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Abstract: Bladder cancer is the 10th most common cancer worldwide. Due to the lack of understand-
ing of the oncogenic mechanisms between muscle-invasive bladder cancer (MIBC) and advanced
bladder cancer (ABC) and the limitations of current treatments, novel therapeutic approaches are
urgently needed. In this study, we utilized the systems biology method via genome-wide microarray
data to explore the oncogenic mechanisms of MIBC and ABC to identify their respective drug targets
for systems drug discovery. First, we constructed the candidate genome-wide genetic and epigenetic
networks (GWGEN) through big data mining. Second, we applied the system identification and
system order detection method to delete false positives in candidate GWGENs to obtain the real
GWGENs of MIBC and ABC from their genome-wide microarray data. Third, we extracted the core
GWGENs from the real GWGENs by selecting the significant proteins, genes and epigenetics via the
principal network projection (PNP) method. Finally, we obtained the core signaling pathways from
the corresponding core GWGEN through the annotations of the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway to investigate the carcinogenic mechanisms of MIBC and ABC. Based on
the carcinogenic mechanisms, we selected the significant drug targets NFKB1, LEF1 and MYC for
MIBC, and LEF1, MYC, NOTCH1 and FOXO1 for ABC. To design molecular drug combinations for
MIBC and ABC, we employed a deep neural network (DNN)-based drug-target interaction (DTI)
model with drug specifications. The DNN-based DTI model was trained by drug-target interaction
databases to predict the candidate drugs for MIBC and ABC, respectively. Subsequently, the drug
design specifications based on regulation ability, sensitivity and toxicity were employed as filter
criteria for screening the potential drug combinations of Embelin and Obatoclax for MIBC, and
Obatoclax, Entinostat and Imiquimod for ABC from their candidate drugs. In conclusion, we not only
investigated the oncogenic mechanisms of MIBC and ABC, but also provided promising therapeutic
options for MIBC and ABC, respectively.

Keywords: muscle-invasive bladder cancer (MIBC); advanced bladder cancer (ABC); deep neural
network (DNN)-based drug-target interaction (DTI) model; drug targets; drug design specifications;
drug combination

1. Introduction

Bladder cancer is the 10th most common cancer worldwide, with 573,278 new cases
and 212,536 deaths in 2020 [1]. Most bladder cancers are urothelial carcinomas. Bladder
cancer is diagnosed as a muscle-invasive bladder cancer (MIBC) or an advanced bladder
cancer (ABC) once the tumor has invaded the muscle layer of the bladder. At present, ap-
proximately 70% of diagnosed patients have non-muscle-invasive bladder cancer (NMIBC),
and 30% have MIBC or ABC. Moreover, approximately 15% to 20% of NMIBCs will progress
to MIBC, and half of MIBCs will undergo metastasis and die within 3 years [2,3].

Although there has been significant progress in other cancer treatments, the systemic
treatment of bladder cancer has remained largely unchanged for more than 30 years. How-
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ever, a better understanding of the oncogenic mechanisms and clinical drug discovery
for bladder cancer have facilitated the rapid expansion of therapies in the past decade.
Most bladder cancer patients are diagnosed after the appearance of macroscopic hematuria
and cases are identified during the transurethral resection of bladder tumors (TURBTs) [4].
Currently, the standard treatment of MIBC is multimodal therapy, including radical cystec-
tomy, neoadjuvant chemotherapy (NAC) or bladder-sparing trimodality therapy for the
selected patients with MIBC, which contains transurethral resection and chemoradiother-
apy; ABC is treated with cisplatin-based systemic chemotherapy [5]. In invasive bladder
cancer, the major prognostic factor is staged based on the depth of the tumor invasion and
metastasis [6]. The 5-year overall survival (OS) rate for patients with MIBC is roughly
60–70%. Even though NAC therapy has a 5–10% survival benefit, a certain percentage of
patients have no response to NAC and may experience potentially fatal surgical delays
and side effects from the treatment [7]. Conventional cisplatin-based chemotherapy has an
initial high response rate for ABC, but the 5-year OS rate is only 5–20% [8]. Furthermore,
chemoradiotherapy has failed to generally improve the prognosis of ABC because of patient
resistance to the treatment [9]. Therefore, we need to look for better treatment options to
prolong the opportunity for survival. The targeted therapy of bladder cancer malignancies,
a revolutionary treatment that prevents cancer growth and metastasis by interfering with
specific molecules, is actively being developed [10].

With the rapid development of cancer genomics, there are other treatments to erad-
icate bladder cancer cells that target abnormally expressed molecules in bladder cancer
tissues. Long non-coding RNAs (lncRNAs) are defined as transcripts longer than 200
nucleotides [11]. They play key roles in post-transcriptional regulation mechanisms tar-
geting mRNA splicing, stability or translation [12]. A recent study has demonstrated
that the abnormally expressed lncRNAs can serve as oncogenes and tumor suppressors,
which are related to tumor recurrence, metastasis, prognosis or diagnosis [13]. In addition,
lncRNAs are involved in carcinogenic mechanisms of the genitourinary system, including
prostate, renal cell and bladder malignancies. Therefore, lncRNAs are promising thera-
peutic candidate targets for molecular research and biomarker discovery in genitourinary
oncology [14].

Another potential target of non-coding RNAs, microRNAs (miRNAs), are evolution-
arily conserved and small non-coding RNAs that are approximately 22 nucleotides in
length [15]. miRNAs regulate the expression of genes involved in the control of differentia-
tion, apoptosis and proliferation [16]. The mechanism of miRNAs in bladder cancer is an
emerging field of research. The study has shown that miRNA genes are dysregulated in
cancer, and the alteration in miRNA expression can affect the cell cycle and survival [17].
miRNAs are potential prognostic and diagnostic biomarkers and may also serve as novel
drug targets for the treatment of bladder cancer [18].

In traditional drug discovery, the development of a new drug is very expensive and
time-consuming, taking approximately 13–15 years and costing an average of 2–3 billion
USD from the lab to the market [19]. The approval rates for cancer drugs entering phase
I trials are only 5% [20]. Therefore, we urgently need a more efficient and systematic
drug design. The drug-target interaction (DTI) prediction can narrow down the scope
of candidate drugs, hence, it has become an important process in drug discovery and
drug repurposing [21]. The traditional computational methods based on the DTI model
can be broadly classified into ligand-based approaches and docking-based approaches,
which are used to predict the interactions based on the similarities between proteins and
ligands [22]. With the development of computational applications and artificial intelligence,
drug screening and design employ these methods to reduce the time and cost of drug
discovery. In the past decade, machine learning-based DTI prediction methods have
been rapidly developed. DTI prediction is generally considered a binary classification
problem by utilizing the features of drugs and targets as inputs and the proved DTI
as labels. Compared with traditional computational methods, network-based methods
show great advantages from the concept that most drugs and compounds interact with
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multiple targets (biomarkers) [23]. Drug repurposing refers to the application of the drug
for other indications than its initial approval. The advantage of drug repurposing is that
large amounts of data can be obtained for investigation, and it can also reduce the need for
additional studies on pharmacokinetic properties and toxicity [24]. Moreover, multiple drug
combinations can target more biomarkers of the tumor as drug targets and have clinically
improved tumor growth and survival in patients on monotherapy. Drug combinations can
restore more cellular dysfunctions in tumors, so the efficacy of each drug in the combination
can be enhanced without increasing the dose of a single drug. Since drug combination as a
multiple-molecule drug can increase the efficacy of each molecular drug in the combination,
it can achieve the same efficacy requirements with lower doses than monotherapy, thereby
reducing toxicity, drug resistance and side effects in patients [25]. Therefore, we applied
DTI prediction based on the deep neural network (DNN) for systems drug design and
discovery and selected multiple-molecule drugs for the treatment of MIBC and ABC from
the perspective of drug repurposing and drug combination.

In this study, we utilized the systems biology method via genome-wide microarray
data for exploring the oncogenic mechanisms to identify drug targets and employed the
DNN-based DTI model to predict candidate molecular drugs and then, with drug specifica-
tions, to select potential multiple-molecule drugs as drug combinations for the treatment
of MIBC and ABC, respectively. First, we constructed the candidate genome-wide genetic
and epigenetic network (GWGEN) with big data mining. Second, we applied the sys-
tem identification scheme and system order detection approach to delete false-positive
interactions or regulations in candidate GWGENs through the corresponding genome-
wide microarray data to obtain the real GWGENs. Third, we extracted the core GWGENs
from the real GWGENs by selecting the significant proteins, genes and epigenetics via
the principal network projection (PNP) method. We could then, obtain the core signaling
pathways from the corresponding core GWGEN through the annotations of the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway to investigate the significant car-
cinogenic mechanisms leading to abnormal cellular functions of MIBC and ABC. Based
on the corresponding carcinogenic mechanisms, we selected the significant biomarkers
NFKB1, LEF1 and MYC as drug targets for MIBC, and the significant biomarkers LEF1,
MYC, NOTCH1 and FOXO1 as drug targets for ABC. Finally, the DNN-based DTI model
was trained with drug-target interaction databases to predict the candidate molecular drugs
for the drug targets of MIBC and ABC. Subsequently, the drug design specifications based
on regulation ability, sensitivity and toxicity were employed as filter criteria for screening
the potential drug combination of Embelin and Obatoclax as the multiple-molecule drug
for MIBC, and the potential drug combination of Obatoclax, Entinostat and Imiquimod
as the multiple-molecule drug for ABC from their candidate molecular drugs to provide
promising therapeutic options, respectively.

2. Results
2.1. Overview of Systems Biology Approach for the Investigation of Carcinogenic Mechanism and
Systematic Drug Design for the Treatment of MIBC and ABC

In this research, we utilized the systems biology method to investigate the molecular
carcinogenesis mechanism with genome-wide microarray data and applied the DNN-
based DTI model with drug design specifications for systematic drug discovery to predict
potential drug combinations as multiple-molecule drugs for the treatment of MIBC and
ABC, respectively. The flowchart of the systems biology approach to identify the biomarkers
of carcinogenic mechanisms as drug targets for drug discovery of MIBC and ABC is shown
in Figure 1. After constructing the candidate GWGEN via big data mining, based on a
protein interaction and gene regulation model, we applied the corresponding genome-wide
microarray data by the system identification and the system order detection methods to
identify the real GWGENs of MIBC and ABC, respectively. The nodes of the candidate and
real GWGENs are divided into five groups: proteins, receptors, transcription factors (TFs),
miRNAs and lncRNAs. The statistics of nodes and edges in the candidate GWGENs and
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the real GWGENs after system identification are individually given in Tables S1 and S2. It
is noted that, compared with candidate GWGENs, the total number of edges in the real
GWGENs is significantly reduced. This result indicates that the false-positive interactions or
regulations from datasets under different experimental conditions and noises can be pruned
by the system order detection approach. Although the scale of the GWGEN networks of
MIBC and ABC has shrunk, the real GWGENs of MIBC and ABC in Figures S1 and S2
are still too complex to be precisely analyzed and annotated by KEGG pathways for the
significant carcinogenic mechanisms of MIBC and ABC, respectively. Hence, we performed
the PNP method on the real GWGENs of MIBC and ABC to separately extract their core
GWGENs based on the projection values of the nodes in their real GWGENs. In this study,
the core GWGENs contain the top-ranked 6000 nodes that reflect significant networks of
the real GWGENs from an 85% network energy perspective. We plotted the real GWGENs
and core GWGENs of MIBC and ABC with the network visualization software Cytoscape
in Figures S1–S4, respectively. Moreover, the KEGG pathway annotations for the core
GWGENs of MIBC and ABC are obtained based on the core nodes through the enrichment
analysis of the database for annotation, visualization and integrated discovery (DAVID)
to explore the genetic and epigenetic carcinogenic mechanisms of MIBC and ABC. The
enrichment analysis results of MIBC and ABC are shown in Tables S3 and S4, respectively.
According to KEGG signaling pathway annotations and related literature surveys, we
established the common and specific core signaling pathways for MIBC and ABC, and
discussed the involved carcinogenic mechanisms, as shown in Figure 2. The significant
biomarkers of MIBC and ABC were then identified as drug targets by investigating the core
signaling pathways leading to abnormal cellular functions of MIBC and ABC, respectively.
For drug discovery and design, we constructed a DNN-based DTI model to predict the
candidate drugs for the drug targets of MIBC and ABC. On the basis of drug design
specifications, such as regulation ability, sensitivity and toxicity, the candidate drugs were
further screened for potential drug combinations as multiple-molecule drugs of MIBC and
ABC. The following sections provide more details on the core signaling pathways and the
systematic drug discovery design.

2.2. The Specific Molecular Carcinogenic Mechanisms of MIBC

Based on the projection values of each node in the core GWGEN of MIBC, we se-
lected and investigated the specific signaling pathways of MIBC with the blue lines in
Figure 2. The receptor TNFRSF1A receives the microenvironment factor TNF to activate
TF NFKB1/RELA through signaling transduction proteins TRADD, TRAF2, MAP3K7,
IKBKB and NFKBIA. The protein IKBKB is phosphorylated upon stimulation, which in
turn phosphorylates the protein NFKBIA and causes its ubiquitination and degradation.
TF NFKB1 is then released into the nucleus to initiate gene transcription. Furthermore,
protein AKT is an upstream regulator of protein IKBKB and utilizes IKBKB to activate
NF-κB transactivation, which initiates RELA phosphorylation [26]. LncRNA LINC00467 is
the upstream node of TF RELA. It has been confirmed that LINC00467 can directly bind
to TF RELA and activate the NF-κB signaling pathway to promote the development and
occurrence of bladder cancer [27]. TF RELA can be acetylated to increase the DNA binding
of NF-κB [28]. TF NFKB1 can positively regulate the target genes XIAP and BCL2, while
inducing the activation of TF HIF1A [29–31]. Overexpression of XIAP and BCL2 inhibits
the apoptosis of cancer cells, and XIAP also enhances human invasive bladder cancer
cell proliferation [32–34]. Mediated by TF NFKB1, TF HIF1A can induce the target gene
VEGFA [35]. VEGFA is a factor of endothelial cells during tumor angiogenesis and functions
in antiapoptosis and vasodilation [36]. VEGFA is associated with prognosis in patients with
MIBC and is also thought to increase the metastasis of cancer cells [37].



Int. J. Mol. Sci. 2022, 23, 13869 5 of 26
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 28 
 

 

 

Figure 1. The flowchart of the systems biology method and systematic drug discovery design. The 

construction of candidate GWGEN, real GWGEN, core GWGEN and core signaling pathways for 

investigating carcinogenic mechanisms to identify the biomarkers as drug targets of MIBC and ABC, 

and systematic drug discovery and design of potential drug combinations as multiple-molecule 

drugs to target the corresponding multiple drug targets for the treatment of MIBC and ABC. 

Figure 1. The flowchart of the systems biology method and systematic drug discovery design. The
construction of candidate GWGEN, real GWGEN, core GWGEN and core signaling pathways for
investigating carcinogenic mechanisms to identify the biomarkers as drug targets of MIBC and ABC,
and systematic drug discovery and design of potential drug combinations as multiple-molecule drugs
to target the corresponding multiple drug targets for the treatment of MIBC and ABC.
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Figure 2. The common and specific core signaling pathways and their downstream cellular dysfunc-
tions between MIBC and ABC. The figure shows the genetic and epigenetic carcinogenic mechanisms
of MIBC and ABC. The orange background contains the specific core signaling pathways of MIBC.
The green background contains the overlapping core signaling pathways between MIBC and ABC
(i.e., common core signaling pathways). The blue background contains the specific core signaling
pathways of ABC. The gene symbols in red or green font denote the selected significant biomarkers
as drug targets.

In summary, the specific molecular carcinogenic mechanisms of MIBC are due to
abnormal cellular functions of apoptosis, cell proliferation and metastasis, which promote
the progression of MIBC. According to the analysis of core signaling pathways for MIBC
and considering the protein/gene expression levels [38], the significant biomarker TF
NFKB1 is selected as the drug target for the specific oncogenic mechanism of MIBC.

2.3. The Common Molecular Mechanisms between MIBC and ABC

The common core signaling pathways between MIBC and ABC are displayed with
black lines in Figure 2. After binding to the ligand FGF3, the receptor FGFR3 can separately
trigger the signaling transduction proteins PIK3CA and GRB2. The protein PIK3CA can acti-
vate the translation initiation factor EIF4E through the mediation of the PI3K/AKT/mTOR
signaling pathway. The previous study reported mutations in the receptor FGFR3 and
protein PIK3CA in bladder cancer [39]. Additionally, the AKT1 promoter is nearly demethy-
lated in bladder cancer tissues, and the methylation level of AKT1 is found to be clinically
correlated with bladder cancer [40]. Subsequently, EIF4E can induce the target genes BCL2,
VEGFA, MYC and Cyclin D1 (CCND1) [41,42]. Overexpression of MYC and CCND1 is
involved in many cellular functions, such as cell cycle enhancement, cell proliferation
initiation and epithelial-mesenchymal transition (EMT) promotion [43–48]. Furthermore,
the study has revealed that the overexpression of CCND1 is an independent factor in the
metastasis of bladder cancer [49].
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After the receptor FZD1 interacts with the ligand WNT2B, it can activate the Wnt/β-
catenin signaling pathway, as shown in Figure 2. The Wnt/β-catenin signaling pathway
utilizes the protein CTNNB1 to transmit the receptor-mediated signaling from the cyto-
plasm to the nucleus, where it activates the TFs TCF/LEF [50]. TFs TCF/LEF can induce the
transcription of target genes MYC, CCND1 and DKK1 [51,52]. The overexpression of Dkk1
can facilitate apoptosis by suppressing cell proliferation and transformation, which occurs
in multiple cancer cell lines, such as lung cancer, cervical cancer and liver cancer [53]. More-
over, the high-level expression of Dkk1 in preoperative advanced bladder cancer patients is
closely associated with tumor stage, poor patient survival and distant metastasis [53,54].

The previously described receptor FGFR3 triggers not only the PI3K/AKT/mTOR
signaling pathway, but also the MAPK signaling pathway. Activation of MAPK1 is a
common event in tumor metastasis. Mutations in HRAS are found in bladder cancer and
can serve as a tumor staging function. Expression of HRAS with activating mutations in
urothelial cells results in superficial tumors and urothelial hyperplasia [55]. Moreover,
the aberrant activation of HRAS during bladder cancer development may be caused by
the demethylation of the HRAS promoter [56]. TF MYC can separately inhibit target
gene CCND1, induce target gene CCNE1, activate EIF4E and trigger miRNA MIR106A
through the mediation of the MAPK signaling pathway [57–60]. Transcriptional control of
CCNE1 regulates the cell cycle in bladder cancer, so its aberrant expression leads to rapid
proliferation and genomic instability [61]. Transfection of miRNA MIR106A inhibits the
target gene MMP2. MMPs play an important role in cancer cell invasion by degrading
basement membranes and the cellular matrix [62]. Upregulation of MMP2 is a significant
process in the invasion and migration of bladder cancer cells [63].

In brief, the common molecular carcinogenic mechanisms between MIBC and ABC are
due to abnormal cellular functions of apoptosis, cell proliferation, cell cycle, metastasis and
EMT. Based on the results of the core signaling pathways and the discussion of protein/gene
expressions [64,65], the significant biomarkers TF LEF1 and TF MYC are chosen as the drug
targets for the common oncogenic mechanisms between MIBC and ABC.

2.4. The Specific Molecular Carcinogenic Mechanisms of ABC

The specific core signaling pathways of ABC are shown as red lines in Figure 2.
NOTCH1 is a single-pass transmembrane receptor that is triggered by interacting with
ligands in JAG1 on an adjacent cell membrane. The NOTCH intracellular domain translo-
cates to the nucleus, where it activates TF RBPJ [66]. TF RBPJ induces the transcription of
target genes HES1 and CDKN1A [67,68]. The low-expression level of HES1 is associated
with EMT and metastatic properties in bladder cancer [66]. The overexpression of CDKN1A
can promote apoptosis, cell cycle arrest and bladder cancer metastatic ability [69–71]. In
addition, CDKN1A can reduce drug sensitivity by enhancing DNA repair [72].

The previously described protein AKT1 can also negatively regulate the protein FOXO1
after the receptor FGFR3 interacts with the ligand FGF3. The abnormal expression of FOXO1
was observed in metastatic bladder cancer cells and it was associated with poorer outcomes
and recurrence in bladder cancer [73]. The down-regulated expression of TF FOXO1 can
induce target genes CCND1 and MMP2 but inhibit target gene CDKN1A [74–76].

After the ligand AGT binds to the receptor F2RL3, it initiates the Rho/ROCK pathway
as shown in Figure 2. The Rho/ROCK pathway is involved in bladder cancer invasion,
metastasis and progression by regulating actin cytoskeleton organization and it may be a
valuable prognostic biomarker [77]. TF MKL1, activated by the upstream protein ROCK2,
can regulate the target gene MSN [78]. MSN as a potential biomarker for predicting
advanced bladder cancer has been found to have higher expression associated with poor
survival in cancer. Accumulating evidence indicates that MSN plays a key role in the EMT
of various malignant tumors [79].

In conclusion, the specific molecular carcinogenic mechanisms of ABC are due to
abnormal cellular functions of apoptosis, cell cycle, metastasis, EMT and DNA repair. Based
on the analysis of the core signaling pathways for ABC and considering the protein/gene
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expressions [75,80], the biomarkers NOTCH1 and TF FOXO1 are selected as the drug
targets for the specific oncogenic mechanisms of ABC.

2.5. The Deep Neural Network-Based Drug-Target Interaction Model with Drug Design
Specifications to Discover the Potential Drug Combinations for Multiple-Molecule Drugs of MIBC
and ABC

Based on the investigation of oncogenic mechanisms of MIBC and ABC in the previous
sections, we separately chose biomarkers NFKB1, LEF1 and MYC, and biomarkers LEF1,
MYC, NOTCH1 and FOXO1 as drug targets for MIBC and ABC, and then searched for small
compounds that could be suitable for potential drug combination therapies with adequate
regulation ability, sensitivity and toxicity to reverse the expression levels of the biomarkers.

In order to construct the systematic drug design and discovery process, we pretrained
a DNN-based DTI model to efficiently predict the interaction probability between candi-
date drugs and the identified drug targets. The potential drug combinations as multiple-
molecule drugs for MIBC and ABC were then filtered from the candidate drugs by the
drug design specifications of regulation ability, sensitivity and toxicity. The flowchart of
systematic drug design and discovery is shown in Figure 3. There are a total of 80,291
proven drug-target interactions and 100,024 unproven drug-target interactions in our train-
ing datasets. To avoid poor prediction problems caused by an imbalanced class distribution,
the model is overwhelmed by the large class and ignores the minority class. We randomly
selected an equal number of proven and unproven drug-target interactions. Since the
features in drug-target interactions are defined in different units and the datasets in high-
dimensional space are complex for DNN-based DTI model training, we performed feature
scaling by the standardization method and utilized the principal component analysis (PCA)
for the dimensionality reduction to obtain 996 of the 1359 features before training the
DNN-based DTI model. In the architecture of the DNN-based DTI model in Figure 3, the
input layer had 996 nodes, the four hidden layers were separately embedded with 512,
256, 128 and 64 neurons, and the output layer had one node. We set the ReLU activation
function for each hidden layer and the sigmoid activation function in the output layer. At
the same time, the dropout layer was added to each hidden layer to prevent the DNN-based
DTI model from overfitting issues during the training process. The DNN-based DTI model
was applied with 5-fold cross-validation to evaluate the model’s performance, as shown
in Table S5. The learning curves of loss and accuracy during the DNN-based DTI model
training process are denoted in Figures S5 and S6, respectively. Eventually, the average
test accuracy of 5-fold cross-validation is 93.06% with a standard deviation of 0.263%.
The DNN-based DTI model with the best testing performance was utilized to predict the
candidate drugs based on the probability of drug-target interactions of our identified drug
targets. Additionally, we measured the well-trained DNN-based DTI model by the receiver
operating characteristic (ROC) curves. The area under the curve (AUC) of the ROC is used
to visualize the performance, as shown in Figure S7. The results show that the performance
of the DNN-based DTI model (AUC = 0.980) is significantly better than that of the random
prediction model (AUC = 0.5).
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Figure 3. The flowchart of systematic drug design and discovery of MIBC and ABC. The drug-target
interaction databases contain drug-target interaction data to construct the drug-target feature vector.
After data preprocessing, the data is divided into training data and testing data to train the DNN-
based DTI model. The feature vectors of biomarkers and drugs from drug-target interaction databases
are used for the well-trained DNN-based DTI model to predict candidate drugs for the identified
biomarkers (drug targets) of MIBC and ABC. The candidate drugs are then filtered by the drug design
specifications to obtain potential drug combinations as multiple-molecule drugs for the treatment of
MIBC and ABC.

To further ensure the stability and safety of candidate drugs predicted by the DNN-
based DTI model, we incorporated drug design specifications, such as regulation ability,
sensitivity and toxicity. For the drug regulation ability, we downloaded the Library of Inte-



Int. J. Mol. Sci. 2022, 23, 13869 10 of 26

grated Network-Based Cellular Signatures (LINCS) L1000 Level 5 dataset, which contains
12,328 genes treated with 19,811 small molecule compounds in 76 different human cell
lines [81,82]. After the treatment with small-molecule compounds in LINCS L1000, we
can determine whether the identified protein/gene expression is upregulated or down-
regulated, from which we can select potential molecule drugs from candidate drugs to
restore the drug targets (biomarkers) to their normal expression. For drug sensitivity, we
gathered the primary PRISM repurposing dataset [83], which included 4518 compounds
in 578 human cell lines. We selected compounds with sensitivity values close to zero,
which indicates that the cell line is insensitive to chemical perturbations. Furthermore, we
considered drug toxicity (LC50) by using the ADMETlab 2.0 tool [84]. A drug with a higher
LC50 value means it is less toxic to the body and usually has fewer side effects. Based
on regulation ability, sensitivity and toxicity, some potential small-molecule compounds
were selected for the identified drug targets of MIBC and ABC, as shown in Table 1. By
considering the pharmacological properties, we selected the appropriate drug combinations
as multiple-molecule drugs to satisfy the drug design specifications. Finally, we proposed
the potential drug combination of Embelin and Obatoclax as the multiple-molecule drug to
target three drug targets for the treatment of MIBC in Table 2; the potential drug combina-
tion of Obatoclax, Entinostat and Imiquimod as the multiple-molecule drug to target four
drug targets for the treatment of ABC in Table 3.

Table 1. Potential small-molecule compounds for each identified drug target of MIBC and ABC are
selected from their candidate small-molecule compounds based on the drug design specifications.

NFKB1 (+)

Candidate drugs Regulation Ability (L1000) Sensitivity (PRISM) Toxicity
(LC50, log(mol/kg))

Evodiamine −0.453 −2.766 4.402
Embelin −0.450 −0.563 5.223

Norethisterone −0.448 0.325 2.946
Carbachol −0.445 0.337 1.963
Zaleplon −0.440 −1.522 3.324

MYC (+)

Candidate drugs Regulation Ability (L1000) Sensitivity (PRISM) Toxicity
(LC50, log(mol/kg))

Embelin −0.822 −0.563 5.223
Dexrazoxane −0.671 −1.558 3.004

Obatoclax −0.539 −2.694 5.255
Roquinimex −0.526 −1.831 4.524
Entinostat −0.525 −1.013 4.971

LEF1 (+)

Candidate drugs Regulation Ability (L1000) Sensitivity (PRISM) Toxicity
(LC50, log(mol/kg))

Bortezomib −0.711 −5.840 2.474
Navitoclax −0.697 −0.913 3.97
Obatoclax −0.678 −2.694 5.255

Mitomycin-c −0.649 −1.269 3.017
Halofantrine −0.625 −1.604 6.478

FOXO1 (−)

Candidate drugs Regulation Ability (L1000) Sensitivity (PRISM) Toxicity
(LC50, log(mol/kg))

Domperidone 0.268 −1.109 4.148
Mevastatin 0.262 −2.724 3.481
Ispinesib 0.252 −2.887 5.70

Entinostat 0.235 −1.013 4.971
Acebutolol 0.212 0.722 2.778

NOTCH1 (−)

Candidate drugs Regulation Ability (L1000) Sensitivity (PRISM) Toxicity
(LC50, log(mol/kg))

Tomelukast 0.942 0.077 3.192
Imiquimod 0.896 0.083 4.147

Quinelorane 0.887 0.294 2.850
Mephenesin 0.866 0.327 2.330

Celiprolol 0.847 0.140 2.590

NOTE: The small-molecule compounds with the gray background are the selected drugs for drug combinations
as multiple-molecule drugs for MIBC in Table 2 and ABC in Table 3.
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Table 2. The selected molecular drugs and their corresponding drug targets for the drug combination
as the multiple-molecule drug for the treatment of MIBC.

Drug Names
Regulation Ability with Binding to Drug Targets

NFKB1 MYC LEF1

Embelin • •
Obatoclax • •

Chemical structures of molecular drug combination
Embelin Obatoclax
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3. Discussion

We investigated the specific and common core signaling pathways leading to the
carcinogenic mechanism with the abnormal cellular functions of MIBC and ABC, as shown
in Figure 2. We then identified the significant biomarkers of the oncogenic mechanisms
of MIBC and ABC. Based on the well-trained DNN-based DTI model and drug-target
interaction data, we could predict the interaction probabilities between candidate drugs
and the identified drug targets. Subsequently, we proposed the potential molecular drug
combinations as multiple-molecule drugs for the treatment of MIBC and ABC by consid-
ering drug design specifications, including regulation ability, sensitivity and toxicity, as
shown in Tables 2 and 3, respectively.

Among them, Obatoclax is a synthetic derivative of bacterial prodiginines [85], which
was developed as a small-molecule antagonist of all of the antiapoptotic BCL-2 family
members. A recent study showed that Obatoclax induced the downregulation of MYC and
CCND1 and it might be the inhibitor of the WNT/β-catenin signaling pathway through
downregulating LEF1 [86]. Another study revealed that Obatoclax could suppress cell
proliferation and facilitate the effectiveness of cisplatin in MIBC cells [87]. Embelin (2,5-
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dihydroxy-3-undecyl-1,4-benzoquinone) is a small-molecule inhibitor of XIAP with an-
tioxidant and anti-inflammatory activities in several human cancer cell lines. It has been
documented that Embelin inhibits MYC, and might also be an inhibitor of nuclear factor-κB
(NF-κB) [88]. Moreover, Embelin could inhibit invasion and cell proliferation, and induce
apoptosis in mouse pancreatic cancer cells [89]. Entinostat (ENT) is a selective synthetic
benzamide derivative histone deacetylase (HDAC) inhibitor that has been used in breast
cancer to initiate apoptosis and inhibit cell proliferation [90]. It has been demonstrated
that the ENT treatment increased the expression of FOXO1 in urothelial bladder cancer
cells [91]. Furthermore, ENT downregulated MYC and the G2/M checkpoint in breast
cancer [92]. Imiquimod is a small synthetic compound that typically treats skin cancer by
activating an antitumor immune response [93]. The immunomodulatory treatment with
imiquimod upregulated the expression of NOTCH1 in tumor cells [94]. In addition, the
intravesical instillation of imiquimod has demonstrated reduced cell viability and apoptosis
stimulation, resulting in reduced tumor growth and inflammatory response induction [95].
In summary, we separately proposed two molecular drug combinations: Embelin and
Obatoclax as the multiple-molecule drug for MIBC; Obatoclax, Entinostat and Imiquimod
as the multiple-molecule drug for ABC.

Cisplatin-based chemotherapy has been the standard therapy in major metastatic
settings for the past decade, but the treatment paradigm for bladder cancer is rapidly
changing as more and more relevant studies are discovered. Most recently, Erdafintib
and Enfortumab vedotin (EV) have been approved for patients with advanced bladder
cancer [2]. In this study, drug repurposing by applying the systematic drug design method
is a promising option compared to the traditional drug design. It should be noted that
the small-molecule compounds that we selected as drug combinations for the identified
drug targets of MIBC and ABC were primarily U.S. Food and Drug Administration (FDA)-
approved drugs and clinical trial drugs. The advantages of our systematic drug design and
discovery are given as follows: First, repurposing FDA-approved drugs and clinical trial
drugs can reduce the shortcomings in the traditional drug design process, especially the
consumption of development time. Second, by choosing drug combinations as multiple-
molecule drugs for multiple drug targets, the dose of monotherapy and drug toxicity can
be reduced. Although further clinical research is required for validation, it is expected that
patients with MIBC and ABC could benefit from systematic drug combination therapy.

4. Materials and Methods
4.1. Overview of Systems Biology Method and Systematic Drug Discovery and Design for MIBC
and ABC

To comprehensively investigate the molecular carcinogenic mechanisms of MIBC
and ABC, we utilized the systems biology approach [96] to construct the core GWGENs
and analyze the common and specific core signaling pathways of MIBC and ABC. After
identifying the significant biomarkers of oncogenic mechanisms as drug targets from the
core signaling pathways, we designed a systematic drug discovery method based on
the DNN-based DTI model and drug design specifications to sieve the potential drug
combinations as multiple-molecule drugs for the treatment of MIBC and ABC. In this study,
the flowcharts of the systems biology method and systematic drug discovery and design
are shown in Figures 1 and 3, respectively. Here, we divided the systems biology for the
systematic drug discovery and design procedure into five steps:

(I). The construction of candidate GWGEN: We constructed the candidate GWGEN con-
sisting of the candidate protein-protein interaction network (PPIN) and the candidate
gene regulatory network (GRN) by big data mining.

(II). The identification of real GWGENs: The false-positive protein interactions and gene
regulations in candidate GWGENs were pruned by the system identification scheme
and system order detection method of Akaike information criterion (AIC) to obtain the
real GWGENs for MIBC and ABC via the genome-wide microarray data downloaded
from the National Center for Biotechnology Information (NCBI) GSE87304.
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(III). The extraction of core GWGENs: From the perspective of network significance, the
core GWGENs of MIBC and ABC were extracted by the PNP method from the real
GWGENs.

(IV). The investigation of genetic and epigenetic oncogenic mechanisms: After identifying
the core signaling pathways of MIBC and ABC based on the core GWGENs and
the KEGG pathway annotations. We investigated the significant genetic and epige-
netic oncogenic mechanisms in a microenvironment to distinguish the common and
specific core signaling pathways between MIBC and ABC. Based on the oncogenic
mechanisms, we selected the significant biomarkers from the core signaling path-
ways of MIBC and ABC as drug targets to interrupt bladder cancer progression and
development.

(V). Potential drug combinations discovery and multiple-molecule drug design: The
DNN-based DTI model was trained by the drug-target interaction databases. Since
the DNN-based DTI model could precisely predict the interaction probability between
drug targets and molecular drugs, we obtained candidate molecular drugs that can
dock the drug targets of MIBC and ABC, respectively. Subsequently, we separately
filtered the potential molecular drug combinations as multiple-molecule drugs of
MIBC and ABC from the candidate molecular drugs, according to the drug design
specifications, such as regulation ability, sensitivity and toxicity.

4.2. Data Preprocessing, Big Data Mining and the Construction of Candidate GWGEN

In this research, the genome-wide microarray dataset with accession number GSE87304
was downloaded from the Gene Expression Omnibus (GEO) of the NCBI (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87304, accessed on 6 November 2022). The
corresponding experimental platform is GPL22995. The dataset included proteins, recep-
tors, TFs, miRNAs and lncRNAs. Samples in the dataset were pre-NAC transurethral
resection specimens. In general, MIBC is the patient with stage T2 and ABC is the patient
with stage T3−4 [97]. After data preprocessing, we individually obtained 142 and 158 sam-
ples for MIBC and ABC on the basis of the clinical tumor stage. In addition, the candidate
GWGEN in human cells consisted of the candidate protein-protein interactions (PPIs) as
well as the regulations of genes, miRNAs and lncRNAs. The candidate GWGEN is com-
posed of candidate PPIN and candidate GRN through big data mining. The candidate PPIN
was based on the IntAct molecular interaction database [98], the Database of Interacting
Proteins (DIP) [99], the Molecular INTeraction Database (MINT) [100], the Biomolecular
Interaction Network Database (BIND) [101] and the Biological General Repository for Inter-
action Datasets database (BioGRID) [102]; the candidate GRN was based on the CircuitsDB
database [103], the StarBase2.0 database [104], the TargetScanHuman database [105], the
TRANScription FACtor database (TRANSFAC) [106], the Integrated Transcription Factor
Platform database (ITFP) [107] and the Human Transcriptional Regulation Interactions
database (HTRIdb) [108]. The candidate GWGEN was a boolean matrix. If there was an
interaction between two nodes, we set the value to one; if there was no interaction, we set
it to zero.

4.3. Systems Modeling for the Candidate GWGEN of MIBC and ABC

In order to identify the real GWGENs from candidate GWGEN by the corresponding
genome-wide microarray data for investigating the molecular carcinogenic mechanisms
of MIBC and ABC, we constructed the stochastic interactive and regulatory models of the
candidate GWGEN, where the interactive model of proteins and the regulatory model of
genes, miRNAs, and lncRNAs require the consideration of basal-level and stochastic noise
due to model residues and data measurement noise.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87304
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87304
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For the protein interactive model, the s-th protein of the n-th sample are given by the
following equation:

ps[n] =
Es

∑
w = 1
w 6= s

τsw ps[n]pw[n] + ζs,PPIN + ψs,PPIN [n] (1)

for s = 1, . . . , S, n = 1, . . . , N
where ps[n] and pw[n] indicate the expression level of the s-th and the w-th protein

in the n-th sample; τsw represents the interaction ability between the s-th protein and the
w-th protein; Es stands for the total number of proteins interacting with the s-th protein;
S is the total number of proteins in the candidate PPIN; N is the total number of the data
samples (patients); ζs,PPIN represents the basal level of the s-th protein expression due to
unknown interactions of histone modifications, such as phosphorylation and acetylation;
ψs,PPIN [n] indicates the stochastic noise of the s-th protein in the n-th sample because of
data measurement noise.

For the gene regulatory model, the transcriptional regulation of the t-th gene in the
n-th sample is described by the following equation:

gt[n] =
Ft

∑
f=1

αt f t f [n] +
Gt

∑
g=1

βtgig[n]−
Ht

∑
h=1

δthmh[n]gt[n] + ζt + ψt[n] (2)

for t = 1, . . . , T, n = 1, . . . , N
where gt[n], t f [n], ig[n] and mh[n] denote the expression level of the t-th gene, the

f-th TF, the g-th lncRNA and the h-th miRNA in the n-th sample, respectively; αt f and βtg
separately indicate the transcriptional regulatory ability of the f-th TF and the g-th lncRNA
on the t-th gene; δth ≥ 0 is the post-transcriptional regulatory ability of the h-th miRNA to
inhibit the t-th gene; Ft, Gt and Ht individually represent the total binding number of TFs,
lncRNAs and miRNAs in the t-th gene; T is the total number of genes; N is the total number
of the data samples (patients); ζt is the basal level of the t-th gene expression caused by
unknown gene regulations, such as methylation; ψt[n] is the stochastic noise of the t-th
protein in the n-th sample including data noise. The system modeling and identification of
lncRNA and miRNA is described in the Supplementary Materials.

4.4. The System Identification Scheme and System Order Detection Method for Real GWGENs of
MIBC and ABC

In the previous section, we performed systems modeling for proteins, genes, miRNAs
and lncRNAs in the candidate GWGEN. The MIBC and ABC shared the same candidate,
GWGEN. However, the candidate GWGEN consists of all possible interactions and regu-
lations derived from experimental and computational results, which include many false
positives. Therefore, to prune the false positives in the candidate GWGEN, we performed
the system identification scheme and system order detection method to separately obtain
the real GWGENs of MIBC and ABC through their genome-wide microarray datasets.

To identify the interactive and regulatory parameters of the stochastic models, we
need to solve the corresponding constrained least-square problems. Equations (1) and (2)
can be individually rewritten in linear regression forms, as shown:

ps[n] = [ps[n]p1[n] · · · ps[n]pEs [n]1]×


τs1
...

τsEs

ζs

+ ψs[n]

, ωs[n] · θs + ψs[n], for s = 1, . . . , S, n = 1, . . . , N

(3)
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gt[n] = [t1[n] · · · tFt [n]i1[n] · · · iGt [n]m1[n]gt[n] · · · mHt [n]gt[n]1]×



αt1
...

αtFt

βt1
...

βtGt

−δt1
...

−δtHt

ζt



+ ψt[n]

, ωt[n] · θt + ψt[n], for t = 1, . . . , T, n = 1, . . . , N

(4)

where ωs[n] and ωt[n] are the regression vector of the expression data for proteins and
genes in the n-th sample, respectively; θs indicates the parameter vector of the protein-
protein interaction abilities and basal levels of proteins; θt represents the parameter vector
of the transcriptional regulatory abilities and basal levels of the genes; ψs[n] and ψt[n]
individually denote the stochastic noise vectors of the s-th protein and the t-th gene in the
n-th sample due to data noise.

Equations (3) and (4) extended to N samples are separately given by the follow-
ing forms: 

ps[1]
ps[2]

...
ps[N]

 =


ωs[1]
ωs[2]

...
ωs[N]

 · θs +


ψs[1]
ψs[2]

...
ψs[N]

 (5)

for s = 1, . . . , S, n = 1, . . . , N
gt[1]
gt[2]

...
gt[N]

 =


ωt[1]
ωt[2]

...
ωt[N]

 · θt +


ψt[1]
ψt[2]

...
ψt[N]

 (6)

for t = 1, . . . , T, n = 1, . . . , N
Equations (5) and (6) are simply represented by the following formulas:

Ps = Γs · θs + Ξs, for s = 1, . . . , S (7)

Gt = Γt · θt + Ξt, for t = 1, . . . , T (8)

To avoid overfitting problems in the system identification of the network construction
procedure, the maximum degree of the parameter vector of proteins in PPINs and genes in
GRNs must be less than half of the dataset samples [109]. Therefore, the parameter vectors
θs and θt are estimated by solving the constrained linear least-squares parameter estimation
problem via the MATLAB optimization toolbox as follows:

θ̂s = argmin
θs

1
2
‖Γs · θs − Ps‖2

2 (9)

θ̂t = argmin
θt

1
2
‖Γt · θt − Gt‖2

2 (10)

subject to


0 · · · · · · 0 0 · · · · · · 0 1 0 · · · 0 0
...

. . .
...

...
. . .

... 0
. . . . . .

...
...

...
. . .

...
...

. . .
...

...
. . . . . . 0

...
0 · · · · · · 0 0 · · · · · · 0 0 · · · 0 1 0

θt ≤


0
...
...
0


Ft Gt Ht
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In the meantime, the constraint condition on the least-squares parameter estimation
problem in (10) means the estimated post-transcriptional regulatory abilities of miRNAs on
genes are guaranteed to be negative.

The parameters of the candidate GWGENs of MIBC and ABC were estimated from
the corresponding microarray data. Since the different experimental conditions may cause
errors in the data from various databases, we utilized the Akaike information criterion
(AIC) to prune the false positives and detect the system order (the number of interactions
or regulations) of the real GWGENs. The equations of AIC for the s-th protein and the t-th
gene can be described as follows:

AIC(Es) = log(Φ̂2
s ) +

2(Es+1)
N ,

where Φ̂s =

√
(Ps−(Γs ·θ̂s))

T
(Ps−(Γs ·θ̂s))

N

(11)

where Φ̂s and Es separately denote the estimated residual error and the number (system
order) of PPIs for the parameter estimation problem (9) in the s-th protein; θ̂s represents the
estimated parameter vector for the s-th protein by (9).

AIC(Ft, Gt, Ht) = log(Φ̂2
t ) +

2(Ωt+1)
N ,

where Φ̂t =

√
(Gt−(Γt ·θ̂t))

T
(Gt−(Γt ·θ̂t))

N , Ωt = Ft + Gt + Ht

(12)

where Φ̂t and Ωt individually indicate the estimated residual error and the number (system
order) of regulations for the parameter estimation problem (10) in the t-th gene; θ̂s represents
the estimated parameter vector for the t-th gene by (10).

According to the AIC system order detection method [109], the real system order of
system modeling would minimize the AIC. To obtain the real system order in the candidate
GWGEN, the AIC can be minimized by the following system order detection method:

E∗s = argmin
Es

AIC(Es), for s = 1, . . . , S (13)

F∗t , G∗t , H∗t = argmin
Ft ,Gt ,Ht

AIC(Ft, Gt, Ht), for t = 1, . . . , T (14)

where E∗s is the real number of PPIs for the s-th protein; F∗t , G∗t , H∗t denote the real number
of regulations by TFs, lncRNAs and miRNAs on the t-th gene, respectively.

Consequently, the protein interactions and regulations left out of the real system
order by the AIC in (13) and (14) are considered false positives, which would be pruned
away to obtain the real GWGENs of MIBC and ABC. The method of performing system
identification and utilizing the system order detection scheme for lncRNA and miRNA is
given in the Supplementary Materials.

4.5. The Principal Network Projection (PNP) Method for Extracting the Core GWGENs from the
Real GWGENs

After the system identification and system order detection methods, the real GWGENs
of MIBC and ABC are still too complicated and difficult to investigate the genetic and
epigenetic molecular mechanisms of carcinogenicity for MIBC and ABC. Hence, we applied
the PNP method based on the singular value decomposition (SVD) to extract the core
GWGENs from the relevant real GWGENs. In order to perform the PNP method, we have
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to construct a combined network matrix W that integrates all the estimated parameters in
the real GWGENs as below:
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where the subnetwork matrix wprotein↔protein is the system matrix of the estimated protein
interaction abilities, the bidirectional arrow shows that the protein interaction is bidi-
rectional; the subnetwork matrices wTF→gene, wlncRNA→gene and wmiRNA→gene separately
indicate the system matrices of the estimated transcriptional regulatory abilities for TFs,
lncRNAs and miRNAs on genes; the subnetwork matrices wTF→lncRNA, wlncRNA→lncRNA
and wmiRNA→lncRNA individually denote the system matrices of the estimated transcrip-
tional regulatory abilities for TFs, lncRNAs and miRNAs on lncRNAs; the subnetwork
matrices wTF→miRNA, wlncRNA→miRNA and wmiRNA→miRNA separately indicate the system
matrices of the estimated transcriptional regulatory abilities for TFs, lncRNAs and miRNAs
on miRNAs. The detailed network matrix W of the real GWGENs is described as follows:

W =
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τ̂11 · · · τ̂1w · · · τ̂1W 0 · · · 0 · · · 0 0 · · · 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

τ̂s1 · · · τ̂sw · · · τ̂sW 0 · · · 0 · · · 0 0 · · · 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

τ̂S1 · · · τ̂Sw · · · τ̂SW 0 · · · 0 · · · 0 0 · · · 0 · · · 0
α̂11 · · · α̂1 f · · · α̂1F β̂11 · · · β̂1g · · · β̂1G −δ̂11 · · · −δ̂1h · · · −δ̂1H

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
α̂t1 · · · α̂t f · · · α̂tF β̂t1 · · · β̂tg · · · β̂tG −δ̂t1 · · · −δ̂th · · · −δ̂tH
...

. . .
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. . .
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...
. . .

...
. . .

...
...

. . .
...

. . .
...

α̂T1 · · · α̂T f · · · α̂TF β̂T1 · · · β̂Tg · · · β̂TG −δ̂T1 · · · −δ̂Th · · · −δ̂TH
ε̂11 · · · ε̂1 f · · · ε̂1F γ̂11 · · · γ̂1g · · · γ̂1G −σ̂11 · · · −σ̂1h · · · −σ̂1H
...

. . .
...

. . .
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...
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. . .
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. . .
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. . .
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. . .

...
. . .
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. . .
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. . .
...
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. . .
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. . .

...
φ̂v1 · · · φ̂v f · · · φ̂vF λ̂v1 · · · λ̂vg · · · λ̂vG −µ̂v1 · · · −µ̂vh · · · −µ̂vH
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. . .

...
. . .

...
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. . .
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. . .
...

...
. . .
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. . .

...
φ̂V1 · · · φ̂V f · · · φ̂VF λ̂V1 · · · λ̂Vg · · · λ̂VG −µ̂V1 · · · −µ̂Vh · · · −µ̂VH



∈ R(S∗+T∗+U∗+V∗)×(F∗+G∗+H∗) (16)

where the zeros displayed in the component of the network matrix W represent no inter-
action or regulation after being pruned by the AIC. The network matrix W in (16) was
decomposed by the PNP method on the basis of SVD as follows:

W = UΣVT (17)

where U ∈ R(S∗+T∗+U∗+V∗)×(S∗+T∗+U∗+V∗) and V ∈ R(F∗+G∗+H∗)×(F∗+G∗+H∗)

indicate the unitary singular matrices; Σ = diag(Σ1, · · · , Σx, · · · , ΣF∗+G∗+H∗)
∈ R(S∗+T∗+U∗+V∗)×(F∗+G∗+H∗) is the diagonal matrix which contains F∗ + G∗ + H∗ singu-
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lar values of the matrix W in descending order (i.e., Σ1 ≥ · · · ≥ Σx ≥ · · · ≥ ΣF∗+G∗+H∗ ≥ 0).
The diagonal matrix Σ is shown as below:

Σ =



Σ1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · Σx · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · ΣF∗+G∗+H∗

0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


∈ R(S∗+T∗+U∗+V∗)+(F∗+G∗+H∗) (18)

Furthermore, we defined the eigen expression fraction Ex of the normalized singular
values in (18) as follows:

Ex =
Σ2

x
F∗+G∗+H∗

∑
x=1

Σ2
x

,
F∗+G∗+H∗

∑
x=1

Ex = 1 (19)

From the perspective of energy, we selected the top X singular vectors of the matrix
W with energy greater than or equal to the threshold of 0.85 in (20).

X

∑
x=1

Ex ≥ 0.85 (20)

The top X principal singular vectors denote the principal network structure with 85%
(principal) energy of the real GWGENs. Subsequently, we individually projected each node
of the real GWGENs (i.e., each row of the matrix W) to the top X principal singular vectors
in the following:

P(a, b) = wa,: · vT
:,b ,

for a = 1, . . . , S∗ + T∗ + U∗ + V∗, b= 1, . . . , X
(21)

where P(a, b) represents the projection value of the a-th node to the b-th principal singular
vector; wa,: and v:,b indicate the a-th row vector and the b-th principal singular vector of the
matrix W, respectively. Then, we define the 2-norm projection value of each node, such as
protein, gene, miRNA and lncRNA in the real GWGENs to the top X principal singular
vectors as follows:

Q(a) =

√
X
∑

b=1
P2(a, b) ,

for a = 1, . . . , S∗ + T∗ + U∗ + V∗, b= 1, . . . , X
(22)

where Q(a) represents the 2-norm projection value of the a-th node at the top X principal
singular vectors. The larger the projection value Q(a) in the real GWGENs, the more signif-
icant the corresponding a-th node to the principal network structure. On the contrary, the
projection value Q(a) is close to zero, the corresponding a-th node indicates insignificance
and almost independence from the principal network structure.

The core GWGENs of MIBC and ABC were extracted from the real GWGENs by the
top 6000 projection values Q(a), respectively, i.e., core GWGENs contain 6000 significant
nodes, which are the maximum number allowed for KEGG pathway enrichment analysis
and pathway annotations in the following. Next, we separately uploaded the nodes of the
core GWGENs of MIBC and ABC to the DAVID website for KEGG pathway enrichment
analysis and obtained the core signaling pathways of MIBC and ABC by exploring the
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KEGG pathway annotations and literature survey. Ultimately, we compared the core
signaling pathways of MIBC and ABC to investigate the genetic and epigenetic carcinogenic
mechanisms between them. From the carcinogenic mechanisms of MIBC and ABC, we
chose the essential biomarkers as their drug targets in Table 1.

4.6. Systematic Discovery and Design of Drug Combinations as Multiple-molecule Drugs for
MIBC and ABC via Deep Neural Network

We proposed a DNN-based DTI model to predict the interaction probability between
the drugs and targets (biomarkers) and specified the drug design specifications to sieve the
potential drug combinations as multiple-molecule drugs for the drug targets of MIBC and
ABC, respectively. The flowchart of systems drug discovery and design for the treatment of
MIBC and ABC is shown in Figure 3.

In order to train the DNN-based DTI model for predicting candidate drugs for the drug
targets, we integrated the drug-target interaction databases from STITCH [110], BIDD [111],
UniProt [112], DrugBank [113], ChEMBL [114], PubChem [115] and KEGG [116], which
contain information on molecular docking and the features of drugs and genes. The drug
features include constitutional, topological, geometrical descriptors and other molecular
properties. The sequence of the target protein is representative because the complete
information of the target protein is generally considered to be encoded in the sequence. The
target features were calculated from the structural and physicochemical features of proteins
and peptides in the amino acid sequences. After transforming the properties of drugs
and targets into feature vectors with the Python package PyBioMed under the Python 3.7
environment [117], each drug-target pair is represented by concatenating the corresponding
feature vectors. The feature vector of the drug-target pair is given as follows:

zdrug−target = [D, T] = [d1, · · · , dM, t1, · · · , tN ] (23)

where zdrug−target is the feature vector of the drug-target pair; D indicates the feature vector
of the corresponding drug; T indicates the feature vector of the relevant target; dm denotes
the m-th drug feature; tn denotes the n-th target feature; M is the total number of drug
features; N is the total number of target features.

Before employing the drug-target feature vectors as training data for the DTI model,
we preprocessed the training data to avoid the problem of possible bias in the original
feature values. First, since the unproven interaction data (i.e., negative class) were much
larger than the proven interaction data (i.e., positive class), the number of the negative
class needed to be randomly down-sampled to the number of the positive class to prevent
the biased parameter updates for larger classes during model training. Second, because
the values of the feature vectors in each drug-target pair are measured in various units, it
may cause numerical precision errors and degrade the performance of the DTI model. For
the feature scaling problem, the min-max normalization and standardization methods are
typically applied to solve the problem. While the min-max normalization can normalize
the data, it is more sensitive to outliers than standardization. Therefore, we applied the
standardization to the features of each drug and target, as shown below:

d∗i =
di − µi

σi
, ∀i = 1, · · · , M (24)

t∗j =
tj − µj

σj
, ∀j = 1, · · · , N (25)

where d∗i denotes the i-th drug feature after standardization; di denotes the i-th drug feature;
µi and σi separately the stand for the mean and standard deviation of the i-th drug feature;
t∗j denotes the j-th target feature after standardization; tj denotes the j-th target feature; µj
and σj individually represent the mean and standard deviation of the j-th target feature; M
is the total number of drug features; N is the total number of target features.
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Since the dimension of the training data (feature vector) is too high, it might increase
the number of features in the DNN and the computational complexity of model training.
We utilized the principal component analysis (PCA) method to reduce the dimension of the
feature vector [118] after down-sampling and standardization. Subsequently, we trained
the DTI model based on DNN to predict drug-target interaction through the Tensorflow
and Keras packages. After preprocessing the data, we used three-quarters of the data as
training data and one-quarter of the data as testing data. Furthermore, the DNN-based DTI
model has 996 nodes as the input layer and four hidden layers with 512, 256, 128 and 64
neurons, respectively, and each hidden layer has a rectified linear unit (ReLU) activation
function to avoid the vanishing gradient problem in deep learning. The activation function
of the output layer uses the sigmoid function, which can restrict the output value in the
range of 0–1 as the model prediction probability. In the architecture of the DNN-based DTI
model, the equation for each layer can be described as follows:

hn = σ(wxn + b) (26)

where hn and xn indicate the output and the input of the n-th drug-target feature vector,
respectively; σ is the activation function of the ReLU function in the hidden layer and the
sigmoid function in the output layer; w denotes the weighting matrix; b indicates the bias
vector. Due to the drug-target interaction being a binary classification issue, we chose the
binary cross-entropy as the cost function to calculate the model loss, as shown below:

Cn(pn, p̂n) = −[pn log p̂n + (1− pn)log(1− p̂n)] (27)

L(w, b) =
1
N

N

∑
n=1

Cn(w, b) (28)

where pn is the true probability of positive interaction in the n-th sample; p̂n is the predicted
probability of positive interaction in the n-th sample; 1− pn denotes the true probability of
negative interaction in the n-th sample, 1− p̂n denotes the predicted probability of negative
interaction in the n-th sample; L(w, b) represents the average of the total loss C(pn, p̂n); N
represents the total number of the training data.

On the basis of the cost function, we applied the backward propagation algorithm [119]
to update the model parameter set θ of the weight matrix w and bias vector b by calculating
the gradient to obtain the optimal model parameter set θ∗. The gradient iterative algorithm
is described as follows:

θ =

[
w
b

]
(29)

θ∗ = argmin
θ

L(θ) (30)

θz = θz−1 − η∇L(θz−1),

where ∇L(θz−1) =

[
∂L(θz−1)

∂w
∂L(θz−1)

∂b

]
(31)

where z indicates the z-th iteration of the DNN learning process; η represents the learning
rate; ∇L(θz−1) stands for the gradient of L(θz−1).

The backward propagation method can efficiently calculate the high-dimensional
vector ∇L(θz−1) and adapt the DNN-based DTI model parameters to fit the drug-target
interaction data well for each iteration. Moreover, the adjustment of the hyperparameters
can attain the optimal model performance, we trained the DNN-based DTI model by setting
the learning rate as 0.001 under the Python 3.7 environment. Then, we also set epochs
to 100 and batch size to 100. To verify the stability and prediction performance of the
DNN-based DTI model during the training process, we applied the 5-fold cross-validation
method to the training data. We divided the training data into five equal parts and took
one of them as the validation data each time, and the remaining data were used as the



Int. J. Mol. Sci. 2022, 23, 13869 21 of 26

training data until each part was used as the validation data, as shown in Figures S5 and S6.
We also employed the early stopping approach to prevent the problem of model training
overfitting. After completing the training of the DNN-based DTI model, we adopted
the area under the curve (AUC) and receiver operating characteristic (ROC) curves [120]
of the performance measurement to examine the performance of the DNN-based DTI
model. For classification problems, it is one of the most helpful evaluation metrics for
visualizing model performance. The larger the area under the line, the higher the AUC
and the higher the accuracy of the DNN-based DTI model in predicting true-positive and
true-negative drug-target interactions. The equations of the AUC and ROC curves are
described as follows:

TPR(True Positive Rate) =
TP

TP + FN
(32)

specificity =
TN

TN + FP
(33)

FPR(False Positive Rate) = 1− specificity =
FP

TN + FP
(34)

where TP (True Positive) denotes the probability that the real value is true and is judged
accurately; TN (True Negative) denotes the probability that the real value is true and is
judged in error; FP (False Positive) is the probability that the real value is false and is
judged correctly; FN (False Negative) is the probability that the real value is false and is
judged incorrectly.

The steps to discover drug combinations from candidate molecules as multiple-
molecule drugs based on drug design specifications for MIBC and ABC are as follows:
First, we considered the regulation ability of the candidate drugs, which were predicted
by the DNN-based DTI model. We integrated the regulation ability data of the candidate
drugs from the library of integrated network-based cellular signatures (LINCS) in the
L1000 Level 5 dataset [81], the positive value indicates the upregulation and the negative
value means the downregulation. Thus, if the gene expression of the selected biomarker
(drug target) is of abnormal upregulation, we would select the drugs with a negative
correlation. In contrast, if the gene expression of the chosen biomarker (drug target) is of
abnormal downregulation, the drugs with a positive correlation will be chosen. Afterward,
we checked the drug sensitivity and the corresponding dataset obtained from primary
PRISM repurposing datasets [83]. We selected the compounds with sensitivity values close
to zero, which denote that the cell line is insensitive to chemical perturbations. Lastly, we
also considered the toxicity of the drugs because they could have negative effects on health.
The drug toxicity (LC50) is regularly considered for cancer drug design. We referred to the
LC50 value by using the ADMETlab 2.0 tool [84], the higher the LD50 value, the lower the
toxicity. Finally, we individually proposed the potential molecular drug combinations as
multiple-molecule drugs for the drug targets of MIBC and ABC through the screening of
the drug design specifications.

5. Conclusions

We explored the differences in carcinogenic mechanisms between MIBC and ABC from
a systems biology perspective through systems modeling based on the systematic identifica-
tion methodology with their genome-wide microarray data. A better understanding of the
genetic and epigenetic molecular mechanisms of MIBC and ABC leads to a more correct se-
lection of their significant biomarkers as drug targets, thereby facilitating the development
of novel potential therapeutics. Furthermore, with the help of the DNN-based DTI model to
precisely predict the candidate drugs having interactions with the drug targets, we applied
the concepts of engineering design specifications to establish systematic drug design and
discovery for a more systematic view of the chemical and therapeutic relationships, such as
regulation ability, toxicity, and sensitivity between drugs and drug targets.

In this study, based on the proposed systems biology methods, we selected NFKB1,
LEF1, and MYC as drug targets for MIBC, and selected LEF1, MYC, NOTCH1, and FOXO1
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as drug targets for ABC. Then, based on the proposed systematic drug design method,
the potential drug combination of Embelin and Obatoclax was selected as the multiple-
molecule drug to target multiple drug targets in MIBC, and Obatoclax, Entinostat, and
Imiquimod were selected as the multiple-molecule drug to target multiple drug targets in
ABC. With more biological and clinical validation, it is hoped that this study of systematic
drug design will be beneficial to patients with MIBC and ABC.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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