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Simple Summary: Precise identification and annotation of mutations are of utmost importance in
clinical oncology. Insights of the DNA sequence can provide meaningful knowledge to unravel the
underlying genetics of disease. Hence, tailoring of personalized medicine often relies on specific
genomic alteration for treatment efficacy. The aim of this review is to highlight that sequencing
harbors much more than just four nucleotides. Moreover, the gradual transition from first to second
generation sequencing technologies has led to awareness for choosing the most appropriate bioinfor-
matic analytic tools based on the aim, quality and demand for a specific purpose. Thus, the same raw
data can lead to various results reflecting the intrinsic features of different datamining pipelines.

Abstract: Data analysis has become a crucial aspect in clinical oncology to interpret output from
next-generation sequencing-based testing. NGS being able to resolve billions of sequencing reactions
in a few days has consequently increased the demand for tools to handle and analyze such large data
sets. Many tools have been developed since the advent of NGS, featuring their own peculiarities.
Increased awareness when interpreting alterations in the genome is therefore of utmost importance,
as the same data using different tools can provide diverse outcomes. Hence, it is crucial to evaluate
and validate bioinformatic pipelines in clinical settings. Moreover, personalized medicine implies
treatment targeting efficacy of biological drugs for specific genomic alterations. Here, we focused on
different sequencing technologies, features underlying the genome complexity, and bioinformatic
tools that can impact the final annotation. Additionally, we discuss the clinical demand and design
for implementing NGS.

Keywords: bioinformatic pipeline; cancer; next-generation sequencing; alignment; variant calling;
clinical application

1. Introduction

Insights into the sequence of DNA can provide meaningful knowledge to unravel
the genetics of disease. This approach has propelled diagnostic and treatment strategies
to a new level, where personalized medicine is gradually becoming adopted in the clinic.
The advent of second-generation sequencing technologies, also known as next-generation
sequencing (NGS), has contributed remarkedly with the demand for more economical and
faster sequencing technologies. NGS performs massive parallel sequencing and is steadily
replacing its predecessor, the traditional Sanger sequencing (Sanger et al., 1977) [1]. Its
technologies have made it possible to resolve billions of sequencing reactions in few days
from library preparations to end results. Nonetheless, the handling of such substantial
amount of data poses a current challenge regarding their interpretation in a clinically mean-
ingful way. Hence, that demand was shortly followed by the development of a plethora of
devised NGS bioinformatic tools, each serving its own purpose. Most computational tools
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such as Bowtie2 [2], Burrows–Wheeler Aligner (BWA) [3], Mutect2 [4] and Strelka2 [5] are
freely available for processing NGS data in the scopes of (i) sequence mapping, (ii) base
calling and (iii) variant calling. The application of different tools have shown to vary in
consistency [6,7], highlighting the necessity of caution and experience, as the output could
lead to misguidance of diagnosis, prognosis and personalized treatment in a clinical setting.
In this review, we focused on the many factors that influence data interpretation and its
application in oncology. This covers sequencing technologies, data output from sequencing,
pitfalls and bioinformatics concerns. Finally, we discussed the increasing clinical demand
for the implementation of NGS.

2. Sequencing Technologies

Sequencing is the process of determining the order of Adenine (A), Guanine (G), Cy-
tosine (C) and Thymine (T) bases, which makes up the primary structure of DNA. The first
two DNA sequencing methodologies are known as Maxam–Gilbert sequencing—a chemi-
cal approach [8]—and Sanger sequencing—a chain termination approach [9]. The clinical
utility of Maxam–Gilbert sequencing is unknown; hence the latter will be further addressed
herein. Sanger sequencing provided the basis for The Human Genome Project [10] given
its accuracy, robustness and simplicity [11]. Briefly, the method is based on 4 polymerase
chain reactions (PCR), where in each reaction on of the nucleotides is incorporated by a
specific fluorescent chain-terminating dideoxynucleotide (ddNTP). The ddNTP incorpo-
ration during the in vitro DNA replication is random, producing fragments with varying
length. Subsequently size separation via gel electrophoresis reveal the arrangement of the
nucleotides based on where the fragment was terminated [9]. The specific fluorescence
embedded in each ddNTP (ddATP, ddGTP, ddCTP, ddTTP) allows to read and annotate the
sequence. Despite being a very robust and precise method, the Sanger sequencing can only
be performed for a single target at a time. Hence, assessing even a small panel of targets
makes this approach cost- and time-inefficient.

The application of faster and lower cost sequencing was introduced by the NGS
technologies. Such platforms, as the Illumina and Ion Torrent, are predominantly being
used in clinical settings. These two platforms are different in their underlying chemistry of
determining the base sequences. In Illumina platforms, a library is first prepared (DNA
templates with barcodes and adaptors attached), followed by denaturation to single strands
and immobilization on a flow cell. Next, the templates are amplified to form clusters of
clonal fragments by bridge amplification [1]. That step is important to yield enough
signal for detection during sequencing. The sequencing methodology of Illumina is based
upon cyclic reversible dye chain termination in which ddNTP contains different cleavable
fluorescence and a reversible blocking group. For each round of sequencing (1) a nucleotide
is added to the flow cell; (2) the fluorescent signals are captured and converted into A,
T, C or G; (3) the blocking groups are removed; and (4) the process is repeated with a
new round of nucleotide incorporation until the strands are synthesized. The Ion Torrent
sequencing technology is based on the incorporation of a DNA template from a prepared
library together with a single bead into a droplet, referred as bead emulsion. Each reaction
unit allows for emulsion PCR to clonally amplify the template until it covers the entire
surface of the corresponding bead. This step is analogous to Illumina’s flow cell, it is
yielding sufficient signal during sequencing. The covered beads are loaded onto a chip
constructed with millions of micro wells to harbor a single bead in each. The sequencing
process is based on pH. Each time a nucleotide is added to the synthesizing template a H+

(hydrogen ion) is released and detected as a change in pH, the chip is flooded with one
nucleotide at a time and the process is repeated hundreds of times.

For the past few years, a new generation of sequencing methods has been under
development. In contrast to NGS technologies generating short reads, third generation
sequencing (TGS) aims to generate long reads up to 30.000 bases (30 kb) in length in
real time [12]. The MinION from Oxford Nanopore Technologies (ONT) and the single
molecule real-time (SMRT) technology from Pacific Bioscience (PacBio) are two types of
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a TGS technology. TGS bypass the prerequisite for DNA amplification underlying NGS
technologies [11]. Hence, avoiding the inherited errors from the amplification step and
creating a fast transition from sample acquisition to sequencing. Yet, the sequencing error
rate is still high, 10–15% for SMRT [13] and 5–20% for MinION [13] challenging its utility
in a clinical setting. A brief comparison of the technologies is presented in Table 1.

Table 1. Sequencing platforms & comparison.

Platform Immobilization Amplification Sequencing
Technology

Limitations
& Error Rate

Read Length
(bp *)

Run Time
(h **)

Output
(Gb ***)

1st generation technologies

Sanger N/A
PCR with

dNTPs and
ddNTPs

Irreversible chain
termination 0.001% ≤900 ~4 ≤0.002

Maxam-
Gilbert N/A N/A

Chemical
termination

of 32P labeled
ssDNA

0.001% ≤900 N/A ≤0.002

2nd generation technologies

HiSeq2000 Flow cell Bridge
amplification

Cyclic reversible
dye chain

termination

GC-rich regions
0.2% ≤125 7–144 ≤1600

MiSeq Flow cell Bridge
amplification

Cyclic reversible
dye chain

termination

GC-rich regions
0.2% ≤300 4–55 ≤15

Ion Torrent
PGM Bead emulsion Emulsion

PCR

Synthesis
depended H+

detection

Homo-polymers
1% Indel ≤400 2–7.5 ≤2

Ion Torrent
S5XL Bead emulsion Emulsion

PCR

Synthesis
depended H+

detection

Homo-polymers
1% Indel ≤600 2.5–4 ≤25

3rd generation technologies

ONT
MinION

Processive
enzyme N/A

Monitoring the
current of a

nucleotide in
ssDNA

5–20% 10,000–30,000 Real time ≤25

PacBio
SMRT

DNA
attachment to
the bottom of

each Zero
Mode

Waveguide

N/A

Detection of
incorporation of

fluorescent
nucleotides during
real time synthesis

10–15% 10,000–30,000 Real time ≤4

* bp = base pair, ** h = hours, *** Gb = gigabyte.

3. Extend of Sequencing

The human genome is constituted by approximately 3 billion nucleotides, of which
around 1% encode for protein-coding genes [14]. Mutations introduced into these genes
may show consequences by misfunctioning (loss-of-function) or dysregulation (gain-of-
function) of proteins crucial for homeostasis, leading to cancer. Mutations are defined as
driver mutations when acquiring a cellular phenotype that contributes with an advantage
of proliferation and/or survival [15]. Besides driver mutations, the genome is lodging
thousands of mutations that are randomly dispersed throughout the genome. These are
referred to as passenger mutations and exhibits no immediate phenotype and/or beneficial
advantage [16]. In 80% of the cases, cancer is a multifactorial and non-mendelian disease,
with somatic mutations found in associated genes at disease [17]. In the remaining 20%,
germline mutations are identified [17]. Identification of rare events in genes contributing to
tumorigenesis is important for the ongoing understanding of cancer [18]. NGS has led to
the discovery of numerous candidates associated with cancer [19]. Noteworthy, detection



Cancers 2021, 13, 1751 4 of 18

of variants via bioinformatic methods can only prioritize novel findings of mutations
and genes for functional testing. Hence, can only mutations as drivers of tumorigenesis,
which needs validation on experimental settings [20]. Thus, bioinformatic tools should be
perceived more as a predictor than a validator.

NGS enables the generation of data from a full genome (Whole Genome Sequencing,
WGS) in a few working days. Sequencing of the protein-coding genes (Whole Exome
Sequencing, WES) and exome sequencing of selected genes alone or in combination with
hot spots regions (Targeted Exome Sequencing, TES and Panel sequencing, PS) has also
become available. In clinical oncology, the latter approach is employed extensively for its
ability to target cancer related gene-panels with a fast response time. The broad scope of
WGS and WES exhibits some challenges to be implemented into clinical setting (discussed
later). Thus, to provide information of diagnostic classification, guide therapeutic decisions
and/or enlighten prognostic of tumor in shorter time, assessment of gene panels is an
informative approach.

4. Targeted Drug Therapies

Several cancer therapies rely on a certain genomic profile to obtain treatment efficacy.
Therefore, precise detection of mutations is critical. Sanger sequencing has until recently
been used in diagnostic, despite being restricted to few genes. Hence, providing oncologists
with limited information about the tumor mutational profile, leading to a more one-fits-
all type of therapies [21]. However, given its massive generation of information, NGS
promoted the foundation for targeting disease based on individual genomic profile, referred
to as Personalized Medicine or Precision Medicine (PM). This concept gives the opportunity
for an accurate and effectively treatment strategy [22].

Precise annotation of mutations is required to transform staggering amount of se-
quencing data into clinically relevant variants with high confidence. Hence, pushing
optimal tailoring of a therapeutic course. For instance, poly (ADP-ribose) polymerase
(PARP) inhibiting drugs, is used in managing patients with ovarian cancer [23] and breast
cancer [24] in cases of pathogenic BRCA-1/2 -gene mutations.

Additionally, Imatinib, a small molecule that competitively binds to the active site
of a tyrosine kinase, is used in treatment of gastrointestinal stromal tumors in cases of
c-KIT gene mutations [25]. Moreover, competitive kinase inhibitors, are directed towards
the increased activity of BRAF induced by a specific alteration (V600E/K) in the BRAF
-gene in patients diagnosed with malignant melanoma [26]. KRAS mutations are observed
in 15–25% of all cancers, whither 30–40% of colorectal cancer harbor at least a single
mutation on that gene [27]. On the other hand, epidermal growth factor receptor (EGFR)-
inhibitor, targeting the EGFR on the surface of cell is used in cases of colorectal cancer
without mutations in the RAS-genes [28]. A selection of specific genetic alterations to guide
treatment is presented in Table 2.

Additional Annotation Tool—Drug Databases

Many variants have well-established clinical relevance with targets for molecular ther-
apy. Nevertheless, guiding treatment decisions for novel or rare somatic mutations might
be challenging. In that regard, growing databases of variants and putatively beneficial drug
molecular targeting are in constant development and can be useful tools to assist guidance,
such as the Catalogue Of Somatic Mutations In Cancer (COSMIC) [29,30], ClinVar [31,32]
and Precision Oncology Knowledge Base (OncoKB) [33]. Contents of these databases are
derived from in vitro and/or in vivo validation studies and clinical investigation expert
panels. With the incorporation of NGS into the clinic, such databases are steadily growing
and improving as means to assist the treatment of future patients.
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Table 2. Examples of genetic aberrations in cancers to guide personalized medicine. The list is
devised from information collected from COSMIC, ClinVar and OncoKB.

Gene Aberration Targeting Drug Cancer Type

BRCA-1/2 Loss-of-function PARP-inhibitor
Breast cancer,

Ovarian cancer,
Prostate cancer

ERBB2/HER2 Amplification
Dimerization-

inhibitor of
HER2-HER3

Breast cancer

PIK3CA Gain-of-function PIK3 kinase-inhibitor Breast cancer

BCL2 Gain-of-function
(17 bp deletion) Blocker of Bcl-2 Chronic lymphocytic

leukemia

RAS Wild type EGFR-inhibitor Colorectal cancer

c-KIT Gain-of-function
(exon 9, 11, 13, and 17)

Tyrosine
kinase-inhibitors

Gastrointestinal
Stromal Tumor

EGFR
Gain-of-function (exon

19 deletion and/or
L858R)

Tyrosine
kinase-inhibitors

Lung cancer,
Brain cancer

BRAF Gain-of-function
(V600E/K) Kinase-inhibitor Melanoma

CDK12 Loss-of-function PARP-inhibitor Prostate cancer

5. Precautions of Data Output from Sequencing

The overall demand for sequencing is to annotate accurate mutations, such as single
nucleotide variants (SNV), insertions/deletions (indels), copy number variation (CNV)
and structural variation (SV). That should be acquired ideally with high sensitivity (true
positives) and specificity (true negatives). A general principle of sequencing is that the
broader the scope the lesser the read depth. WGS is on average sequenced to depths of
30–50x [34], making it more explorative oriented, but efficiently enough to identify most
germline mutations including, SNV and indels. It also allows for a comprehensive large
scale genomic detection of relevant variants, such as large SV or CNV across the whole
genome [35]. However, WGS may be insufficient in detecting rare somatic mutations
harboring a cancer genome.

The therapeutics available today are exclusively directed against pathogenic alter-
ations in the coding genome. Thus, knowledge of mutations in intronic regions are less
informative in clinical oncology. In that regard, WES or large gene panels are more suited
for this purpose, where regions can reach an average coverage of 200x [34]. However,
targeted sequencing focus on sequencing regions of choice, often gene panels associated
with cancer in specific organs with clinical impact. By narrowing the scope to a selected
panel, genes and hot-spot regions can be sequenced to depths with more than 1000x cov-
erage [34]. That entails its capability to reach depth able to detect unique low-frequency
allele somatic mutations.

NGS is a multifactorial technology, and wariness is important when interpreting re-
sults. Factors that may influence results include; type of biological specimen; preanalytical
treatment; pseudogenes and repetitive regions; bioinformatic challenges dealing with
alignment and variant calling.

5.1. Type of Biological Specimen

Biological specimens vary according to whether the material is collected in a research
facility or in a clinical setting. Research facilities most often deal with cultured cells and/or
xenograft models leaving high quality DNA to be subjected for sequencing. When human
tissue is collected from biopsy or radical surgery in a clinical setting, it is commonly
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subjected to formalin fixation and embedded into paraffin blocks (FFPE) or may optimally
be collected as fresh frozen (FF) tissue.

5.1.1. FF and FFPE Tissue

At pathology departments tissues are routinely FFPE-prepared, which are stored at
room temperature and confers more flexibility in applications. FFPE samples are used in
histopathological examination, immunohistochemistry and/or in situ hybridization. Thus,
allowing for further molecular characterization of the tumor. However, the chemical proce-
dure underlying FFPE samples facilitates significant fragmentation and chemically artificial
modifications to the nucleic acids, altering the DNA sequence [36]. Formalin-fixation is the
primary cause of fragmentation, degradation and incorporation of alterations caused by
deamination resulting in C:G > T:A transitions [37]. Hence, these modifications can mislead
interpretation of NGS results and potentially guide an inaccurate therapeutic course in a
clinical setting. A recent study from Gao and colleagues reports a high mutational concor-
dance comparing FF and FFPE in an NGS multi-gene panel [38]. However, some mutations
are introduced due to the higher level of false-positive variants. Kerick and collaborators
further reported that one strategy to deal with FFPE artefacts is to increase the sequencing
depth [39]. Hence, the increment of depth decreases the number of false positives and false
negatives. More stringent alignment filtering is another option, accommodating removal of
putative false positives calls with lower quality scores, but this approach will on the other
hand compromise read depth.

5.1.2. Liquid Biopsies

Liquid biopsy is another preparation used for clinical NGS. Whole blood collection is
a non-invasive procedure and has been used for supporting diagnostics and/or monitoring
circulating biomarkers. For instance; cancer antigen 125 (CA-125) for ovarian cancer [40];
CA-11-19 for colorectal cancer [41], CA-19-9 for lung cancer [42], and CA-15-3 for breast
cancer [43], are well established markers in clinical practice. Circulating tumor DNA
(ctDNA), tumor-derived cell-free DNA, may be promising in diagnosis of cancer and/or
monitoring of relapse or progression [44]. Hence, also applicable for guiding therapeutic
and monitoring in patients with known cancer. Elevated levels of ctDNA is present in
plasma of cancer patients [45]. Nonetheless, the amount is still only a fraction in the
pool of circulating cell-free DNA, challenging the current utility of ctDNA as a biomarker.
Noteworthy, detection of somatic mutations in ctDNA for application of diagnosis of cancer,
supportive guidance for optimal treatment strategy, and for surveillance of progression
or recurrence is extensively under investigation [45]. ctDNA enters the plasma due to
apoptosis and/or necrosis. A hallmark of apoptosis is the cleavage of DNA orchestrated
by activated caspase activity. A study from Mouliere and collaborators, observed that the
fragment size across 18 cancer types showed enrichment of ctDNA in lengths shorter than
167 bp and a notably enrichment ranging from fragment from 250 bp to 320 bp in size [46].
Analysis of ctDNA requires highly sensitive techniques for its detection an enrichment
owing to the relative low fraction of tumor DNA dispersed within background levels of
normal circulating free DNA [47]. The examination of ctDNA from liquid biopsies may
be an alternative in the management of metastatic cancers, where no tumor tissue can
be obtained.

5.2. Homopolymers, Repetitive Regions and Pseudogenes

The genome harbors areas that are difficult to interpret, due to the presence of ho-
mopolymers, G/C rich regions, repetitive regions and pseudogenes [48]. This results in
substantial differences concerning sequencing depth and the uniformity in sequencing
coverage, making these regions difficult for alignment and variant calling [49]. For instance,
homopolymer regions are a challenge for the Ion Torrent sequencing platform and it intro-
duces systematic errors due to loss of resolution above 6 nucleotides, for which may cause
mis-alignments [21]. Regions with increased G/C content can be lost and subsequently
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often observed as higher background due to their ability to form secondary structures [48],
thus affecting the uniformity of sequencing coverage in these regions. Repetitive regions
are widespread in the genome and encode tandemly repeated or close-identical sequences
of variable length, often located in regions of introns [50]. Thus, being a hotspot-entry for
genomic rearrangement. The concern regarding repetitive regions is to deal with align-
ment uncertainties due to reads that subsequently align to multiple regions, instead to an
unique location. The multi-alignment reads are an obstacle that may affect variant calling
as it can originate from multiple sites. Another type of structural feature embedded in
the genome is pseudogenes derived from gene duplications. Pseudogenes are sequences
that resembles their protein-coding counterparts with high similarity. Those are however,
non-functional due to impairing mutations [51]. Albeit non-functional, some pseudogenes
are transcriptionally active and act to regulate their parent protein-coding gene through the
microRNA pathway [52,53]. Reads from a desired region of interest might have decreased
mapping-quality, due to the presence of a pseudogene homolog causing reads to be mis-
aligned to the pseudogenes or vice versa. Some clinically relevant genes may encounter
pseudogenes, such as KRAS [53] for colorectal cancer and BRCA1 [54] for ovarian cancer
and breast cancer. A targeted strategy is therefore required to avoid interference from their
pseudogenes that might challenge the interpretation during NGS analyses.

5.3. Bioinformatics

A large number of bioinformatic tools have become available in recent years with
the aim to navigate and handle the large quantity of raw data generated by the NGS
technology [55].

Raw reads from NGS platforms undergo several bioinformatic processes including
base calling; quality check; adaptor trimming; read alignment and post processing; variant
calling; and finally, variant annotation for functional interpretation of results. An overall
of the bioinformatic pipeline available for analyzing NGS is shown in Figure 1. The two
most prominent bioinformatic processes that might influence the final interpretation are
the tools used for alignment and variant calling [6,7]. Both are numerous and diverse in
their underlying algorithms as their original design can often be reserved for a specific
purpose, such as WGS, WES, or TES/hot-spot [56]. The challenge associated with artefacts
from the material used, library preparation, sequencing technologies and regions selected
for sequencing, all underscore the importance of selecting appropriate benchmark tools for
specific aims. The different structural peculiarities of the four groups of genomic alterations
(SNV, indels, CNV, SV), excludes the possibility of one versatile tool for identifying all
variants within the four groups [48]. Improper alignment to the reference genome can
significantly constitute discovery of false positive and/or exclusion of disease relevant
variants in downstream analyses. During the years, identification of discordance between
aligned reads and the reference genome has greatly improved due to progression of variant
callers and their ability to handle large amounts of data [57]. However, calling SNVs still
remains a challenge after all, as various tools can result in a divergent outcome [6].

5.3.1. Alignment

Bioinformatic approaches are centered around alignment. Variants refer to identifying
deviations from a non-cancerous normal reference genome. Alignment to a reference
genome is a prerequisite for optimal analysis of NGS data. In that regard, for the human
genome there are essentially two main reference builds currently employed: (a) The
Genome Reference Consortium Human build 37 (GRCh37 or hg19), published in 2009;
and (b) GRCh38 (hg38), released in 2013. The latter is built on data from many donors,
subsequently altering 8000 SNV, correction of misassembled hard accessible region, filled-
in gaps and added sequences for centromeres [58]. The GRCh38 improvements over
GRCh37 have been reported by Pan et al., to give a more accurate genomic analysis
results [59]. Additional studies from Guo et al. and Kumaran et al., examined 30 WES data
sets examined WES data from NA12878 [6,58], respectively. In both studies they concluded
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better accuracy and performance using hg38 as reference genome. It has been reported that
aligners can affect the variant calling, when dealing with low quality base scores [57,60].
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A list of alignment tools is presented in Table 3. The alignment tools Bowtie2 [2] and
BWA [3] are known as the two most efficient aligners to date, with most studies using
BWA-MEM (maximal exact matches) as the preferred alignment tool [6,57,59,61–67]. A
study from Yu and collaborators investigated the three full-text index in minute space
(FM)-indexing aligners (Bowtie2, BWA-MEM, SOAPv2) and one hash-table algorithm
aligner (Novoalign) [60]. Preconditions with relatively good base-quality showed similar
performance on alignment [60]. However, removal of low quality base improved the
alignment performance for Novoalign [60]. The quality of called bases might significantly
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impact the performance of aligners, where assessment of Phred scores can support choosing
the best fitting alignment tool (FM-index- or Hash-table-based algorithm).

Briefly explained, FM-index alignment tools are derived from the Burrows-Wheeler
Transform [68]—a method to sufficiently compress large amount of data and finding
approximate matches of sequences in the reference genome [69]. Hash table-based
aligners uses the seed-and-extend method in combination with additional alignment
algorithms [68,70,71].

Table 3. Short read alignment tools.

Alignment Tools Model Latest Version Ref.

Bowtie2 FM-index v2.4.2 [2]

BWA-MEM FM-index v0.7.17 [3]

CUSHAW3 FM-index v3.0.3 [72]

GSNAP Hash-table N/A [73]

ISAAC FM-index v4 [74]

MOSAIK Hash-table v2.6.0 [75]

Novoalign Hash-table v4.03.01 http://www.
novocraft.com/ *

SOAPv2 FM-index v2.20 [76]
* accessed date: 6 April 2021.

Thus far, short-read alignment tools are commonly challenged by encountering reads
that maps to multiple locations in the reference genome [50]. Hence, 3 strategies are
proposed to deal with multi-reads [50]. First being to discard all multi-reads leaving only
unique mapped reads to be processed. However, this strategy would consequently leave
out reads with repetitive regions and gene-families, putatively harboring significance.
Second is the best matching strategy, reporting reads to the location(s) with the smallest
number of mismatches. The third being to report all reads and their location(s) up to a
desired threshold.

5.3.2. Variant Calling for SNV and Small Indels

Many tools covering SNV detection have likewise been developed. A list of supported
variant-calling tools is presented in Table 4. Consequently, their underlying algorithm of
error models and assumptions for identifying mutations result in diverse variant calling
across tools [67]. Hence, the methods used for variant calling are an important factor that
influence mutational calling when aiming at high sensitivity and specificity. Studies sub-
jecting sample NA12878 [6,57,59,61–67], shows that GATK-Haplotype Caller (GATK-HC),
Mutect2, SAMtools and Strelka2 are among the best performing variant callers for identify-
ing SNV and small indels [6,57,59,61–67]. The study of Chen et al., additionally revealed
that Strelka2 showed better variant calling and sensitivity with a mutation frequency of
≥20% whereas Mutect2 performed better at ≤10% [62]. Strelka2 was developed to be fast
and accurate in calling somatic variations [5]. A fast resolution time encounter an important
aspect when employed in clinical oncology. Strelka2 showed to be 18–22 times faster than
Mutect2 when processing 100–800x WES samples [62]. Nevertheless, a comprehensive
comparison evaluating GATK-HC, Mutect2, SAMtools and Strelka2 against each other
remains to be elucidated. An overview of tools and their combination in these studies are
shown in Table 5.

http://www.novocraft.com/
http://www.novocraft.com/
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Table 4. Variant calling tools.

Variant Calling Tools Variant Detection Latest Version Ref.

Atlas2 suite SNV, indels v1.4.1 [77]

CONTRA CNV, SV v2.0.8 [78]

CNVnator CNV, SV v0.4 [79]

CoNVEX CNV, SV N/A [80]

DeepVariant SNV, indels v1.0 [81]

DELLY CNV, SV v0.8.7 [82]

ExomeCNV CNV, SV v1.4 [83]

FreeBayes SNV, indels v1.3.4 [84]

GATK Haplotype Caller
(GATK-HC) SNV, indels v4.1.9.0 [85,86]

GlfSingle SNV, indels N/A N/A

ISAAC Variant Caller (IVC) SNV, indels V2.0.13 [74]

LUMPY CNV, SV v0.3.1 [87]

Magnolya CNV, SV v0.15 [88]

Mutect SNV, indels v1.1.5 [89]

Mutect2 SNV, indels v4.1.9.0 [4]

Pindel CNV, SV N/A [90]

Platypus SNV, indels, SV N/A [91]

SAMtools SNV, indels v1.11 [92]

SNPSVM SNV N/A [93]

SomaticSniper SNV v1.0.5.0 [94]

SpeedSeq SNV, indels v0.1.2 [95]

Strelka SNV, indels N/A [96]

Strelka2 SNV, indels v2.9.10 [5]

SVMerge CNV, SV v1.2 [97]

Torrent Variant Caller (TVC) SNV, indels, SV v5.12.0 N/A

Ulysses CNV, SV v1.0 [98]

Varscan2 SNV, Indel v2.4.4 [99]

Table 5. Overview of alignment tools and variant calling tools in research papers subjecting sample
NA12878.

Research Paper Subjected
Sample

Reference
Genome Alignment Tool Variant Calling

Tool

Chen et al. 2019
[61]

NA12878

WES
WGS BWA-MEM

GATK-HC
SAMtools
Strelka2

VarScan2

Chen et al. 2020
[62] WES BWA-MEM Mutect2

Strelka2

Cornish et al.
2015 [57] WES

Bowtie2
BWA_MEM
CUSHAW3
MOSAIK

Novoalign

SAMtools
SNPSVM
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Table 5. Cont.

Research Paper Subjected
Sample

Reference
Genome Alignment Tool Variant Calling

Tool

Hwang et al.
2015 [64]

WES
WGS

Bowtie2
BWA-MEM
Novoalign

FreeBayes
GATK-HC
SAMtools

TVC

Hwang et al.
2019 [63]

WES
WGS

Bowtie2
BWA-MEM

GSNAP
ISAAC

Novoalign
SOAP2

Atlas2
FreeBayes
GATK-HC
glfSingle

IVC
Platypus
SAMtools

suite
VarScan2

Kumaran et al.
2019 [6] WES

Bowtie2
BWA-MEM

MOSAIK
Novoalign

SOAP2

GATK-HC
DeepVariant

FreeBayes
SAMtools

Meng et al. 2018
[65]

TES
WES
WGS

BWA-MEM

DeepVariant
Lancet

Strelka2
VarScan2

Pan et al. 2019
[59] WGS

Bowtie2
BWA-MEM

ISAAC
Novoalign

FreeBayes
GATK-HC

IVC
SAMtools

Supernat et al.
2018 [66]

WES
WGS BWA-MEM

DeepVariant
GATK-HC
SpeedSeq

Xu et al. 2014
[67] WES BWA-MEM

Mutect
SomaticSniper

Strelka
VarScan2

5.3.3. Variant Calling for CNV and SV

Both CNVs and SVs are commonly found associated with cancer incidences [100], [101].
CNVs covers somatic structural changes of amplification and/or deletion of DNA regions
in a chromosomal region [48]. ERBB2 (HER2) is an example of a gene often associated
with increased copy-number in breast cancer and clinical relevance for detection [102],
whilst TP53 variants are often observed as loss of the wildtype allele [103]. SVs covers
structural changes in terms of large translocations and chromosomal rearrangements [48].
Creation of known and novel tumorigenic fusion proteins as well as de-positioning the
proximity of regulatory elements for mRNA transcription might indirectly affect cell
function contributing to cancer [104].

Tools for identifying SNVs and small indels are not suited for calling variants of CNVs
and SVs. A number of tools exists for calling CNV and SV, as shown in Table 4. However,
certain challenges are peculiar to those chromosomal changes. Moreover, the technological
limitations of short reads generated by NGS (~150 bp) is not sufficient to resolve long
insertions and duplicated regions [105]. Thus, the ongoing development of TGS technolo-
gies will contribute to unravel CNVs and SVs more accurately. Implementation of the
variant allele frequency may benefit to provide hints of CNV and SVs as the variant allele
frequency will increase or decrease with the number of copies [106].
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The variant calling for CNV and SV harbors different strategies to identify modifica-
tions including read-pairing, read-depth, split-read and read-assembly. Read-pairing is
the detection of which read pairs are aligned with increased or decreased distance and/or
orientations [105]. This method is largely dependent on the insertion size, as small insertion
can be ignored or missed by the algorithm [107].

The read-depth method assumes a Poisson distribution in the depth of aligned reads
and examines the distribution of reads to reveal duplications and/or deletions. Thus,
duplicated regions show increased read depth whereas deleted regions show decreased
read depth compared to normal diploid regions [108]. Mapped reads with low confidence
in regions of repetitive DNA challenges the accuracy of copy-number status and may
introduce a biased output [107].

The split-read approach utilizes read pairs to define breakpoints of structural variants.
The concept of the method relies on reads that align with high confidence to the reference.
Hence, the unaligned read(s) may potentially define the breaking point of the insertion [109].
However, the split-reads approach shows limitation, as reads below 1000 bases affect
both sensitivity and specificity [109]. Finally, the read-assembly method is in theory the
most versatile approach for identifying variants. As the method suggests, it is based on
assembling a read base scaffold genome that is subsequently compared to the reference
genome to identify variants [109]. Nevertheless, the method requires a significant demand
on computational resources and longer-length reads, hence it is not advantageous used for
the detection of CNV and SV, yet.

6. Clinical Demand

NGS assistance to guide diagnostics, prognostics and improve precision medicine are
being progressively adopted into the clinic. Furthermore, genomic research has become
an area of impact to prioritize mutations for functional testing. Thus, contributing to
reveal mechanisms and better understanding of cancer, allowing for the development
of new targeted drugs. In clinical oncology, attention to specific genes/hot spots are
used for treatment decision. A PCR amplicon-based enrichment strategy underlying
gene panels has several benefits for clinical utility. Here, it can be mentioned its low
requirement of input DNA, fast resolution time, application to FFPE and the ability to
reach greater sequencing depth [62,67,110]. In addition, this strategy can handle multiple
samples (patients) in one workflow. Furthermore, assumptions of primary tumor being
homogenous holds little promise, as it has been shown that a primary tumor often harbors
subclones of heterogenous and/or evolutionary origin [111]. Therefore, close collaboration
with pathologist is important for obtaining the right tissue for NGS analysis. Reaching
greater sequencing depth allows to potentially explore low frequent mutations in low tumor
cellularity and/or in subclones. This identification might contribute to the refinement of
diagnosis, clinical management and/or prognosis, owing to knowledge of drug-resistance
before initial therapy [112]. A critical element of variant detection is the accuracy and
reproducibility of the identified variants called. Hence, evaluation and validation of
tools/pipelines must be compared to clear cut variants from previously well-defined
samples [106].

The rate of false positives can be handled both by the specimen examined and the
filters applied during bioinformatic analyses, minimizing its effects. FFPE samples harbor
thousands of artifacts [113], which may remove low-frequency true variants during filtering.
It is therefore crucial to consider the type of specimen, in order to deploy more accurate
filters and the importance of validating the pipeline. Many studies have subjected aligners
and variant callers concerning their performance, concluding limited concordance [6,57].
Filters embedded in aligners focusing on mismatches can be adjusted to allow or exclude
fewer or more mismatches during alignment. With a greater number of mismatches, it
also increases the likelihood of DNA fragment to align to regions with similarity. Thus,
the increment of false-positive findings throughout variant calling. One the other hand,
narrowing alignment filters to only accept few mismatches will potentially leave out true-
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positives variants with greater amounts of mismatches. Hard filters can be adjusted in
most alignment and variant calling -tools to deal with difficult regions (homopolymeric
and repetitive-regions). This is solved by either completely rejecting variants in these
areas or apply manual empirical filters such as thresholds of coverage, Phred-score and
p-values [114]. It is important to note that increasing or decreasing filters identifying less
or additional variants in a clinical setting is not necessarily beneficial for the patient. If the
identified additional variants are artifacts in relevant genes, then these could potentially
lead to misguidance of therapeutic course. Moreover, an extra challenge in the clinical
setting is the handling of germline mutations. Tumor samples are usually examined without
a germline counterpart (i.e., normal tissue). Hence, by applying normal-like sample within
the same patient, may help to reduce the number of germline variants.

Special caution must be taken setting up and interpreting NGS analysis from clinical
data, as many factors can interplay with the outcome. Many answers can be intriguing, but
the right answer is the one beneficial for the patient outcome. Hence, critical validation of
pipelines for clinical utility is of utmost importance.

7. Conclusions

The advent of NGS greatly improved the study of genetics, as well as the diagnosis
and treatment of genetic diseases. However, with the ability to sequence billions of
reactions in a short period of time creates a demand for analytic tools to overcome these
large data sets generated. Robust pipelines for NGS analysis are in constant demand,
thus alignment tools and variant calling tools are still improving and are an active area
of research. From the literature it has been reported that the combination of alignment
tools and variant calling tools tends to vary in consistency. Interestingly, we find that
from 10 studies subjecting sample NA12878, BWA-MEM or Bowtie2 in combination with
Strelka2 or Mutect2 are among the best performing pipelines for SNV detection. CNV and
SV detection are challenging due to the duplications/deletions of regions within a gene
and/or translocation. The read-assembly approach is promising for detecting CNV/SV.
Nevertheless, that requires longer spans of reads than currently provided by the present
NGS technology and extensive computational resources to function ideally. The ongoing
improvements to decrease the high error-rate underlying the TGS-technologies so far, will
preferably solve the problem with longer reads.

The NGS technologies are increasingly being implemented into diagnostic routine
settings, along with a diversity of bioinformatic. Different specimens are subjected for se-
quencing, according to their purpose and origin. To provide an optimal answer in patient’s
course of disease, precise annotation of mutations is mandatory. Hence, the prerequisite
of evaluating and validating bioinformatic pipelines used for the analysis. Laboratories
conducting NGS should as a minimum participate in quality trials as documentation for
applied competence conducting NGS analysis. Furthermore, consideration concerning the
usage of NGS in relation to the timepoint of treatment should be taken into account.

Evidence-based biological treatment can optimally be supported by using panel
sequencing (TES and/or hot-spot) ensuring fast throughput, focused datamining and
high sensitivity and specificity. In contrast to WES, that can be used for exploring and
prioritizing new relevant drug targets across disease used for experimental treatment of
patients. However, Opposite, WGS contributes to large amounts of data, whereas 99% is
information about non-coding regions. Due to the large amount of data in WGS results
may be presented with low sequencing depth. Hence, the risk of not identifying relevant
actionable clinical targets. Although, WGS is still beneficial of gaining new knowledge
from research studies, that might benefit future patient.
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