross-correlation analysis with 
phantompeakqualtools version 1.2.36,37 Peaks were called with 

https://github.com/gui11aume/BHIVE_for_single_provirus_transcriptomics
https://github.com/gui11aume/BHIVE_for_single_provirus_transcriptomics
https://github.com/gui11aume/BHIVE_for_single_provirus_transcriptomics
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MACS2 version 2.1.0-20151222,38 using the predominant 
fragment length from the cross-correlation analysis as --ext-
size (other parameters: -p 1e-2 --nomodel --shift 0 --keep-
dup all -B --SPMR). Consensus peaks were called (bedtools 
version 2.26.0)34; and annotated (library ChIPseeker in R26,39; 
if at least 2 replicates or pseudo-replicates contained a peak).

RNA-seq data analysis

FASTQ files were processed with the BICF RNA-seq 
Analysis workflow version 0.5.5. Briefly, reads with Phred 
quality scores less than 20 and less than 35 bp after trimming 

were removed from further analysis using trimgalore version 
0.4.1.30 Quality-filtered reads were then aligned to the human 
reference genome (GRCh38) using the HISAT version 
2.0.140 aligner using default settings and marked duplicates 
using Sambamba version 0.6.6.33 Aligned reads were quanti-
fied to coding sequences of known transcripts using “feature-
count” version 1.4.641 per gene ID against GENCODE 
version 25. HIV-1 expression versus log10 Fragments Per 
Kilobase Million (FPKM) of the nearest gene (eg, the gene in 
which HIV-1 is integrated into if intragenic or the nearest 
gene if intergenic) was plotted in R version R/3.3.2-gccmkl26 
using ggplot2.27

Figure 2. Defining the expression of HIV-1 proviral integration groups based on their position and orientation respective to human genes: (A) Diagram of 

6 HIV-1 integration groups relative to nearest gene(s). Group 1: Intergenic—Same (blue), Group 2: Intergenic—Convergent (red), Group 3: Intergenic—

Divergent (orange), Group 4: Intragenic—Same (green), Group 5: Intragenic—Convergent (gray), and Group 6: Intergenic—Overlapping (purple). Group 6 

(overlapping genes at the same position) comprises 3 subgroups (6a, 6b, 6c). (B) Pie chart of the percentage of Barcoded HIV-1 Ensembles (B-HIVE) 

insertions (n = 1558) into each of the 6 HIV-1 integration groups. (C to H) Circos plot of each of the 6 HIV-1 integration groups as described in panel (A). 

Each circle represents B-HIVE chromosomal distribution and expression, with the inner most line, a log10 of HIV-1 expression = –4, and the outer most line, 

a log10 of HIV-1 expression = 3.
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TT-seq data analysis

FASTQ files were processed by a modified version of the 
BICF RNA-seq Analysis workflow version 0.5.5. Briefly, 
reads with Phred quality scores less than 20 and less than 
35 bp after trimming were removed from further analysis 
using trimgalore version 0.4.1.30 Quality-filtered reads were 
then aligned to the human reference genome (GRCh38) using 
the HISAT version 2.0.140 aligner using default settings and 
marked duplicates using Sambamba version 0.6.6.33 Aligned 
reads were quantified to the entire annotated transcript region 
using “featurecount” version 1.4.641 per gene ID against 
GENCODE version 25.

MNase-seq data analysis

FASTQ files were processed with a modified Nextflow,28 BICF 
ChIP-seq Analysis Workflow version 1.0.0.29 Briefly, we used 
trimgalore version 0.4.130 on the raw reads to remove reads 
shorter than 35 bp and with Phred quality scores less than 
20 bp and then aligned trimmed reads to the human reference 
genome (GRCh38) using default parameters in BWA samse 
version 0.7.12.31 The aligned reads were subsequently filtered 
for quality and uniquely mappable reads were retained for fur-
ther analysis using SAMtools version 1.331 and Sambamba 
version 0.6.6,33 and bedtools version 2.26.034 bamtobed con-
verted the bed file to tagAlign. Peaks were called with iNPS 
version 1.2.242 and filtered for a –log10 (Pvalue_of_peak) of less 
than .05.

DNase-seq data analysis

FASTQ files were processed with a modified Nextflow,28 BICF 
ChIP-seq Analysis Workflow version 1.0.0.29 Briefly, we used 
trimgalore version 0.4.130 on the raw reads to remove reads 
shorter than 35 bp and with Phred quality scores less than 
20 bp and then aligned trimmed reads to the human reference 
genome (GRCh38) using default parameters in BWA samse 
version 0.7.12.31 The aligned reads were subsequently filtered 
for quality and uniquely mappable reads were retained for fur-
ther analysis using SAMtools version 1.332 and Sambamba 
version 0.6.6.33 Relaxed peaks were called using MACS2 ver-
sion 2.1.0-2015122238 with the following parameters: -p 1e-2 
--nomodel --shift -100 --extsize 200 --keep-dup all -B 
--SPMR. Peaks that overlap at least 50% between replicates 
were retained.

Hi-C data analysis

Reads were pooled by library and ran through the standard 
Hi-C pipeline using HOMER version 4.10.4.43 Briefly, reads 
were trimmed with homerTools trim -3 GATC -mis 0 -match-
Start 20 -min 20, mapped to human reference genome 
(GRCh38) with bowtie2 version 2.2.8,44 and converted to tag 

directory (makeTagDirectory -genome hg38 -checkGC 
-restrictonSite GATC). Matrices are normalized with analyze-
HiC (standard protocol).

Typical and super enhancer databases

Strand specific, TT-seq was used to identify possible typical 
enhancers (TEs) and super enhancers (SEs). For this purpose, 
enhancers are defined as regions of the genome that are bidi-
rectionally transcribed, and not in a gene or its promoter, or an 
annotated linc-RNA (Supplementary Figure S1). A 4-state 
Hidden Markov Model (HMM) on TT-seq both strands, 
TT-seq forward strand and TT-seq reverse strand, identified 
regions of the genome that are actively transcribed. Four states 
were chosen over a 2-state model because there were various 
amounts of transcription found in the genome; genic regions 
were easily identified, but low expression intergenic regions 
could not be identified with 2 states. Thus, 3 of the 4 states 
were coded for transcribed, and 1 state was labeled as non-
transcribed. A database of possible enhancers was created by 
identifying regions of the genome that were identified as tran-
scribed for all data and overlapped with regions that were both 
forward and reverse transcribed. Also added to the possible 
enhancer list were regions where there were overlapping for-
ward and reverse transcription, but not identified as transcribed 
in all data. From this list, protein-coding genes with 2 kb 
upstream and downstream were removed. Next, annotated 
regions from RNA-seq with an FPKM greater than 1 for all 
replicates and not protein-coding genes were removed. This 
final list of 20 943 regions is purported enhancers.

Super enhancers were identified using Rose v0.1,45,46 stitch-
ing together a 12.5 kb distance, excluding 2.5 kb from TSS. 
Purported enhancer regions from TT-seq were used as previ-
ously identified enhancer regions. Merged, filtered, and read 
mapped duplicates removed bam files of histone marks 
(H3K27ac, H3K4me3, and H3K4me1) were used to rank the 
possible enhancers. As not all enhancers are identifiable with 
the 3-histone marks, TT-seq bam files were also used to iden-
tify SEs, and the output was filtered again for transcribed, 
annotated regions of the genome (eg, genes and linc-RNAs). 
The final SE database contained 767 merged regions 
(Supplementary Figure S1 and Supplementary Table S1), of 
which 360 were identified with H3K27ac alone, 436 identified 
with H3K4me3 alone, 301 identified with H3K4me1 alone, 
and 115 identified with TT-seq alone. The 767 SE regions 
were removed from the 20 943 purported enhancer regions 
leaving 18 357 possible enhancer regions. Of these regions, 701 
overlap with H3K27ac peaks, 262 overlap with H3K4me3 
peaks, 702 overlap with H3K4me1 peaks, and 1301 overlap 
with forward and reverse TT-seq transcribed regions with 
bidirectional transcription. The final merged regions contain 
2180 enhancers (Supplementary Figure S1 and Supplementary 
Table S1). The closest TE and SEs to each provirus within the 
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6 HIV-1 integration groups (Figure 2A) were identified with 
bedtools closest (version 2.26.0).34 HIV-1 expression versus 
distance to nearest TE or SE was plotted in R version R/3.3.2-
gccmkl26 using ggplot2.27

De Novo identif ication of chromatin states with 
ChromHMM

We implemented ChromHMM,47 which uses a multivariate 
HMM to calculate the probabilistic nature of a multi-state 
model and the biological nature of the state of chromatin at 
that location, to discover chromatin states in Jurkat T cells 
using epigenomics information derived from 7 individual 
ChIP-seq marks (H3K27me3, H3K4me3, H3K27ac, 
H3K4me1, H3K36me3, H3K79me3, and H3K9me3) known 
as state emissions. Filtered bam files, with mapping read dupli-
cates removed, for each of the 7 histones, were individually 
converted to binary bin files with ChromHMM BinarizeBam 
v1.19.47 We first obtained the state emissions of 15 different 
chromatin states defined as described on the Roadmap epig-
enomics project (https://egg2.wustl.edu/roadmap/web_portal/
chr_state_learning.html) based on the observed data for the 
above 7 histone modifications. We used a core 15-state model 
for our analyses as it captured all the key interactions between 
the chromatin marks, and because larger numbers of states (eg, 
“expanded 18-state model”) did not apparently capture suffi-
ciently distinct interactions. To de novo generate the core 
15-state model in Jurkat T cells, we compared the relative 
abundance of the state emissions in Jurkat with known chro-
matin states for the 3 ENCODE cell lines most genetically 
and phenotypically linked with Jurkat (E115: Dnd41T cell 
leukemia, E116: GM12878 B cell lymphoblastoid, and E123: 
K562T cell leukemia) (Supplementary Figure S2A). To assign 
biologically meaningful mnemonics to the 15 chromatin states, 
we used the ChromHMM package to compute the overlap and 
neighborhood enrichments of each chromatin state relative to 
various types of functional annotations including the 
ChromHMM built in RefSeq annotations of (1) CpG islands; 
(2) genes; (3) exons; (4) introns; (5) TSS, 2 kb windows around 
TSS (TSS flanking), transcription termination sites (TTSs), 
and 2 kb windows around TTS (TTS flanking) based on the 
GENCODE v27 annotation; (6) Zinc finger (ZNF) genes 
obtained from ChromHMM; and (7) TEs and SEs obtained 
as described above (Figure 4A).

Identif ication of nuclear sub-compartments

The 2 Jurkat Hi-C libraries (see above) were combined with 
HOMER v4.10.4 makeTagDirectory using a standard proto-
col.43 The eigen values of the first principal component of each 
chromosome was calculated with HOMER v4.10.4 run-
HiCpca using a standard protocol.43 The sign of the eigen val-
ues divide each chromosome; however, it does not state if either 
positive or negative values are representative of the A or B 

sub-compartments. So, for each chromosome, the positive and 
negative eigen values were overlaid with Jurkat’s 15-state chro-
matin marks (ChromHMM v1.19 OverlapEnrichment).47 
The A and B sub-compartments were clearly defined with the 
B sub-compartments preferentially segregating in states 9, 13, 
and 15 (heterochromatin, repressed Polycomb, and quiescent/
Low, respectively). The sign of the eigen values were then cor-
rected so that positive values represented the A sub-compart-
ment and negative values, B sub-compartment. K-means of 
k = 2 was calculated on the A sub-compartment, and k-means 
k = 2 through k = 5 on the B sub-compartment using R v3.5.1 
k-means. The A sub-compartment was labeled A1 or A2 based 
on the results of overlaying the k-means on the chromatin 
states; with A1 having much higher values than A2. The B 
sub-compartment was overlaid with the chromatin states for 
all k-mean k = 2 through k = 5; however, the results did not split 
the B sub-compartment on expected chromatin marks 
(Supplementary Figure S3A). Thus, the B sub-compartment 
was not subdivided. The GM12878 sub-compartments were 
retrieved from the Gene Expression Omnibus (GEO) data-
base (GSE63525). The coordinates were lifted over to GRCh38 
with UCSC liftOver.48

Machine learning

To study the immediate landscape surrounding HIV-1 inser-
tions (1559 unique insertions in total) and its possible effects 
on expression, we looked at 2 kb regions, in 200 bp increments 
around the HIV-1 integration sites, for a total of 280 features 
per integration site (Figure 6A and Supplementary Table S2). 
Reads per kilobase per million (RPKM) values of each 200 bp 
bin (20 bins in total) were calculated for the 7 histone marks 
(H3K27ac, H3K4me3, H3K4me1, H3K36me3, H3K79me3, 
H3K9me3, and H3K27me3), RNA-seq, MNase-seq, DNase-
seq, and TT-seq using RPKM.py (https://git.biohpc.swmed.
edu/venkat.malladi/miscellaneous_scripts/blob/master/
scripts/rpkm.py). Discrete values for ChromHMM states and 
lamin sub-compartment states were also noted for each 200 bp 
region. The ChromHMM states were then converted from a 
categorical into a numerical value based on our understanding 
on its openness: U1 (most open), U4, U3, U6, U2, U7, U5, U10, 
U8, U11, U12, U14, U13, U9, and U15 (most close) in order. 
The HIV-1 expression level was normalized by z-transform 
and was annotated as “Low” if the normalized expression is 
lower than −0.5 (n = 351), as “High” if higher than 0.5 (n = 455), 
and otherwise as “Intermediate” (n = 753) (Figure 6A). To 
determine optimal features, which have predictive power in 
HIV-1 fate prediction, and train a prediction model with them, 
an ML approach was taken. As a first step, the genetic land-
scape dataset was randomly split into a training dataset (75% of 
HIV-1 insertions) and a test dataset (25% of HIV-1 inser-
tions). To select optimal features for HIV-1 expression level 
prediction, an R package, smbinning (https://rdrr.io/cran/
smbinning/), was used for feature selection in the training 

https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
https://git.biohpc.swmed.edu/venkat.malladi/miscellaneous_scripts/blob/master/scripts/rpkm.py
https://git.biohpc.swmed.edu/venkat.malladi/miscellaneous_scripts/blob/master/scripts/rpkm.py
https://git.biohpc.swmed.edu/venkat.malladi/miscellaneous_scripts/blob/master/scripts/rpkm.py
https://rdrr.io/cran/smbinning/
https://rdrr.io/cran/smbinning/
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dataset consisting of “High” and “Low” expression instances 
only. It returned each feature’s Information Value (IV), which 
is a powerful classifier that is relevant to its importance in the 
prediction task but does not explain how the features contrib-
ute to the prediction. We used the conventional threshold of 
IV ⩾ 2 as optimal features to train our model (Supplementary 
Table S3). After training a logistic regression model with the 
training dataset of these optimal features, the model was evalu-
ated with the unseen test dataset (Supplementary Table S4). 
Note that while the “Intermediate” expression instances were 
excluded for the model training to get a better model, we 
included them for model evaluation to understand how the 
optimal features are contributing to the prediction. A metagene 
profile plot of 2 kb region surrounding HIV-1 insertion in 
H3K27ac and MNase-seq (Figure 6B and C) as well as heat-
maps of HIV-1 insertions and mean expression in each sub-
compartment (Figure 6D and E) were created.

Quantification and statistical analysis

P-values were determined as indicated in each analysis and 
were indicated in the following manner: *P < .05, **P < .01, 
***P < .001, ns, denotes non-significant. We considered P < .05 
to be statistically significant.

Results
Expression of HIV-1 integration groups defined 
based on their position and orientation respective to 
genes in the human genome

To start addressing the relationship between HIV-1 integra-
tion and expression, we used the B-HIVE dataset from 
Jurkat CD4+ T cells,24 which exploited the thousands of 
reporters integrated in parallel (TRIP) assay,49 to simultane-
ously obtain HIV-1 positions and expressions (semi-quanti-
tatively measured by RT-qPCR). Cells were selected for 
Green fluorescent protein (GFP) expression prior to gene 
expression analysis which removes any proviruses integrated 
into sites incompatible with transcription at the time of sort-
ing and thus bias the data to initially active proviruses. While 
the virus used in the B-HIVE study is a minimalistic, repli-
cation-defective 5′-end barcoded virus, its integration pat-
tern matches events observed in people living with HIV-1 on 
ART,24 thus allowing us to use it as a model to define the 
effect of viral integration sites to expression.

Using this dataset, and because HIV-1 integrates within 
(intragenic) or between (intergenic) genes, and in the same or 
opposite orientation respective to the nearest human gene TSS, 
we first defined 6 “HIV-1 integration groups” based on their 
positions and orientations, relative to the nearest protein-cod-
ing gene, to explore any potential relationships of each group 
with human genomic features (Figure 2A). These 6 HIV-1 
integration groups were implemented to increase the likeli-
hood of obtaining group-specific trends, given that the analysis 

in the entire dataset did not retrieve any high correlations for 
the various analyses (data not shown), thus reinforcing the idea 
that HIV-1 integration grouping may help identify regulatory 
features.

The 6 HIV-1 integration groups include Group 1, intergenic 
location and same orientation respective to nearby protein-
coding gene (n = 127); Group 2, intergenic location and oppo-
site orientation (convergent) respective to nearby protein-coding 
gene (n = 71); Group 3, intergenic location and opposite orien-
tation (divergent) respective to nearby protein-coding gene 
(n = 77); Group 4, intragenic location and same orientation 
respective to protein-coding gene in which HIV-1 is integrated 
into (n = 581); Group 5, intragenic location and opposite (con-
vergent) orientation respective to protein-coding gene in which 
HIV-1 is integrated into (n = 642); and Group 6, which is a 
composite of 3 subgroups depending on the 3 possible combi-
nations of HIV-1 directions respective to the 2 human overlap-
ping genes (n = 60) (Group 6a: HIV-1 in same direction to both 
genes [n = 26]; Group 6b: HIV-1 in same direction to only 1 
gene [n = 24]; and Group 6c: HIV-1 in opposite direction to 
both genes [n = 10]) (Figure 2A). Given the limited number of 
integration events in each of the subgroups of Group 6, we 
treated them as a single group to increase statistical power.

Expectedly, there was a larger number of proviruses detected 
in the intragenic groups (Groups 4-6) relative to the intergenic 
groups (Groups 1-3) in the Jurkat CD4+ T cell model (Figure 
2B).8,10,50,51 Having established the HIV-1 integration groups, 
we then examined the relationship between HIV-1 chromo-
somal distributions in each group and their expression levels by 
creating Circos plots25 (Figure 2C to H). In these plots, each 
circle represents an individual HIV-1 position relative to chro-
mosomes with their matched expression, in which the inner 
most line represents a log10 of HIV-1 expression = –4, and the 
outer most line represents a log10 of HIV-1 expression = 3. After 
visualizing the expression of each HIV-1 integration site on the 
6 integration groups, we found that HIV-1 proviruses from each 
group were detected in every single chromosome with various 
expression levels irrespective of their group (Figure 2C to H).

Together, HIV-1 proviral transcription activity might be 
regulated by local and/or distal codes that are unique to the 
integration site and not shared within each integration group. 
As such, below we extend the analysis of the B-HIVE dataset 
to explore the contribution of individual, and combination of 
features to assess their effect to HIV-1 expression including (1) 
distance to nearby gene TSS (Figure 3A), (2) expression of 
nearby gene (Figure 3B), and (3) distance to nearby active 
enhancer (Figure 3C).

Relationship between HIV-1 expression and 
distance to, or expression of, nearest human gene

HIV-1 proviruses could be found at various distances respec-
tive to nearby protein-coding genes. Thus, to test the hypoth-
esis that proviruses located closer to gene TSS are more 
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active than those located at farther distances, we compared 
HIV-1 proviral expressions from B-HIVE dataset,24 to their 
distances to nearby gene TSS derived from RefSeq annota-
tions (Figure 3A). It is worth mentioning that this HIV-1 
expression data cannot distinguish between readthrough 

from host or intrinsic viral Long terminal repeat LTR-driven 
promoters. For this analysis, we omitted Group 6, which is 
composed of HIV-1 insertions within “2” overlapping genes, 
thus making it impossible to determine if 1 or both genes 
influence HIV-1 expression.

Figure 3. Scatter plots of the Pearson correlation coefficients and P values between expression of the proviral groups and various genomic features. (A) 

Hypothesis that HIV-1 expression is stronger the closer it is to the nearest gene TSS. Correlation of HIV-1 expression (log10 RNA barcodes/DNA barcodes) 

to log10 distance (bp) of the nearest gene TSS for each of the 5 HIV-1 integration groups. Group 6 (Overlapping) was excluded in A and B because of the 

complexity of HIV-1 association with 2 overlapping genes. (B) Hypothesis that HIV-1 expression (log10[RNAmean/DNAmean]) is correlated to the expression 

of its nearest gene, where if the nearest gene has higher expression, HIV-1 will also have higher expression. The opposite is hypothesized for lower 

expressed genes. Correlation of HIV-1 expression (log10 RNA barcodes/DNA barcodes) as a function of host gene expression (log10FPKM) for each of the 

5 HIV-1 integration groups. (C) Hypothesis that HIV-1 expression is higher the closer it is to an enhancer. Correlation of HIV-1 expression (log10 RNA 

barcodes/DNA barcodes) to the log10 distance (bp) of the nearest TE or SE. For all panels, the color-coding for each group is as follows: Group 1: 

Intergenic—Same (blue), Group 2: Intergenic—Convergent (red), Group 3: Intergenic—Divergent (orange), Group 4: Intragenic—Same (green), Group 5: 

Intragenic—Convergent (gray), and Group 6: Intergenic—Overlapping (purple). FPKM indicates Fragments Per Kilobase Million; TE, typical enhancer; 

TSS, transcription start site; SE, super enhancer.
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We found the expression of proviruses in intergenic regions 
is not correlated with the distance to the nearest gene TSS irre-
spective of their orientation—Group 1: Intergenic—Same 
(R = –0.13, P = .14), Group 2: Intergenic—Convergent 
(R = –0.19, P = .11), and Group 3: Intergenic—Divergent 
(R = –0.16, P = .15) (Figure 3A), potentially indicating that the 
orientation of intergenic proviruses is not a major feature con-
trolling their expression. However, the expression of proviruses 
in intragenic regions was statistically significant, despite the 
low correlation coefficients—Group 4: Intragenic—Same 
(R = –0.13, P = .0012) and Group 5: Intragenic—Convergent 
(R = –0.23, P = 6.4 × 10–9). Collectively, while HIV-1 proviral 
expressions in the various integration groups is not strongly 
correlated with their distance to the nearby gene TSS, the 
intragenic groups showed a statistically significant trend, espe-
cially Group 5 (Convergent orientation), signifying that this 
genomic feature, perhaps in combination with other features, 
may be a factor influencing HIV-1 expression.

Another regulatory feature shaping HIV-1 expression can 
be the level of expression of the nearest protein-coding gene. 
Thus, it is possible that the activity of provirus 1 is greater than 
provirus 2 if the gene associated with provirus 1 (Gene A) is 
expressed at higher levels than the gene linked to provirus 2 
(Gene B) (Figure 3B). To test this hypothesis, we calculated the 
expression of proviruses in Groups 1 to 5 (derived from the 
B-HIVE dataset),24 and of the nearest HIV-associated human 
protein-coding gene (derived from RNA-seq in Jurkat T cells 
collected in this study; Table 1). Once again, we excluded 
Group 6 (Overlapping) because of the complexity of HIV-1 
association with 2 overlapping genes.

We found no statistically significant correlations for Group 
1: Intergenic—Same (R = 0.09, P = .29) and Group 3: 
Intergenic—Divergent (R = 0.11, P = .32), but Group 2: 
Intergenic—Convergent, showed a low, but statistically signifi-
cant, correlation (R = 0.26, P = .03), suggesting that the conver-
gent arrangement may offer HIV-1 an advantage for its 
expression, potentially linked to the lack of transcription inter-
ference by RNA polymerase II molecules transcribing host 
genes positioned in the same orientation as HIV-1.52 Given 
HIV-1 preferably integrates inside genes, we tested whether 
there is any correlation between the expression of HIV-1 in 
Group 4 (Intragenic—Same) and Group 5 (Intragenic—
Convergent) but found that neither intragenic group was sta-
tistically significant nor correlated—Group 4: Intragenic—Same 
(R = –0.002, P = .94); Group 5: Intragenic—Convergent 
(R = 0.07, P = .06) (Figure 3B). This indicates that transcription 
interference accounts for at least part of the observed proviral 
expression effects.

Contribution of human enhancers to HIV-1 
proviral expression

HIV-1 displays preference to integrate into genes proximal to 
high density of enhancers,8 which are short DNA sequences 

that act as transcription factor binding hubs controlling key 
transcriptional programs by fine-tuning target gene promoter 
activity across vast linear distances.46,53,54 Enhancers were also 
proposed to facilitate proviral expression.24 However, because 
in this study enhancers were predicted based on the level of 
intergenic H3K27ac (a marker associated with transcription 
activity), but without incorporating transcription activity data, 
we carefully revisited this idea to explore whether HIV-1 posi-
tions respective to enhancers is a key regulatory element for 
determining proviral expression.

To this end, we first generated a rigorous and comprehen-
sive database of active enhancers based on a combination of 
accepted epigenetic and transcriptional signatures including 
(1) a unique chromatin state demarcated by high H3K27ac, 
high H3K4me1, and low H3K4me3 levels derived from our 
ChIP-seq datasets in Jurkat T cells,19 and (2) symmetrical bidi-
rectional enhancer RNA transcription (eRNA) derived from 
transient transcriptome (TT-seq) datasets.22 At least 2 types of 
active enhancer classes have been described: TEs and SEs 
(Figure 1A and Supplementary Figure S1A). The TEs contain 
the classic composition of features indicated above, whereas 
SEs are locally grouped clusters of enhancers (defined as a 
higher signal of H3K27ac, H3K4me3, H3K4me1, and eRNA 
transcription) within 12.5 kb of each other (Supplementary 
Figure S1A) driving high levels of transcription of nearby cell-
identity genes.46

To generate a database of TE and SE, an HMM was used 
to classify transcribed eRNA (sense and antisense strands in 
relation to the reference genome) regions that when overlapped 
with known enhancer histone marks (H3K27ac, H3K4me3, 
and H3K4me1), identified 2180 active intergenic TE 
(Supplementary Figure S1B and S1C). We defrayed from 
identifying intragenic TE given the high content of genic tran-
scription and histone marks (eg, H3K27ac) potentially obscur-
ing accurate identification of this class of enhancers. Using this 
approach, we also identified 767 SEs containing the conven-
tional high density of clustered H3K27ac, H3K4me3, 
H3K4me1, and eRNA transcription activity (Supplementary 
Figure S1B and S1C, Supplementary Table S1).

To test the hypothesis that HIV-1 expression is correlated 
to its proximity to enhancers (Figure 3C), we used our assem-
bled enhancer (TE and SE) databases to measure both the 
expression and distance of each provirus of the 6 different 
HIV-1 integration groups to the nearest TE and observed poor 
correlation and no statistical significance (P < .05) for all 
groups, suggesting that HIV-1 proximity to a TE alone is not a 
good predictor of HIV-1 proviral activity (Figure 3C), which is 
contrary to the previous study using less rigorous enhancer 
annotations.24

Given previous reports that genes located near SE are tran-
scribed to much higher levels compared with genes located near 
TE,46 we hypothesized that if proximity to enhancers is a true 
regulator of proviral transcription, we would then expect that, 
compared with less active or latent proviruses, the most active 
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proviruses should be positioned nearer to SE. As such, we eval-
uated the distance of each provirus of the 6 HIV-1 integration 
groups to the nearest SE and found low correlations and no 
statistical significance for all 3 intergenic groups (Groups 1-3: 
same, convergent, divergent, respectively) (Figure 3C). However, 
interestingly, the intragenic groups (Groups 4-5) showed low, 
but statistically significant correlation—Group 4: Intragenic—
Same (R = –0.09, P = .02) and Group 5: Intragenic—Convergent 
(R = –0.12, P = .002) (Figure 3C), consistent with the better cor-
relations between the expression of both HIV-1 intragenic 
groups and their distance to the nearest gene TSS (Figure 3A) 
and transcription activity (Figure 3B). This suggests HIV-1 
integrated into genes proximal to SE8 may have the dual benefit 
of increasing proviral expression.

Although HIV-1 is preferentially integrated into intragenic 
regions and HIV-1 expressions from these sites are signifi-
cantly correlated with their distance to TSS, convergent orien-
tation, and distance to SE, our study shows that each individual 
correlation is low and not the main genomic features influenc-
ing HIV-1 expression. It is evident from our analysis that 
HIV-1 expression might be influenced by multiple genomic 
features without apparent single-key determinants. Below, we 
investigate the relationship of HIV-1 integration and expres-
sion by further dividing the human host genome into chroma-
tin states and spatial nuclear sub-compartments.

Contribution of chromatin states to HIV-1 proviral 
expression

Previous studies have provided low-resolution information on 
chromatin marks (eg, H3K4me3, H3K9me3, H3K27ac) con-
tent within HIV-1 proviruses in immortalized ( Jurkat) models 
of latency.55,56 In addition, a recent survey analyzed the content 
of chromatin marks derived from uninfected CD4+ T cells 
surrounding (500 bp regions centered) HIV-1 integration sites 
in primary CD4+ T cells, and suggested that productive inte-
gration events were associated with active chromatin including 
transcribed genes (H3K36me3) or enhancers (H3K4me1), 
while non-productive integration events appeared biased 
toward heterochromatin (H3K27me3 and H3K9me3) and 
non-accessible regions.13-16 However, chromatin marks alone 
do not provide a complete picture because they do not denote 
a singular function, and thus do not accurately enable represen-
tation of functional states. Conversely, “chromatin states” better 
demarcate functional genomic domains,57 but have not been 
previously implemented to assess HIV-1 expression.

To classify genomic domains to precisely define chromatin 
states and to explore their contribution to HIV-1 expression, 
we applied “chromatin state learning” in Jurkat T cells with 
ChromHMM47 (Figure 4A), like the annotations from the 
Roadmap Epigenomics Project in other cell types. 
ChromHMM is based on a multivariate HMM and thus 
allows capturing significant combinatorial interactions between 

multiple chromatin marks in their spatial context. For our anal-
ysis, we used 7 chromatin marks derived from ChIP-seq data-
sets collected by our lab and others (Table 1). We chose a core 
15-state model, as it captured all key interactions between the 
epigenetic marks and their chromatin states, and because the 
expanded (18-state) model did not improve chromatin states 
definition (data not shown).

To de novo generate the core 15-state model, we compared 
the enrichment of the 7 chromatin marks in a particular state 
in Jurkat T cells with known chromatin states for the 3 
ENCODE cell lines most genetically and phenotypically 
linked to Jurkat including E115 (Dnd41T cell leukemia), E116 
(GM1282878 B cell lymphoblastoid), and E123 (K562T cell 
leukemia) (Supplementary Figure S2A). This comparison 
allowed for the proper rearrangement and relabeling of the 
chromatin state numbering to correspond to identical labels 
from the Roadmap Epigenomics Project. Importantly, the 
chromatin state relabeling was validated by the presence of the 
expected chromatin marks in the different states (eg, H3K4me3 
and H3K27ac in state 1—active TSS, and H3K27me3 in state 
13—repressed Polycomb) as well as by the distribution of the 
chromatin states relative to transcription start and termination 
sites (Supplementary Figure S2B).

To first evaluate the chromatin states nomenclature, we 
defined the HIV-1 integration landscape as a function of the 
15 states. Given that HIV-1 integrates within and/or near 
open chromatin based on accessibility and epigenetic data,8 we 
expected HIV-1 to be inserted into open chromatin states. In 
fact, HIV-1 was more likely to insert into “accessible” chroma-
tin—states 2 to 8, 11 to 12, and 14 (P < .05, 2-proportions 
z-test)—and less likely to insert into “inaccessible” chroma-
tin—states 13 and 15 (P < .001, 2-proportions z-test) 
(Supplementary Figure S2C). Notably, these data functionally 
validated the chromatin states definition, thus allowing us to 
address, for the first time, the contribution of chromatin states 
to HIV-1 proviral expression.

To assess this, we compared the median proviral expression 
in each chromatin state (Figure 4B). Because HIV-1 expression 
was not found to be normally distributed between chromatin 
states or have similar variances between them (data not shown), 
a Kruskal–Wallis rank sum test was used to assess significant 
differences of the median between different states. Surprisingly, 
HIV-1 expression was higher in state 7 (active enhancer) than 
states 4 or 5 (strong and weak transcription, respectively, 
P < .05) (Figure 4B and C). Not surprisingly, state 15 (quies-
cent/low) has lower expression than states 4, 5, 7, and 12 (strong 
transcription, weak transcription, active enhancer, and bivalent 
enhancer, respectively, P < .05).

Collectively, at difference to previous studies using individ-
ual chromatin marks, we precisely identified functional chro-
matin states in Jurkat T cells with ChromHMM to assess the 
relationship between the states and HIV-1 expression. With 
this rigorous demarcation of human genomic domains, our 
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results revealed that open regions associated with promoters 
and enhancers (both mono- and bidirectional) have higher 
HIV-1 mean expressions than those in inaccessible regions.

Contribution of nuclear spatial sub-compartments 
to HIV-1 proviral expression

The 3D organization of chromosomes enables long-range 
interactions between enhancers and promoters that are critical 
for building complex gene regulatory networks.58,59 As such, 

these genomic contacts could be co-opted by HIV-1 to tran-
scribe its genome to perpetuate the infection.

Interphase chromosomes occupy separate spaces known as 
nuclear territories,60 and each chromosome is organized into 
dynamic, non-random structures containing stretches of tran-
scriptionally active compartments interspersed with sections of 
transcriptionally inactive compartments.61 As such, the genome 
is partitioned into contact domains (A and B) segregating into 
6 sub-compartments (A1, A2, B1, B2, B3, and B4) that (1) 
appear located in different nuclear territories, (2) are associated 

Figure 4. Expression of HIV-1 proviruses in relation to chromatin states defined using ChromHMM. (A) From left to right: ChromHMM plot containing the 

15 states as defined by Roadmap Epigenomics Project. Histone marks used to create the states (state emissions). Overlap enrichment plots (ChromHMM) 

of RefSeq genomic annotations (CpG island, Exon, Gene, TSS, TSS flanking, TTS, TTS flanking, and ZNF genes), TE, and SE by 15 states. Heatmap of 

percentage of insertions in each state. (B) Box plot of B-HIVE expression by 15-state model. The color-coding is in reference to each of the chromatin 

states as shown in panel A. (C) Heatmap of P values comparing the median expression of B-HIVE in 2 different states by Kruskal–Wallis rank sum test. 

B-HIVE indicates Barcoded HIV-1 Ensembles; TE, typical enhancer; TSS, transcription start site; TTS, transcription termination site; SE, super enhancer; 

ZNF, Zinc finger.
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with distinct patterns of histone marks, and (3) show different 
expression levels.62 To examine the integration–expression 
relationship of HIV-1 proviruses in the various sub-compart-
ments, we used 2 complementary approaches. First, we re-ana-
lyzed a Hi-C dataset in Jurkat T cells,8 which is a method that 
interrogates the 3D architecture of whole genomes by coupling 
proximity-based ligation with massively parallel sequencing. 
Second, we predicted sub-compartments in Jurkat T cells using 
the lamin sub-compartments derived from GM12878 cells.62

Using the Hi-C dataset from Jurkat T cells, we followed 
common practices in the field to identify the active and inactive 
(A and B, respectively) sub-compartments using the first eigen-
vector (first principal component), through genome partitioning 
into binary classifications based on genomic contacts and chro-
matin marks content (Figure 4A). We then further divided the A 
compartment into A1 and A2 using a k-means clustering of 
k = 2. However, k-means clustering of the B compartment, with 
k = 2 through k = 5, did not yield a clearly defined separation of 3 
regions based on expected content of chromatin marks 
(Supplementary Figure S3A), leaving us to keep all B sub-com-
partments together for the analysis of HIV-1 positions and rela-
tionship to expression relative to sub-compartments.

Expectedly, the distribution of proviruses revealed there is a 
preferential insertion into the A sub-compartments (P < .001, 
2-proportions z-test), and reduced insertions within B sub-
compartment (P < .001, 2-proportions z-test), than by random 
occurrence given the Jurkat T cell sub-compartments coverage 
(Supplementary Figure S3B to S3D), consistent with recent 
observations,8 indicating we were poised to evaluate the rela-
tionship between HIV-1 integrations and expression.

Importantly, the mean HIV-1 expressions in the A1 and A2 
sub-compartments was significantly higher from the B compart-
ment (P < .001, Kruskal–Wallis rank sum test) without any obvi-
ous, statistically significant difference between the A1 and A2 
sub-compartments (P = .43) (Supplementary Figure S3D and 
S3E), suggesting HIV-1 integration into more accessible regions 
of the genome is, in general, beneficial for proviral expression.

Because we noticed the Jurkat Hi-C dataset was too sparse 
to divide into the 6 sub-compartments (A1, A2, B1, B2, B3, 
and B4), we then used the higher resolution sub-compartments 
defined in GM12878, which is a B cell line genotypically and 
phenotypically closely related to Jurkat, thus arguing that these 
results could be applicable to Jurkat, as domains are typically 
conserved (~80%) between cell types.62 Using these data, 
expectedly, we found a significant increase of HIV-1 proviruses 
in sub-compartments A1, A2, and B4, and significantly lower 
insertions in sub-compartments B1, B2, B3 (P < .001, 2-pro-
portions z-test) (Figure 5A to C), thus signifying we were in 
the right track to test the relationship between HIV-1 integra-
tion and expression.

Notably, we found enrichment of mean HIV-1 expressions 
in sub-compartments A1 versus A2, B1, B2, or B3 (P < .001, 
Kruskal–Wallis rank sum test) (Figure 5D), suggesting the 
location of HIV-1 into categorical nuclear sub-compartments 

overall contributes to increased expression. Importantly, these 
results are consistent with the Hi-C data analysis in Jurkat T 
cells (Supplementary Figure S3D and S3E), suggesting there is 
a conservation of sub-compartments between the 2 cell types, 
consistent with previous results.62

Interestingly, sub-compartment B4 has an increase of 
HIV-1 proviruses insertions relative to its size in the genome 
(P < .05, 2-proportions z-test), but no significant increase or 
decrease in expression relative to other sub-compartments 
(Figure 5C and D). B4 consists of regions, mostly on chromo-
some 19, containing many of the KRAB-ZNF superfamily 
genes. In our chromatin state analysis, we also noticed an 
increase of HIV-1 insertions in state 8 (ZNF genes and 
repeats), but with no increase or decrease in relative expression 
to other chromatin states (Figure 4). Interestingly, this is con-
sistent with the skewed prevalence of HIV-1 in this state in 
individuals who can immunologically control HIV-1.63

Machine learning approach to train a model 
predicting HIV-1 proviral expression

To foresee regulatory features, a first-ever ML approach was 
employed to train a logistic regression model to predict HIV-1 
expression from integration positions using genomic datasets. For 
this, we examined HIV-1 integration site-proximal (2 kb) regions, 
in 200 bp increments, around integration sites from the B-HIVE 
dataset (Figure 6A). HIV-1 integration sites were z-transformed 
and classified based on their normalized expression values as 
“Low” (<–0.5), “Intermediate” (–0.5 to 0.5), or “High” (>0.5). 
Among the entire integration dataset, 75% of the Low and High 
expressed proviruses were used to train the model.

When a threshold of IV, a ranking of variables used for fea-
ture selection in binary logistic regression models, ⩾2 was 
applied, 26 regulatory features were determined as optimal for 
the prediction task, which included all 20 lamin sub-compart-
ment bins (from Hi-C), 5 bins in H3K27ac (from ChIP-seq), 
and 1 bin in chromatin accessibility (from MNase-seq) 
(Supplementary Table S3). Our model revealed unique, opti-
mal features for the prediction, including upstream histone 
acetylation (H3K27ac) and chromatin accessibility and cate-
gorical nuclear sub-compartments, especially sub-compart-
ment A1 (Supplementary Table S4 and Figure 6B to E). It is 
not readily apparent when plotting the features in a metagene 
analysis, where bins are the most informative (Figure 6B and 
C). For instance, visual inspection of the MNase-seq bins 
(Figure 6C) looks noisy when comparing the signal of the 
High and Low integrants. However, the MNase-seq bin −1000 
to −1200 bp upstream of HIV-1 integration was identified with 
the ML model as being informative (Figure 6C). Also, in the 
H3K27ac data analysis, nucleosome periodicity on the left was 
clear, and the signal density on the left versus right side near 
2 kb away from HIV-1 integration was similar and higher 
compared with signal proximal to the integration site (Figure 
6B). However, the model only picked bins to the left and away 
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from the integration site as informative ranked variables for the 
prediction task (Supplementary Table S4 and Figure 6B).

For the test dataset, we used the remaining 25% of Low and 
High expressing HIV-1 positions, and all Intermediate express-
ing HIV-1 positions. HIV-1 expression levels were predicted 
through the logistic regression model of the optimal features, 
their estimated weights and corresponding odds ratios, and the 
standard errors of the estimated weights were obtained 
(Supplementary Table S4). The evaluation metrics were calcu-
lated as 68.42% of sensitivity, 59.10% of specificity, and 64.71% 
of area under the receiver operating characteristics (Figure 6F), 
revealing the model has fair-to-low prediction power. Notably, 
the predicted HIV-1 expression values for the “High” 

expression category were significantly higher than those for the 
“Low” category (P = .00025, Wilcoxon test) (Figure 6G), 
revealing the model can capture large expression differences. 
However, expectedly, the predicted values for the “Intermediate” 
and “Low” categories showed not significantly statistic differ-
ences (P = .27, Wilcoxon test) (Figure 6G), perhaps because the 
model was trained using high and low expressing groups. 
Furthermore, the actual and predicted HIV-1 expression values 
were found to have a positive, moderate correlation (R = 0.19, 
P = .00018) (Figure 6H), indicating the model can detect the 
expected differences in HIV-1 expression. Nonetheless, the 
modest prediction may be attributed to the complex biology of 
HIV-1 integration and expression, which the present model 

Figure 5. Expression of HIV-1 integration and expression in relation to 3D architecture. (A) Pie chart of percentage of HIV-1 integration per GM12878 

nuclear sub-compartments. Unk denotes unknown sub-compartments. (B) Pie chart of GM12878 sub-compartments genomic coverage (as percentage). 

Unk denotes unknown sub-compartments. (C) Jitter and violin plot of HIV-1 expression in each GM12878 sub-compartments derived from Hi-C data. The 

red line represents mean expression. Green asterisks represent significantly more insertions relative to sub-compartment genomic coverage, and red 

crosses represent significantly less insertions; nd was not calculated due to unknown sub-compartments (P < .05, 2-proportions z-test). (D) Heatmap 

representing the P value (P) pairwise comparison of sub-compartments derived from GM12878 versus expression using a Kruskal–Wallis rank sum test.
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may not be able to accurately predict using the combined data-
sets and low number of integration events (n = 1558).

Taken together, the model succeeded at predicting informa-
tive variables in the human genome leading to large HIV-1 
expression differences. Notably, the ranked variables obtained 
can assist with experimental design, selecting the most inform-
ative genomic assays, for future larger-scale experiments.

Discussion
In this work, we have applied an integrated genomics approach, 
by combining new and open-source datasets to interrogate how 
the position of HIV-1 proviruses into the human genome 
shapes their expression. We also implemented an ML approach 
to delineate features in the human genome predicting HIV-1 
expression. It is the combination of these 2 approaches that 

Figure 6. HIV-1 expression level prediction based on genetic and 3D landscape surrounding integration sites. (A) Schematic of data integration and 

training of the machine learning (ML) model. Genetic marks 2 kb surrounding HIV-1 insertions were binned every 200 bp and measured. Barcoded HIV-1 

Ensembles (B-HIVE) data were split into 3 groups (Low, Intermediate, and High), training the ML model for Low versus High. (B and C) Metagene plots of 

optimal features (H3K27ac and MNase-seq) 2 kb surrounding B-HIVE insertions, split by the 3 categories based on expression (Low, Intermediate, and 

High). (D) Heatmap of the percentage of B-HIVE insertions, split by the 3 categories of Low, Intermediate, and High, versus GSM12878 sub-

compartments. (E) Heatmap of the mean expression of B-HIVE insertions, split by the 3 categories (Low, Intermediate, and High) versus GSM12878 

sub-compartments. (F) The trained model’s AUROC (area under the receiver operating characteristics) curve is shown. (G) Predicted HIV-1 expression 

comparison among 3 categories of Low, Intermediate, and High. P value (P) calculated from Wilcoxon test. (H) Linear regression and Pearson correlation 

test between the actual and predicted HIV-1 expression values.
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have enabled us to start defining relationships between HIV-1 
integration and transcription and to fuel the most critical ques-
tions for future experimental design.

With the addition of larger integration datasets, possibly 
encompassing the entire integration landscape (chromatin states 
in each of the sub-compartments and including inter- and intra-
genic integrants) and their measured transcription profiles, and 
not steady-state expression (which cannot distinguish between 
transcription and downstream regulatory events), more refined 
models with better predictive powers could be achieved. As the 
datasets grow, we expect that the genetic landscape related to 
HIV-1 transcription will be more prominent and, accordingly, 
future ML approaches can be used to provide a compass com-
patible with clinical decision-making (Figure 1B).

To date, no other research or analysis has addressed, at this 
scale, how human genome codes effect HIV-1 proviral tran-
scription. Of course, importantly, the results and predictions of 
the various data analyses must be followed up by experimental 
testing and must be validated in models other than Jurkat (eg, 
primary T cells), which certainly imposes other challenges. As 
such, we envision that future work will be needed (1) to study 
differences in epigenomic landscapes before and after HIV-1 
insertion; (2) to implement a Clustered regularly interspaced 
short palindromic repeats (CRISPR) based integration library 
in which HIV-1 is uniquely positioned in defined integration 
landscapes to study and develop better, more complete ML 
models; and (3) to study HIV-1 integrants at the single-cell 
level to define their locations and intactness (MIP-seq),64 
expression (scRNA-seq), and chromatin landscapes (scATAC-
seq). These single-cell studies are the only ones that will allow 
to study the relationship between HIV-1 position, intactness, 
and expression as well as viral-host chromatin landscapes. 
However, a significantly large number of insertions must occur 
in enough locations of all combinations of nuclear sub-com-
partments by chromatin state by inter/intragenic location, and 
measured along with HIV-1 expression to have the required 
power to obtain statistically meaningful data.

Finally, our analysis demonstrates the importance of care-
fully and correctly characterizing regulatory features (eg, func-
tional chromatin states) when studying their potential role in 
genome regulation. Future studies should be cautious to use the 
same rigorous standards when defining genomic domains to 
interrogate functional insights in human health and disease.
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