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Abstract
Nanoscale materials have gained considerable interest because of their special properties and wide range of applications.
Many types of boron nitride at the nanoscale have been realized, including nanotubes, nanocones, fullerenes, tori, and
graphene sheets. The connection of these structures at the nanoscale leads to merged structures that have enhanced features
and applications. Modeling the joining between nanostructures has been adopted by different methods. Namely, carbon
nanostructures have been joined by minimizing the elastic energy in symmetric configurations. In other words, the only
considerable curvature in the elastic energy is the axial curvature. Accordingly, because it has nanoscale structures similar
to those in carbon, BN can also be joined and connected by using this method. On the other hand, different methods have
been proposed to consider the rotational curvature because it has a similar size. Based on that argument, the Willmore
energy, which depends on both curvatures, has been minimized to join carbon nanostructures. This energy is used to identify
the joining region, especially for a three-dimensional structure. In this paper, we expand the use of Willmore energy to
cover the joining of boron nitride nanostructures. Therefore, because catenoids are absolute minimizers of this energy,
pieces of catenoids can be used to connect nanostructures. In particular, we joined boron nitride fullerene to three other BN
nanostructures: nanotube, fullerene, and torus. For now, there are no experimental or simulation data for comparison with
the theoretical connecting structures predicted by this study, which is some justification for the suggested simple model
shown in this research. Ultimately, various nanoscale BN structures might be connected by considering the same method,
which may be considered in future work.
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Introduction

Nanoscale materials have considerable interest because of
their extraordinary properties and applications. In particular,
carbon structures at the nanoscale such as nanotubes,
nanocones, graphene sheets, tori, and fullerenes have
received significant interest for application in a variety of
fields, including microelectronics, sensing and actuation
systems, biotechnologies, composite materials, and energy
storage [12]. On the other hand, boron nitride (BN)
structures at the nanoscale are distinctive because of their
similarity to carbon structures at the nanoscale. Because
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of their remarkable properties, these particular structures
have broad applications in improving nanodevices [1, 27].
The hexagonal BN structure contains boron and nitrogen
atoms bound by strong covalent bonds. In addition, these
nanostructures can be found in many forms, such as
BN fullerene (BN fullerene), BN nanotorus (BNNTR),
BN nanotube (BNNT), BN nanocone (BNNC), and BN
graphene (BN graphene) forms [18, 25].

Similar to carbon nanostructures, these nanostructures
have favorable thermal and mechanical properties such as
high thermal conductivity, low density, high tensile strength,
and membrane stiffness. Additionally, their atomic compo-
sition provides them with characteristics surpassing those
of carbon nanostructures, such as stronger resistance to
oxidation and chemical stability at high temperatures [12,
14, 17, 20, 23]. Furthermore, BN nanostructures have out-
standing applications in energy storage, optoelectronics,
electronics, biomedical medicine, and nanosemiconductor
devices [13].
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ABNNT can be formed as a tube structure of a hexagonal
lattice involving organized boron and nitrogen atoms, and
this structure was first discovered in 1994. BNNTs have
an important interest among researchers because of their
unique characteristics. In particular, BNNTs are electrically
insulating with a band gap of 6 eV, and they are stable up to
800 °C in air. BNNTs can be considered to have outstanding
thermal conductivities for high Young’s moduli above 1.3
TPa and superhydrophobicity. BNNTs are also piezoelectric
and useful for spintronic devices [8].

In 1985, after the discovery of fullerene C60, researchers
attempted to find fullerene-like compounds comprising
other elements. Boron nitride fullerenes are the most attrac-
tive structures, such as B36 N36, which is quite similar to
carbon fullerene C60. BN fullerenes have attracted much
scientific research. That is, they have a higher heat resis-
tance and a wider band gap in air than carbon structures.
BN fullerenes are useful in many aspects, for example, in
electronic devices, insulator lubricants, and high semicon-
ductors. BN fullerenes that include lightweight structures
are capable of storing many gas molecules per unit weight.
Additionally, they are useful in gas storage, molecular
sieves, or nanomembranes [16].

A boron nitride nanotorus (BNNTR) can be defined as a
BN nanotube bent such that its ends are connecting together.
This nanostructure has been studied in many studies based
on its structure and unique properties. Different applications
have been found in the literature, such as in ultrafast
optical filters and nanoantennas sensitive to high-frequency
electromagnetic signals [18, 30].

Connecting or joining nanostructures to other nanostruc-
tures has advantages because it leads to new nanostruc-
tures with enhanced physiochemical and electrochemical
performance, affording them a broad range of uses in
various fields [10, 19, 28, 32]. New joined nanoscale struc-
tures might develop the physiochemical and electrochemi-
cal performance of joined nanoscale structures, such as in
nanosensors and nanooscillators. In particular, the newly
joined nanoscale structures are helpful for energy storage,
for designing probes for scanning tunneling microscopy,
and as carriers for drug delivery [27]. Therefore, many
methods have been used to join and connect nanoma-
terials. For example, elastic energy is employed to join
different carbon nanostructures, as these nanoscale struc-
tures are supposed to deform with perfect elasticity. In
particular, by minimizing the squared curvature, the Euler-
Lagrange equation is obtained, which is applied to define
the joint region between carbon nanomaterials. As a result
of this method, many carbon nanostructures have been con-
nected, such as carbon nanotubes and graphene, nanotubes
and fullerenes, nanotubes and nanocones, fullerenes and
graphenes as two fullerenes, two nanocones, nanocones

and fullerenes, nanocones and fullerenes, and two paral-
lel sheets of graphene, as detailed in [9, 11, 24] and [2].
Furthermore, another method was utilized to connect car-
bon nanostructures, that is, the Willmore energy [29]. This
method supports the argument that considers the rotational
curvature because it has a similar size. As a natural gen-
eralization of elastic energy, the Willmore energy, which
involves axial curvature and rotational curvature, is used to
determine the surface connection of two carbon nanoscale
structures. As a result of this energy, carbon nanostructures
have been joined and connected, for example, carbon nan-
otubes to fullerenes and two fullerenes to each other, as
detailed in [29]. Furthermore, another study used this energy
to join a carbon nanotorus and a nanotube [30]. In addition,
similar techniques have been utilized and investigated by
other researchers, for example, in [22] and [21].

On the other hand, because of their similarity to carbon
in nanoscale structures, BN in nanoscale structures has
been joined and connected using elastic energy. In detail,
other studies have used elastic energy to connect and join
BN nanostructures: BN nanocones to nanotubes and BN
graphene to other BN nanostructures; and nanotubes to BN
nanocones, as shown in [3] and [4], respectively. In this
paper, the Willmore energy method is utilized to join and
connect BN nanostructures.

The Willmore energy can be written as:

W = ∫
M

H 2dμ,

where H denotes the mean curvature (which involves the
sum of the rotational curvature and the axial curvature) of
surface M and dμ is the area element [31]. The Willmore
energy has been demonstrated to have possible applica-
tions in many different aspects of molecular, biological, and
nanotechnology science. On the other hand, catenoids, as
absolute minimizers of theWillmore energy, have numerous
uses in nanomagnetism [5–7, 15, 26]. This paper expands
the method of using catenoids to establish the conforma-
tion of the connection of BN nanostructures, namely, a BN
nanotube to a BN fullerene and two BN fullerenes to each
other.

In this research, we recognize that the existence of this
predicted structure has not been achieved experimentally.
The purpose of this research is to accommodate the major
features that encapsulate the dominant physical effects so
that we might imagine a real physical system in terms of
departures from an ideal model. In particular, this research
modeled only the mathematics of the energy inherent in
the curved surface, which can be thought of as a result of
chemical bonding. This model does not take into account
chemical issues, such as the position of nanostructure
atoms and bonds. However, the curved profiles of the
graphene fold obtained by minimizing the elastic energy
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using calculus of variations are in excellent agreement with
the experimental results [9].

In the following section, the essential equations to
model the joining region between BN nanostructures are
determined. In “Results”, the results are provided in three
subsections, where the connection of a BN fullerene to a BN
nanotube is given in “Joining BN nanotubes and fullerenes”,
between two fullerenes is specified in “Joining two BN
fullerenes”, and between a fullerene and torus is provided
in “Joining a BN fullerene and BN nanotorus”. Finally,
“Conclusions” provides the conclusion of this paper.

Model

We may write the mean curvature in terms of the axial and
rotational curvatures κa and κr , respectively, which is called
the Willmore energy function, as follows:

J [y] = ∫
(κa + κr)

2dμ + λ
∫

dμ,

where dμ is an area element, λ is a Lagrange multiplier cor-
responding to an area constraint, and H denotes the sum of
both curvatures, which is the mean curvature. Assume that
the joining will have a catenoid surface S = {(x, y, z) :
x = r cos θ, y = r sin θ, z = f (r)}, as shown in Fig. 1.
The mean curvature can be written in terms of both curva-
tures as

H = κa + κr = − f ′′(r)
(1+f ′2(r))

3
2

− f ′(r)
r
√

f ′2(r)+1
,

Fig. 1 Catenoid surface

if H = 0, this gives an absolute minimizer of the Willmore
energy, the general solution might be expressed as

f (r) = ± ln
(
ar+

√
a2r2−1

)

a
+ b,

where a and b are arbitrary constants. In addition, this
solution can be written as:

f (r) = ± cosh−1(ar)
a

+ b.

This demonstrates the joining surface, as a catenoid,
between two nanostructures. For more details of derivation,
we refer the reader to [29].

In this paper, rotationally symmetric boron nitride nanos-
tructures are joined and connected by using a part of the
catenoid. In particular, we employ the boundary conditions
that we have when matching the gradient at the connection
points with the coordinates to find the arbitrary constants.
In the following section, a catenoid is used to construct new
BN nanostructures resulting from the connection between
two different BN nanostructures: first, a fullerene with a
nanotube; second, two fullerenes; and finally, a fullerene
with a torus.

Results

Joining BN nanotubes and fullerenes

Figure 2 presents a three-dimensional schematic of the
joined structure, while a part of the catenoid is used to join
a boron nitride nanotube and a fullerene. Here, the curve of
the catenoid can be written as

z = − cosh−1(ar)
a

+ b, (1)

with constants a and b. Assume that the radius of the BN
nanotube is the specified value r = rt . Furthermore, the
fullerene equation can be expressed as

z = A + √
R2 − r2, (2)

when the radius of the fullerene is R and A denotes the
constant specifying the fullerene on the negative z−axis,
which can be specified by the position of the connection to
the catenoid. Moreover, assume that the nanotube connects
the catenoid at (r, z) = (rt , 0) and that the other side of
the catenoid connects the fullerene at (r, z) = (rf , zf ).
Additionally, a, b, A, and rf are constants to be determined,
where zf might be known as long as we know rf . At
the connection points and from the boundary condition,
the coordinates should be consistent with the gradient.
Therefore, on (rt , 0), using Eq. 1, we obtain

b = cosh−1(art )
a

,
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Fig. 2 A part of the catenoid joins between the BN nanotube and BN
fullerene

and from Eq. 1, we have

dz

dr
= − 1√

a2r2−1
.

The gradient at (rt , 0) gives

− 1
√

a2r2t − 1
= ∞,

that is,

a = 1
rt

, (3)

and b = 0.
Additionally, on (rf , zf ),

−cosh−1(arf )

a
= A +

√
R2 − r2f ,

which gives

A = −rt cosh−1(rf /rt ) −
√

R2 − r2f ,

matching the gradient results

− 1
√

a2r2f − 1
= rf√

R2−r2f

,

and from Eq. 3, we obtain

rf = √
Rrt , (4)

and

A = −rt cosh−1
√

R
rt

− √
R(R − rt ). (5)

Substituting Eqs. 3, 4, and 5 to Eqs. 1 and 2, with particular
values forR and rt , we obtain the connection shape between
the BN nanotube and fullerene by using the catenoid curve,
as shown in Fig. 3

Joining two BN fullerenes

Here, the case of joining two fullerenes is considered (see
Fig. 4). If we suppose the catenoid curve to be

z = ±cosh−1(ar)

a
+ b, (6)

with constants a and b, then the positive sign represents the
upper part of the catenoid, and the negative sign represents
the lower part of the catenoid. As at the point (rt , 0) the
gradient is ∞, we obtain 1√

a2r2t −1
= ∞, that is,

a = 1

rt
, b = 0. (7)

Now, we assume that the upper fullerene equation is:

z = A1 −
√

R2
1 − r2, (8)

while the radius of the upper fullerene is denoted byR1, and
A1 is the constant that defines the center of the fullerene on
the positive z−axis. Additionally, the lower fullerene can be
written as

z = A2 +
√

R2
2 − r2, (9)

where R2 denotes the radius of the lower fullerene, and A2

denotes the constant that defined the center of the fullerene
with the negative z−axis. Afterwards, at (rf1 , zf1) and from
Eqs. 6 and 8, we obtain

A1 = rt cosh
−1(rf1/rt ) +

√
R2
1 − r2f1

. (10)

Furthermore, at point (rf2 , zf2), while the lower fullerene is
connected to the lower catenoid, we have

A2 = −rt cosh
−1(rf2/rt ) −

√
R2
2 − r2f2

. (11)

Next, after matching the gradients at points (rf1 , zf1) and
(rf2 , zf2), we have

rf1 = √
R1rt ,

rf2 = √
R2rt .
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Fig. 3 Connection profile between a BN nanotube and fullerene based
on the Willmore energy

As a result, we find A1 and A2 to be

A1 = rt cosh
−1

(√
R1

rt

)

+ √
R1(R1 − rt ), (12)

Fig. 4 A part of the catenoid joins between two BN fullerenes

A2 = −rt cosh
−1

(√
R2

rt

)

+ √
R2(R2 − rt ). (13)

By substituting Eqs. 7, 12, and 13 into Eqs. 6, 8, and 9
with specified values of rt and R1 =R2, we obtain the con-
nection shape between two fullerenes by using the catenoid
curve, as shown in Fig. 5.

Joining a BN fullerene and BN nanotorus

In this case, we seek to join two different BN nanostruc-
tures, a fullerene and a torus, by using the Willmore energy,
as shown in Fig. 6. We can divide this case into two parts:
upper and lower parts. First, the upper part of the catenoid
will join a fullerene. This case is similar to the upper part
of the previous “Joining two BN fullerenes.” Therefore,
we have the same calculation as this integration, and we
consider Eq. 12 on this side. Second, the lower part of
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Fig. 5 Connection profile of two BN fullerenes using the Willmore
energy

Fig. 6 A part of the catenoid joins between a BN fullerene and nanotorus

the catenoid will join a torus. The equation of a torus in
Cartesian coordinates is

(

√
x2 + y2 − R)2 + z2 = a2,

and after a transformation, we obtain

x(φ, θ) = (R + a cos θ), cos θ

y(φ, θ) = (R + a cos θ), sin θ

z(φ, θ) = a sin θ,

where θ and φ are polar and azimuthal angles in the x-
axis and xy-plane, respectively. Additionally, R denotes the
major radius of the torus, and a denotes the minor radius
of the torus. Thus, the equation of the torus in cylindrical
coordinates is (r−R)2 + z2 = a2, which can be written as

z = D + √
a2 − (r − R)2, (14)

where D is a constant that can be determined by the position
of the torus along the negative z-axis [30]. Now, at the
joining point (r1, z1), considering the negative sign of Eq. 6,
which represents the lower part of the catenoid, and Eq. 7
along with Eq. 14, we obtain

−cosh−1(ar1)

a
= D +

√
a21 − (r1 − R)2,

D = −rt cosh
−1

(
r1

rt

)

−
√

a21 − (r1 − R)2.
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Next, if we match the gradient, we have

− 1
√

a2r21 − 1
= r1−R√

a21−(r1−R)2
,

then, by substituting Eq. 7, we obtain

r1 =
√
4a1rt + R + R

2
,

which results in

D = −rt cosh
−1

√
4a1rt + R + R

2rt

−
√

a21 −
(√

4a1rt + R − R

2

)2

. (15)

Fig. 7 Connection profile of a BN fullerene and nanotorus by using
the Willmore energy

Now, by substituting Eqs. 7, 12 and 15 into Eqs. 6, 8 and 14,
respectively, with specified values of rt , R1, a1, and R, we
obtain the joining shape between the fullerene and torus by
using the catenoid curve, as shown in Fig. 7.

Conclusions

In conclusion, calculus of variations is utilized to determine
the connection scenarios among boron nitride nanostruc-
tures. Minimizing the elastic energy to define the connection
area between carbon nanostructures has been used in many
studies, while the problem is considered to be in a two-
dimensional xy−plane. In addition, this method has been
applied in the literature to join boron nitride nanostruc-
tures because of their similarity to carbon nanostructures.
Furthermore, minimizing the Willmore energy, which is
an extension of the elastic energy, can specify the joining
curve between carbon nanostructures, while in this case,
this problem is treated as a three-dimensional problem. In
particular, a part of the catenoid has been used in this set-
ting because it is a minimal energy surface. In this research,
the Willmore energy minimization method is extended to
cover the joining scenarios of other nanomaterials, that is,
boron nitride structures at the nanoscale. The results of this
method are provided for three different joining structures,
namely, a BN nanotube and BN fullerene, a BN fullerene
and BN fullerene, and a BN fullerene and BN nanotorus.
Note that all the shapes used are assumed to be geometri-
cally perfect structures and have not been deformed from
the original shapes. The main aim in this study is to for-
mulate the underlying axially symmetric model so that we
have a reference basis for the comparison of real physical
structures. Although there are no experimental or computa-
tional results for comparison, simple models appear to give
rise to meaningful approximations to complex structures
and therefore might be useful for future work on this prob-
lem. Ultimately, various nanoscale BN structures might be
connected by considering the same method, which may be
considered future work.
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