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Summary Iron deficiency and immune activation
are the two most frequent causes of anemia, both of
which are based on disturbances of iron homeostasis.
Iron deficiency anemia results from a reduction of
the body’s iron content due to blood loss, inadequate
dietary iron intake, its malabsorption, or increased
iron demand. Immune activation drives a diversion
of iron fluxes from the erythropoietic bone marrow,
where hemoglobinization takes place, to storage sites,
particularly the mononuclear phagocytes system in
liver and spleen. This results in iron-limited erythro-
poiesis and anemia. This review summarizes current
diagnostic and pathophysiological concepts of iron
deficiency anemia and anemia of inflammation, as
well as combined conditions, and provides a brief
outlook on novel therapeutic options.

Keywords Anemia of inflammation - Anemia of
chronic disease - Iron - Hepcidin - Macrophage

Eisenmangel oder Entziindungsanamie?
Differenzialdiagnose und Mechanismen der
Entziindungsanamie

Zusammenfassung Eisenmangel und Immunaktivie-
rung sind die zwei hiufigsten Ursachen der Andmie.
In beiden Situationen besteht ursdchlich eine Stérung
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der Eisenhomdostase. Die Eisenmangelandmie beruht
auf einer Verminderung des Gesamtkdrpereisens in-
folge von Blutverlust, unzureichender alimentéirer Zu-
fuhr oder intestinaler Absorption bzw. erhéhtem Be-
darf an Eisen. Immunaktivierung fiihrt bei norma-
lem Gesamtkorpereisen zu dessen Umverteilung vom
erythropoetischen Knochenmark, der priméren Stel-
le der Himoglobinproduktion, in das mononukledre
Phagozytensystem der Leber und Milz, die Hauptor-
gane der Eisenspeicherung. Dies fiihrt letztlich zur
Anzmie. In dem vorliegenden Ubersichtsartikel wer-
den aktuelle diagnostische und pathophysiologische
Konzepte von Eisenmangelanidmie, Entziindungsan-
dmie sowie kombinierter Andmie zusammengefasst
und ein kurzer Ausblick auf neue Therapieoptionen
geboten.

Schliisselworter Entziindungsandmie - Andmie bei
chronischer Erkrankung - Eisen - Hepcidin - Makro-
phage

Introduction

Iron deficiency (ID) can occur in two major forms: ab-
solute and functional ID. Both forms of ID can man-
ifest either isolated or combined, and will result in
iron-deficient erythropoiesis and, if unrecognized or
left untreated, in anemia [1, 2].

Absolute ID, as defined by a decrease in the body’s
iron content, usually develops when the absorption
of dietary iron in the duodenum and proximal je-
junum (Fig. 1a) cannot compensate for an increased
iron demand or blood loss. Despite adaptive induc-
tion of expression of the transmembrane iron trans-
porters divalent metal transporter (DMT)-1 and fer-
roportin (FPN)-1 in enterocytes upon ID, iron absorp-
tion can only be increased by 2- to 3-fold to approxi-
mately 5 mg per day [3, 4]. Due to this relatively inef-
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Fig. 1 aUnderhomeostatic conditions, the absorption of 1-2 mg of iron per day compensates for its loss via desquamation of ep-
ithelial cells from skin and mucosal membranes and during menstrual bleeding. The majority of the 20-25 mg of iron required for daily
erythropoiesis is provided by the degradation of effete RBC and the iron contained within their Hb (Hemoglobin). Both duodenal iron
absorption and iron recycling in spleen and liver are negatively regulated by HAMP (Hepcidin antimicrobial peptide). HAMP is mainly
generated by hepatocytesinresponseto anincrease in serumiron or storage iron while erythropoietic activity inhibits HAMP expres-
sionviasolublemediatorsincluding GDF15and ERFE. b Followingimmuneactivation by pathogen- ordamage-associated molecular
patterns, the interaction of myeloid cells with T and B lymphocytes results in the generation of pro- and anti-inflammatory cytokines.
Thesedivertironfluxes fromthe circulationto storage sites by controlling the expression of HAMP, of iron transporters, and of the iron-
storage protein FT. Therefore, duodenaliron absorptionand macrophageironrecycling arereduced, the serum becomesiron-starved
andthe erythron lacks sufficientiron for proliferation and hemoglobin synthesis. Therefore, zinc may replace iron as the centralheme-
cation. Zinc protoporphyrin-IX (not depicted) can be measured to confirm the presence of this mechanism of iron sequestration. In
addition to cytokines, other mediators such as auto-antibodies and reactive intermediates can tag mature RBC for degradation or
damagethemortheirprecursors, contributingtothe hyporegenerative nature of Al. Inparallel, renal EPO productionisreduced and the
responsivenessofthe erythronto EPOisdampened. Intheend, amildto moderate normocytic anemiawithevidence of iron-restricted
erythropoiesis (low TSAT, high FT, low reticulocytes, high ZnPP-IXin reticulocytes, low to normal EPO) occurs. Key pathways for the
pathogenesis are in boldface. Putative additional pathways are in lightface. BMP6 bone morphogenetic protein-6, ERFE erythro-
ferrone, EPO erythropoietin, FPN1 ferroportin-1, FT ferritin, GDF 15 growth differentiation factor-15, HAMP hepcidin anti-microbial
peptide, IL interleukin, KC Kupffer cell, MPS mononuclear phagocyte system, PDGF-BB platelet-derived growth factor isoform BB,
RBCredbloodcell, RPMred pulp macrophage, Tf-Fetransferrin-boundiron, TNFtumor necrosis factor, ZnPP-IX zinc protoporphyrin-

IX

ficient process, iron stores, particularly ferritin-asso-
ciated iron in liver and spleen, can become depleted
during chronic bleeding episodes, repetitive blood do-
nations, helminth infestations, through materno-fetal
transfer, or during growth [5].

In very rare cases, genetic mutations of iron home-
ostasis proteins such as DMT1 or TMPRSS6 (Trans-
membrane Protease, Serine 6), the latter encoding for
matriptase-2, can result in inadequate iron absorp-
tion and development of anemia [6, 7]. Similarly, lack
of the iron-carrying serum protein transferrin (TF),
due to genetic deficiency, auto-antibody production,
or proteinuria, can cause absolute ID [8]. Inadequate
iron absorption has also been found in association
with Helicobacter pylori infection, hypergastrinemia,
celiac disease, or vitamin D deficiency [9, 10]. Pro-
longed ID results in the inability to regenerate skin
and mucosal membranes and in iron deficiency ane-
mia (IDA) with its classical symptoms such as fatigue.
Details on the clinical implications of ID are reviewed
elsewhere in this special issue.

Functional ID has a more complex pathophysiol-
ogy and is commonly defined as a redistribution of

iron from the key sites of its utilization (erythron,
epidermis, mucosal surfaces) to storage sites, partic-
ularly the hepatic and splenic mononuclear phago-
cyte system (MPS). Moreover, in states of increased
erythropoiesis such as during therapy with erythro-
poiesis-stimulating agent (ESA) or after major blood
loss, erythropoiesis may become iron-restricted so
long as the mobilization of storage iron cannot catch
up with its demand for hemoglobin (Hb) synthesis
(see the interpretation of CHr (Content of reticulocyte
hemoglobin), HYPO (Hypochromic erythrocytes), and
ZnPP (Zinc protoporphyrin) in diagnostic section).
The ultimate consequence of these functional distur-
bances of iron homeostasis is anemia, which is often
referred to as anemia of inflammation (AI) or anemia
of chronic disease (ACD).

Absolute and functional iron deficiency may also
coexist. Such combined conditions render the in-
terpretation of erythrocyte indices and parameters of
iron status challenging. While new diagnostic param-
eters are not yet readily used in clinical routine, this
differential is important as the therapeutic approach
varies. In addition, the random detection of Al during
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Fig. 2 Forthe differential diagnosis of IDA vs. Al vs. acombination of both forms or other causes of anemia, a stepwise approachis
proposed. A CBC enables the differentiation of isolated anemias from bi- and pancytopenias [161]. The latter may require a more ex-
tensive work-up. Also, the RPlcanbe estimated fromthe CBC. An RPI of <2 characterizes hyporegenerative anemias whileam RPI1>3
is observed inregenerative forms such as the hemolytic anemias. Two out of three erythrocyte indices are relevant, i. e., the MCV and
the MCH, as they allow for the classification of microcytic hypochromic, normocytic normochromic, and makrocytic hyperchromic
anemias. InIDA, both serum FT and TSAT are reduced. In contrast, anincreased FT is typical of Al. Incombined conditions, the FTl, as
calculated from the serum TFR divided by the logarithmic serum FT, continues to be helpful for the differential diagnosis. Inthe future,
novel parameters such as HAMP may be incorporated into diagnostic algorithms. Note: Reference ranges may vary between coun-
tries, laboratories, and assays. Hb cutoffs correspond to WHO definitions. Al anemia of inflammation, BM bone marrow, CBC com-
pleteblood count, DD differential diagnosis, EPO erythropoietin, GFR glomerularfiltrationrate, FACS fluorescence activated cell sort-
ing, FTferritin, FTIferritinindex, Hb hemoglobin, Hx history, IDA iron-deficiency anemia, LDH lactate dehydrogenase, MCH meancor-
puscular hemoglobin, MCV mean corpuscular volume, MDS myelodysplastic syndrome, PNH paroxysmal nocturnal hemoglobin-
uria, RPI reticulocyte production index, sTFR soluble transferrin receptor, TSAT transferrin saturation

routine blood sampling should prompt a search for
the underlying disease.

Iron deficiency anemia

While IDA poses a major public-health problem in de-
veloping countries [11], it is also frequently observed
in industrialized countries: in 5-10 % of individuals,
as detailed elsewhere in this special issue. Isolated
IDA can be detected by a complete blood count, and
iron status based on the reticulocyte count or retic-
ulocyte production index (RPI), erythrocyte indices,
ferritin (FT), and transferrin saturation (TSAT). Typi-

cally, IDA is an isolated hyporegenerative microcytic
hypochromic anemia, with reduced FT concentration
and TSAT as indicators of a depletion of iron stores
and serum iron, respectively [12-15]. The RPI can eas-
ily be estimated by one of two established formulas
(Fig. 2).

ID results in difficulties regenerating epidermis and
mucosal epithelia, while also affecting the clinical
course of associated chronic diseases. For instance,
ID has negative effects on mitochondrial respiration
and tissue oxygen consumption and, thus, on cardiac
function and the clinical course of congestive heart
failure (CHF) [16-18]. The importance of anemia for
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CHF is underscored by a linear increase of mortality
with declining Hb levels [19-21]. Likewise, parenteral
iron substitution has been found to improve the clin-
ical course of CHF in patients with coexisting ID
[22-24].

Anemia of inflammation

Al can be viewed as a spectrum of acute and chronic
forms of anemia whose common pathophysiological
denominator is their occurrence as a result of immune
activation [25, 26].

Acute and chronic infections, inflammatory disor-
ders, and malignancies are the principal disease types
underlying Al. However, Al shares features with the re-
nal anemia observed in patients with chronic kidney
disease (CKD), the anemia in patients with chronic
obstructive pulmonary disease (COPD), the anemia in
patients with CHF without or with cardio-renal syn-
drome, and the anemia of the elderly [23, 27, 28].

The anemia of critical illness occurring after acute
events such as major surgery, severe trauma, myocar-
dial infarction or sepsis may be classified as a spe-
cific acute form of Al. Moreover, some features of Al
also characterize the anemias occurring in hemato-
logic disorders such as multiple myeloma or malig-
nant lymphoma [29-32].

In addition, combined forms of IDA and Al may
be present. This scenario is typically observed in in-
flammatory bowel disease (IBD) or gastrointestinal or
urogenital malignancy. Mucosal erosions and ulcera-
tions are associated with recurrent bleeding episodes
and lead to a substantial loss of iron, since 0.5 mg of
iron are contained within the Hb of 1 ml of blood. At
the same time, the underlying disease provides an in-
flammatory stimulus for the sequestration of iron in
the MPS. Moreover, menstruation, hemodialysis, the
requirement for repetitive blood sampling, and anti-
coagulant or antiplatelet drugs may contribute to iron
loss in CKD and other chronic diseases.

Multiple players in the pathophysiology of Al
Immune cells

The activation of immune cells by infectious agents,
auto-antigens, or neoplastic cells initiates and main-
tains the development of Al by several mechanisms
which coexist and are cross-regulatory (Fig. 1b). The
excessive production of inflammatory mediators di-
verts iron to the MPS, rendering it relatively unavail-
able for erythroid progenitors [33]. A paradigm for
such a mediator is hepcidin anti-microbial peptide
(HAMP). HAMP is the hormonal negative-feedback
regulator of serum iron, as it limits iron-fluxes to
the circulation. Upon iron excess or inflammation,
HAMP is produced by hepatocytes and, in much
smaller quantities, by immune cells and other cell
types. HAMP’s specific receptor is FPN1, whose only

known function is to act as an export protein for
ionic iron. Binding of HAMP to FPNI1 tags the latter
for internalization from the cell membrane and for
lysosomal degradation [34].

Activation of pattern recognition receptors such as
Toll-like receptor (TLR)-4, as well as pro- and anti-
inflammatory cytokines regulate HAMP expression,
while similar pathways control transcriptional expres-
sion of iron transporters transferrin receptor (TFR)-1,
DMT1, and FPN1, as well as the iron storage protein
FT [26].

For instance, lipopolysaccharide as a component of
the Gram-negative cell wall enhances HAMP produc-
tion while stimulating DMT1 expression in myeloid
cells, thereby favoring iron sequestration [35]. In par-
allel, interleukin (IL)-10 increases TFR1 and FT tran-
scription, which may aggravate Al in patients with IBD
(36].

Increased HAMP levels are also well documented
in infections, rheumatoid disorders, and IBD. Further-
more, in almost all patient cohorts, HAMP concentra-
tion positively correlates with disease activity linking
the extent of inflammation to the severity of iron se-
questration in the MPS [37-43].

Liver

The liver is a key organ initiating and maintaining Al
[12]. Hepatocytes are the key source of HAMP, while
Kupffer cells (KC) are a major site of inflammation-
driven iron storage. Interestingly, KC dampen HAMP
production in homeostatic conditions but may be
required for inflammation-driven HAMP secretion
[44, 45]. IL-6 is essential for the up-regulation of
HAMP upon inflammation and IL-6 blockade for the
treatment of rheumatoid arthritis lowers both dis-
ease activity and circulating HAMP levels [46, 47].
TF is a major product of hepatocytes and one of
a limited number of negative acute phase reactants.
IL-6 and other pro-inflammatory cytokines result in
a downregulation of TF expression in the liver, thus
reducing the serum’s capacity to transport iron [48].
This mechanism may additionally contribute to iron
sequestration in the MPS. Since TF-bound iron and
TFR1 form the key mechanism of iron uptake for ery-
throid progenitors, a central role for the development
of Al is implicit. TFR1 is also expressed by neoplastic
cells in solid tumors and hematologic malignancies,
including chronic lymphocytic leukemia, suggesting
that inflammation associated with malignant diseases
may also limit iron availability for cancer cells [49,
50]. However, potential functional consequences for
tumor-associated monocytes/macrophages (TAM)
are not sufficiently addressed. In addition, several
pathogens are able to acquire TF-bound iron [51-54].
Therefore, the reduction of serum TF appears to be
one of the mechanisms of microbial iron withdrawal
[54-57].
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Serum iron (TF-bound iron), the amount of stored
iron (FT-stored iron), and the iron demand for ery-
thropoiesis are key variables that are integrated by
hepatocytes to adapt HAMP production to current
metabolic needs. Serum iron levels are sensed
by a machinery involving TFR1, TFR2, and the
hemochromatosis-associated HFE protein [58]. How-
ever, in being the primary iron source for erythro-
poiesis, TF also indirectly regulates HAMP expression
via erythroid progenitor-derived mediators, suggest-
ing that the pathways of HAMP regulation are inter-
connected [59-61].

An increase in the erythropoietic activity as ob-
served after blood loss or erythropoietin (EPO) admin-
istration suppresses HAMP production [62]. Part of
this effect may be mediated via erythroferrone (ERFE),
a lack of which delays the recovery from Al in a mouse
model [63]. Growth-differentiation factor (GDF)-15,
whose levels are increased in thalassemia and Al with
or without ID, also inhibits HAMP expression [60, 64].
Hypoxia has a similar effect on HAMP that is mediated
via platelet-derived growth factor isoform BB (PDGF-
BB), which may enable the required increase of Hb
levels at high altitude [65].

Iron accumulation in the liver induces bone mor-
phogenetic protein (BMP)-6, which is essential to
maintain body iron homeostasis. BMP6 binds to
a heterodimeric receptor complexed with hemoju-
velin (HJV) and matriptase-2 (the gene product of
TMPRSS6), and stimulates HAMP expression [66,
67]. Notably, BMP6 is primarily produced by non-
parenchymal liver cells and may act in a paracrine
manner on adjacent hepatocytes [68].

In the context of inflammation, IL-6 and IL-22 stim-
ulate HAMP expression via specific receptors signaling
through signal transducer and activator of transcrip-
tion (STAT)-3, while alpha-1 antitrypsin may do so
via HJV and matriptase-2 [69-71]. However, inflam-
mation also feeds into the BMP6 signaling pathway,
adding further complexity; not only to the regulation
of iron homeostasis, but also to the pathophysiology
of Al and the clinical interpretation of iron indices
[72].

In their reproductive years, women have an in-
creased iron demand. Estradiol, whose levels increase
after menstrual bleeding during the first half of the
menstrual cycle (follicular phase) until ovulation, in-
hibits HAMP transcription in hepatocytes, which may
allow for higher intestinal iron absorption to compen-
sate for the average 20-80 ml of monthly menstrual
blood loss [73, 74]. In contrast, progesterone, which
rises after ovulation and dominates the second half
of the cycle (luteal phase) until menstrual bleeding,
rather stimulates HAMP expression [75]. Given the re-
sulting fluctuations of HAMP and iron indices, the last
five days of the menstrual cycle have been proposed
for blood sampling to allow for a more representative
evaluation of iron status in women [76].

Recently, the concept has emerged that drugs may
have undesired side effects on iron homeostasis,
since the mTOR inhibitor rapamycin may increase
HAMP levels after heart transplantation, thus induc-
ing a functional ID and anemia [77].

Spleen

The spleen contributes to the pathogenesis of Al as
site of iron retention in macrophages. Furthermore,
splenomegaly may result in hypersplenism and a re-
duced half-life of red blood cells (RBC) as a conse-
quence of the increased RBC elimination by red pulp
macrophages (RPM). Similarly, evidence from mouse
models suggests that increased erythrophagocytosis
contributes to the rapid Hb drop in acute and sub-
acute forms of AI [78, 79]. Under conditions of ex-
cessive inflammation as seen in sepsis patients, reac-
tive oxygen intermediates may further accelerate RBC
damage and their removal by complement-dependent
mechanisms [80, 81].

Kidney

While hepatic HAMP formation is increased during
inflammation, EPO production in the kidney is sub-
ject to inhibition by inflammatory mediators such as
tumor necrosis factor (TNF) and IL-1 [82-84].

CKD with a glomerular filtration rate (GFR) < 40 ml/
min/m? results in insufficient or deregulated produc-
tion of EPO and of 1, 25-dihydroxy-cholecalciferole,
both of which are negative regulators of HAMP [85,
86]. Theoretically, for the assessment of whether the
renal EPO response is adequate in Al, the EPO con-
centration as measured should be corrected for the
actual Hb level (comparable to RPI for the correction
of reticulocyte counts). However, no consensus ex-
ists on a correction formula for EPO for subjects with
normal renal function or for CKD patients [84, 87].

Independently, glomerulopathy may result in pro-
teinuria and the loss of the 80-kD serum protein TE
which is the major shuttle between compartments of
iron absorption (intestine)/iron recycling (MPS) and
the erythron. While isolated antibodies to TF may
lead to IDA, such auto-antibodies have not yet been
reported in systemic autoimmune diseases. However,
it is known that a functionally distinct type of anti-
TF antibodies in monoclonal gammopathies may re-
sult in hyperferritinemia and increase of hepatic iron
storage [88, 89].

Erythron

A resistance of the erythron to EPO is another mecha-
nism underlying Al, since it reduces the erythropoietic
drive even in the setting of normal or adequately in-
creased serum EPO concentrations. Part of this may
be attributed to downregulation of the EPO receptor
on erythroid cells by interferon (IFN)-y [90]. Further-
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more, a range of inflammatory mediators including
TNE IL-1, IFN-y, and reactive intermediates inhibits
the proliferation and differentiation of erythroid pro-
genitors or induces their apoptosis [91-94]. These
pathways ultimately culminate in an insufficient re-
nal EPO response and hematopoietic EPO resistance
further aggravating anemia in Al [95].

Numerous infectious agents (e.g., parvovirus B19
and human herpes virus-6) and neoplastic cells may
infiltrate the bone marrow, which eventually disturbs
erythropoiesis by several mechanisms, including di-
rect damage to erythroid cells and putative negative
effects on the microenvironment and the stem cell
niche. In addition, there may be direct toxic ef-
fects of drugs including chemotherapeutics and of
radiation therapy on hematopoietic stem/progenitor
cells. Cytopenia, including anemia, is a concern of
methotrexate treatment for rheumatoid arthritis [96].
However, immunological deregulation induced by bi-
ologics such as anti-TNF therapy may also induce
aplastic anemia [97].

While in its classical form AI constitutes a hy-
poregenerative anemia, hemolysis may contribute
to the development of Al or aggravate its degree in
several settings. For instance, several bacteria includ-
ing Staphylococcus aureus produce hemolysins [98].
These destroy RBC, liberating heme for its uptake into
bacteria by specific receptors. Different mechanisms
of heme iron acquisition are exploited by intraery-
throcytic infectious agents such as Plasmodium [99].
In addition, malaria induces HAMP, suggesting that
iron sequestration is a major contributing factor to
malarial anemia [100, 101]. Elevated HAMP levels
have also been reported in patients with HIV (Hu-
man immunodeficiency virus) infection, in which
they are associated with anemia and independently
predict mortality [102]. While auto-antibodies against
RBC can be induced by acute Epstein-Barr virus
and Mycoplasma pneumoniae infections resulting in
cold agglutinin disease, auto-immune hemolysis may
also occur in the setting of chronic infections or as
a side effect of medication [103]. In addition, the life
span of circulating RBC may be negatively affected
by inflammatory mediators such as TNF and by me-
chanical stress [104]. Therefore, hemolysis may also
contribute to Al in conditions such as CHF associated
with mechanical valve replacement or endocarditis,
or when microangiopathy is present. However, due
to fluid retention, the degree of anemia tends to be
overestimated in CHF patients.

Others

Similar to the concurrent presence of absolute ID in
the setting of Al, deficiencies in other nutrients es-
sential to erythropoiesis, such as folate and vitamin
B12, may be contributory. For instance, celiac disease
may cause profound malassimilation of various nu-
trients or poor food intake may aggravate the anemia

of the elderly. Particularly in elderly patients, ane-
mia due to clonal hematopoietic diseases, including
myelodysplastic syndromes (MDS), has to be consid-
ered as well.

Current and promising diagnostic tools

Complete blood count, reticulocyte production
index, and red blood cell indices

Both IDA and Al typically manifest as isolated anemia.
As detailed elsewhere in this special issue, both abso-
lute ID and inflammation can also result in thrombo-
cytosis due to the effects of altered thrombopoietin,
EPO, and IL-6 levels on megakaryopoiesis [105-107].
In addition, the disorders underlying Al or the im-
mune-modulatory therapy required for their control
can affect circulating leukocyte numbers [108]. A dif-
ferential blood count can be recommended for un-
clear cases of anemia where monoclonality may be
suspected as an underlying disease (Fig. 2). Serum
protein electrophoresis and bone marrow aspiration
or trephine biopsy may reveal additional diagnostic
clues. The reticulocyte count allows for the differen-
tiation of hyporegenerative anemias (disorders of ery-
throid proliferation and maturation) vs. regenerative
anemias (hemolysis or hemorrhage). However, to ac-
count for the increased proportion of reticulocytes in
anemia and the increased presence of prematurely re-
leased reticulocytes in the circulation, the RPI should
be calculated (Fig. 2).

Erythrocyte staining indices do not define the cause
of anemia, but they may be helpful during the diag-
nostic workup. IDA is a microcytic hypochromic ane-
mia, while Al may be microcytic hypochromic or nor-
mocytic normochromic in appearance. High normal
to elevated MCV and MCH may be due to a complex
metabolic disorder (e. g., in alcoholism), severe nutri-
ent deficiency (e. g., in celiac disease), or an alterna-
tive diagnosis such as MDS.

In addition, clinical signs along with the measure-
ment of TSH (Thyroid stimulating hormone) and
PTH (Parathyroid hormone) will help to rule out
endocrine disorders (specifically hyperthyroidism,
hypothyroidism, panhypopituitarism, and hyper-
parathyroidism) as the cause of a hyporegenerative,
normocytic normochromic anemia.

Ferritin and transferrin saturation

In IDA, serum FT and TFS may enable an accurate in-
terpretation of body iron status. A reduction in serum
FT below 30 ng/ml shows ID with high diagnostic
accuracy because a strong correlation exists between
serum FT and the body’s total iron storage. It is gen-
erally assumed that for each 1 ng/ml of serum FT,
10 mg of iron are stored in tissues and organs. Serum
FT appears to be iron-poor and mainly derived from
macrophages [109].
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Serum FT levels in the setting of inflammation are
more difficult to interpret as a range of stimuli re-
sult in altered production of FT. Therefore, the clin-
ical presentation, along with markers of inflamma-
tion such as C-reactive protein or IL-6, needs to be
taken into account. The appearance of hyperferritine-
mia >200 ng/ml in the context of a decreased TSAT is
suggestive of immune-driven iron sequestration. This
may be indicative of inflammation, cancer, infection,
or liver disease. Extraordinarily high FT levels have
been documented in patients with adult-onset Still’s
disease or hemophagocytic syndrome [110, 111].

In an attempt to transport the available iron as ef-
ficiently as possible, serum TF is increased in ID, re-
sulting in a TSAT < 16 %. Similar levels are observed in
Al because TF is a negative acute-phase reactant (see
above).

Hyperferritinemia in the context of an increased
TSAT of >45 % should prompt evaluation for primary
or secondary iron overload. In the context of mi-
crocytic anemia and Mediterranean or Asian descent,
thalassemia is a valid differential diagnosis. In the ab-
sence of anemia, HFE-associated hemochromatosis or
dysmetabolic iron overload are possible explanations
for pathologically increased FT and TSAT.

Soluble transferrin receptor and ferritin index

TFR1 is the key receptor for iron acquisition by ery-
throid cells. Its soluble form (sTFR) can be measured
in the serum and it reflects ID and erythropoietic ac-
tivity. sTFR is increased in ID, hemolytic anemias, tha-
lassemia, and some hematologic malignancies, while
its levels tend to be normal in Al [112]. Therefore, an
increased sTFR in the setting of Al suggests the pres-
ence of additional absolute ID. However, the use of
sTFR is limited by the lack of its standardization and
the fact that age, ethnicity, and inflammation influ-
ence its normal range [113].

The ferritin index (FTI) may also be helpful in the
differential diagnosis of Al and combined IDA/AIL
However, the lack of standardized tests for sTFR
prevents its broad recommendation. The FTI is calcu-
lated from the sTFR divided by the logarithm of serum
FT (Fig. 2). In patients with chronic diseases and Al,
an increased FTI suggests the concurrent presence of
absolute ID requiring correction. However, the cutoff
value is largely dependent on the specific diagnostic
test used [114-116]. Therefore, at the current stage
of research we are unfortunately not able to provide
a universally applicable algorithm for the differentia-
tion between isolated Al and anemia with combined
functional and absolute ID.

Content of reticulocyte hemoglobin, percent of
hypochromic erythrocytes, and zinc protpoporphyrin

Content of reticulocyte hemoglobin (CHr), percent of
hypochromic erythrocytes (%HYPO), and zinc proto-

porphyrin (ZnPP) allow for the prediction of iron avail-
ability for erythropoiesis, but have little to no role in
the differentiation between IDA and Al

The content of Hb in reticulocytes correlates with
the availability of iron for erythropoiesis. A CHr
< 26 pg suggests iron-limited erythropoiesis, as ob-
served in both IDA and Al In response to iron sub-
stitution, it is one of the first parameters to respond
with an increase. A lack of this predicted response
raises the concern of an alternative diagnosis, unless
CKD is present and EPO deficiency awaits correction.

HYPO is defined as the relative number of hypo-
chromic RBC with a Hb content <28 pg. AHYPO >10 %
indicates iron-deficient erythropoiesis due to IDA or
Al

As erythropoiesis becomes iron-deficient, the ery-
throid enzyme ferrochelatase incorporates zinc in-
stead of iron into protoporphyrin-IX. Since ZnPP and
heme are analogues, an increase in the ratio of ZnPP/
heme indicates ID for erythropoiesis and is observed
in IDA, Al, MDS, and sideroblastic anemias, includ-
ing the form secondary to lead intoxication [117].
This highlights the lack of specificity of this set of
parameters for the differential diagnosis of anemias.

Hepcidin and its regulators

Hepcidin (HAMP) may be helpful in the differential
diagnosis of anemias, as well as in the assessment
of therapeutic options. For instance, HAMP is sup-
pressed in IDA, in the normal range in IDA/AI, and
elevated in AI [112, 118]. High HAMP at the time of
initiation of therapy with ESA may predict poor treat-
ment response in Al [119]. In addition, high HAMP
predicts poor response to oral iron in IDA patients
[120]. In CKD patients, the predictive power of HAMP
for the indication for iron therapy is limited [43, 121,
122]. Attempts have been undertaken to harmonize
the different diagnostic methods for hepcidin deter-
mination to allow the broad clinical use of this method
[123]. GDF15 is normal in IDA and elevated in Al and
IDA/AI [64].

In the future, information technology may provide
us with software based on complex algorithms for
a more accurate assessment of iron status and, just as
importantly, guide therapy for the most appropriate
treatment. For instance, we may witness that mobile
applications based on a combined panel of HAMP,
EPO, ERFE, GDF15, BMP6, and other parameters,
such as high sensitive CRP and IL-6, enter clinical
routine.

Treatment options

Since the Al is a direct consequence of an active im-
mune-driven disease, its first-line therapy is treatment
of the underlying condition. However, the subsequent
therapeutic approach to Al remains a matter of de-
bate and ongoing clinical trials. Iron supplementa-
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tion, ESA, and transfusion of packed RBC are the cur-
rent specific treatment options for Al

It is generally assumed, similar to the hypoferremia
of the acute phase response, that Al is the patho-
physiological consequence of the body’s attempt to
reduce the availability of iron for infectious agents.
Therefore, there is the concern that iron supplemen-
tation may stimulate pathogen proliferation or result
in a flare of an underlying inflammatory disorder or
malignancy [54, 124, 125]. Similarly, ESA and RBC
transfusions may have adverse immune-modulatory
effects [126-129]. The target therapeutic Hb levels
have not yet been defined in prospective trials; how-
ever, data from studies in patients with anemia and
CKD or cancer suggest a slightly anemic target range
between 11-12 g/dl to be safe [130, 131].

Iron preparations

Isolated IDA can often be prevented by iron fortifica-
tion/supplementation and, once it has manifested, is
preferentially treated by oral iron salts. For instance,
approximately 100 mg of elemental iron contained in
300-350-mg ferrous sulfate preparations can be pre-
scribed as a daily dose. These iron salts are absorbed
by the sequential action of DMT1 and FPN1 and as-
sociated oxidoreductases, but have a low bioavailabil-
ity. However, products using heme rather than ionic
iron have entered the market. These are absorbed
by alternative pathways that are incompletely char-
acterized, since the proposed solute carrier SLC46A1
absorbs folate more efficiently than heme [132, 133].
A recent study in non-anemic young women with ID
has shown that a single morning dose of 40-80 mg fer-
rous sulfate resulted in adequate iron absorption yet
elicited a transient rise in serum HAMP levels, which
argues against twice-daily dosage. Whether or not al-
ternate day supplementation provides a benefit awaits
investigation in prospective trials [134].

Parenteral iron supplementation is an alternative to
consider, especially when a rapid correction is needed,
or gastrointestinal (GI) malassimilation or active in-
flammatory disease dampens dietary iron absorption
in Al [135, 136]. Also, in patients with intolerance to
oral iron supplements, parenteral iron is the therapy
of choice. Currently, six different forms of parenteral
iron are available for clinical use, i. e., ferric carboxy-
maltose, ferumoxytol, iron dextran, iron gluconate,
iron isomaltoside, and iron sucrose. These represent
macromolecules in which iron is complexed to sac-
charides. The complexes are endocytotically taken up
by the MPS and ionic iron is distributed into the cir-
culation via FPN1 by macrophages [137]. Concerns
have been raised regarding the risk of severe anaphy-
lactic reactions when using intravenous iron prepa-
rations. However, these are infrequent and specific
precautions are recommended in at-risk patients, to
minimize the occurrence of such adverse events [138].
In addition, parenteral iron supplements harbor an in-

trinsic risk of inducing hypophosphatemia. Therefore,
serum phosphate may be measured when erythropoi-
etic and iron indices are determined to evaluate the
response to treatment [139].

Despite the fact that the MPS has a lower threshold
to respond to increased HAMP than have duodenal
enterocytes, parenteral iron remains effective when
intestinal iron absorption is hampered by immune ac-
tivation [140]. Since parenteral iron stimulates HAMP
secretion, as documented in hemodialysis patients,
frequent administration of low doses may be bene-
ficial [141]. Prospective trials are required to optimize
treatment regiments to ensure adequate efficiency of
parenteral supplementation in different clinical set-
tings.

In the context of Al, parameters which predict
the subsequent response to EPO therapy are being
evaluated in prospective studies. In CKD patients,
iron therapy is specifically recommended to replenish
stores prior to initiation of ESA therapy. TSAT < 20 %
and FT < 100 ng/ml have been proposed as cutoffs
for absolute ID in non-dialysis CKD patients [142].
Further details are reviewed elsewhere [130].

ESA

Currently, the arm of therapy with ESA remains lim-
ited to EPO analogues, as the synthetic EPO receptor
agonist peginesatide has been taken off the market
because of rare anaphylactic reactions [143].

Many subjects with Al who are under causative
treatment for their underlying condition do not have
an adequate Hb response to iron therapy. EPO re-
sistance of the erythron or renal EPO deficiency may
be present, such that ESA should be considered as
add-on therapy for anemia. Specific studies have
been conducted in patients with Al in the setting
of rheumatoid arthritis or HIV infection, in which
EPO levels <500 U/L predicted a response to ESA
administration [144, 145]. Standard starting doses of
EPO are 100-150 U/kg, administered subcutaneously
three times a week, although higher doses may be
required for individual patients. As Hb levels in-
crease during efficient EPO therapy, iron parameters
should be monitored and iron supplemented in order
to maintain a TSAT =20% and a FT =100 ng/ml for
a sufficient Hb response. In dialysis patients, higher
FT target levels have been suggested [146]. In MDS,
ESA are in wide clinical use despite of the fact that
official approval of this approach is still pending [147].
The specific regimes and pitfalls in ESA therapy are
reviewed elsewhere [130, 131, 148, 149].

The HAMP-FPNT1 axis as target

Given its important role for iron-sequestration in
Al, HAMP and its receptor FPN1 are attractive tar-
gets for therapeutic interventions. Different phar-
maceutical preparations including antibodies, an-
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tichalins, Spiegelmers, thiamine derivatives, and hep-
arin derivatives can bind and neutralize HAMP [150,
151]. Moreover, direct blockage of HAMP expression
via sHJV or BMP signaling inhibitors have shown effi-
ciency in blocking HAMP function and ameliorating
anemia [152]. Some of these treatments are already
being evaluated in clinical trials [153-158]. Moreover,
an FPN1 stabilizing antibody is currently also under
investigation [159].

Since the HIF-EPO axis forms an alternative tar-
getable pathway, prolyl hydroxylase inhibitors have
entered clinical trials. This class of drugs can be
orally administered and protects HIF from degrada-
tion, which increases EPO levels and erythropoietic
iron availability [160].

Summary

The precise differential diagnosis between IDA, Al,
and a combination of both forms is of clinical impor-
tance because of differing treatment strategies. Cur-
rently, the lack of data from prospective clinical tri-
als prevents definitive recommendations on diagnos-
tic algorithms and prognostic indices. These prob-
lems are aggravated by the lack of standardization in
otherwise promising tests, such as measurement of
sTFR. However, within the next few years, standard-
ized tests for novel parameters such as HAMP or ERFE
will become available for more accurate differential
diagnosis, stratification of treatment indications, and
prediction of therapeutic response. Furthermore, the
HAMP-FPN1 axis continues to receive a lot of atten-
tion as a therapeutic target. Blocking HAMP expres-
sion or processing, neutralization of circulating HAMP,
and blockage of its interaction with FPN1 are under
active investigation for the treatment of Al.
Moreover, different forms of Al may have to be
taken into account. Dependent on the underlying
conditions and dominant pathophysiological path-
ways, a more personalized approach to optimal man-
agement of distinct forms of anemias will be required.
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