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ABSTRACT

Experimental methods that capture the individual
properties of single cells are revealing the key role
of cell-to-cell variability in countless biological pro-
cesses. These single-cell methods are becoming in-
creasingly important across the life sciences in fields
such as immunology, regenerative medicine and can-
cer biology. In addition to high-dimensional tran-
scriptomic techniques such as single-cell RNA se-
quencing, there is a need for fast, simple and high-
throughput assays to enumerate cell samples based
on RNA biomarkers. In this work, we present single-
cell nucleic acid profiling in droplets (SNAPD) to an-
alyze sets of transcriptional markers in tens of thou-
sands of single mammalian cells. Individual cells are
encapsulated in aqueous droplets on a microfluidic
chip and the RNA markers in each cell are amplified.
Molecular logic circuits then integrate these ampli-
cons to categorize cells based on the transcriptional
markers and produce a detectable fluorescence out-
put. SNAPD is capable of analyzing over 100,000 cells
per hour and can be used to quantify distinct cell
types within heterogeneous populations, detect rare
cells at frequencies down to 0.1% and enrich specific
cell types using microfluidic sorting. SNAPD pro-
vides a simple, rapid, low cost and scalable approach
to study complex phenotypes in heterogeneous cell
populations.

INTRODUCTION

The complex phenotypes displayed by multicellular or-
ganisms arise from interactions between highly special-
ized cell subpopulations. This intercellular heterogeneity
plays a pivotal role in physiological (1,2), developmental

(3,4) and disease processes (5–7). Transcriptomic analyses
have traditionally been performed on the bulk collection
of cells within a biological sample, and thus report the
average transcriptional state of the population. This aver-
age does not capture the individuality of single cells within
the population (8). Single-cell transcriptomic approaches
such as single-cell RNA sequencing (scRNA-seq (9–11))
are helping to elucidate the role of cellular heterogeneity
in fields ranging from immunology (12,13) to oncology (5–
7). These methods have revealed the continuum of indi-
vidual cells states during differentiation processes such as
hematopoiesis (14) and secondary tumor formation (15).
They have also been used to characterize cellular hetero-
geneity in tumor micro-environments, where small subpop-
ulations of cancer stem cells can drive disease progression
and resistance to treatment (16). Single-cell transcriptomic
approaches are essential for studying biological processes
that involve phenotypically heterogeneous cell populations.

While scRNA-seq is a powerful method that provides
rich transcriptomic data for thousands of cells, experiments
generally carry high expense and long turnaround times.
There are many cases where it may be more advantageous
to quickly and inexpensively enumerate cell samples based
on a smaller set of RNA biomarkers. Flow cytometry-based
fluorescent in situ hybridization (Flow-FISH (17)) and mi-
crofluidic PCR-activated cell sorting (PACS (18,19)) have
each demonstrated success in these scenarios; however, they
require laborious and involved sample processing that can
span over multiple days. Thus, despite these recent tech-
nological advances, there is still need for new single cell
transcriptional profiling methods that are low cost, high-
throughput, simple and rapid.

Droplet-based microfluidics is a powerful means to an-
alyze single cells in high-throughput (20–22). These sys-
tems encapsulate individual cells into picoliter-scale aque-
ous droplets, and each of these cells can be studied and an-
alyzed in isolation from the bulk population. These tech-
niques can achieve similar throughput to flow cytometry,
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but provide a more general format that can be adapted to
a diverse array of biomolecular assays and readouts (23).
For instance, droplet-based microfluidics has been used to
perform single-cell reverse transcriptase-polymerase chain
reaction (RT-PCR) to detect a specific mRNA transcript in
tens of thousands of cells (18). While this approach is pow-
erful, it suffers from a fundamental problem with droplet-
based assays: cells encapsulated and lysed in droplets will
often result in high lysate concentrations that inhibit down-
stream assays such as PCR (24). As a result, droplet-based
PCR methods require complicated, multi-step workflows to
remove reaction inhibitors, making assays difficult and less
reliable. We therefore sought a simple droplet microfluidic
method to detect mRNA biomarkers in hundreds of thou-
sands of cells while avoiding PCR-based signal amplifica-
tion altogether.

An ideal RNA amplification method for droplets could
be performed in highly concentrated lysate with compara-
ble sensitivity and selectivity to PCR. We identified reverse
transcription-loop-mediated isothermal amplification (RT-
LAMP) as a method that satisfies these criteria. LAMP is
an isothermal nucleic acid amplification method that uses a
strand displacing polymerase (Bst Polymerase) to generate
dumbbell DNA structures and exponentially extend them
to longer concatemers (25). Unlike DNA polymerases used
in other methods, we found that Bst polymerase is resis-
tant to lysate concentrations exceeding 106 cells/mL (Sup-
plementary Figure S1). LAMP-based assays have achieved
limits of detection as low as 0.4 aM, which is compara-
ble to nested PCR (26,27). These properties have facilitated
LAMP-based digital nucleic acid quantification assays in
microwells (28), SlipChips (29), centrifugal devices (30,31)
and droplets (32–34). In previous work, others have adapted
LAMP to analyze single cells through multi-step droplet
workflows (35). However, we leveraged the lysate tolerance
of LAMP to develop an unprecedentedly simple droplet-
based single-cell analysis workflow which does not require
any splitting, merging, or sorting steps.

In this work, we demonstrate a scalable and streamlined
technique for profiling RNA biomarkers in tens of thou-
sands of single mammalian cells. We take advantage of re-
cent advances in droplet microfluidics (19,36) and molecu-
lar detection (37,38) to develop the novel SNAPD (single-
cell nucleic acid profiling in droplets) platform that is capa-
ble of profiling several mRNAs simultaneously across tens
of thousands of mammalian cells. Our method starts by
encapsulating single cells into microdroplets, followed by
isothermal amplification of target RNAs to produce a fluo-
rescent signal. The resulting droplets can be analyzed di-
rectly to determine the proportion of a specific cell type
within a heterogeneous cell mixture, or the droplets can
be sorted to enrich a particular cell type and collect its
DNA and RNA. Hundreds of droplets can be analyzed
per second, allowing high-throughput analysis and sorting.
SNAPD can be multiplexed to examine multiple RNAs si-
multaneously, and these multidimensional signals can be in-
tegrated via molecular computation to capture more com-
plex cellular phenotypes. The SNAPD workflow is simpler
and more streamlined than comparable methods such as
PACS and Flow-FISH. Live cells are loaded directly into
a microfluidic device with minimal processing beforehand

and the entire experiment can be completed within a few
hours. Due to its throughput, ease and low cost, SNAPD
provides a scalable and facile solution for single-cell RNA
biomarker analysis.

MATERIALS AND METHODS

LAMP primer design

For each gene target, we first used data from the Hu-
man Protein Atlas Project (39) to identify its most highly
expressed transcriptional isoforms in our target cell type.
We then used the Ensembl Genome Browser (40) to iden-
tify common regions between highly expressed isoforms,
and designed LAMP primers to target these sequence re-
gions. We designed LAMP primers using PrimerExplorer
V5 software (Eiken Chemical Co., http://primerexplorer.jp/
lampv5e). We found SNAPD’s sensitivity was greatly im-
proved if we used two different sets of LAMP primers to
target each transcript. In these cases, we designed primers
such that little or no overlap occurred between them.

DNA complexes and primer mixes

We ordered all DNA oligos from Integrated DNA Tech-
nologies (Coralville, IA, USA), and dissolved each into
nuclease-free water (Thermo Fisher) prior to storage at
−20◦C. On the day of an experiment, we prepared stocks of
each DNA complex in DEPC-treated phosphate-buffered
saline (PBS) by slowly annealing the strands from 97◦C to
23◦C at a rate of −2◦C/min. We then stored these DNA
complexes on ice and protected from light until the time
of experiment. We prepared LAMP primer mix stocks in
nuclease-free water (Thermo Fisher) and stored at −20◦C.

Production of mRNAs using in vitro transcription

DNA templates for KRT19, VIM and ERBB2 tran-
scripts were synthesized by Integrated DNA Technologies
(Coralville, IA, USA). We cloned these genes into the pET-
22b vector under a T7 promoter. We performed in vitro tran-
scription using the HiScribe™ T7 High Yield RNA Syn-
thesis Kit (New England Biolabs), and purified the result-
ing RNA using a GeneJET RNA Purification Kit (Thermo
Scientific). We quantified each RNA sample’s concentra-
tion using a NanoDrop™ Spectrophotometer (Thermo Sci-
entific) and stored RNA stocks at −80◦C in DEPC-treated
PBS.

Microfluidic device fabrication

We fabricated microfluidic devices from polydimethylsilox-
ane (PDMS) via a soft photolithography process. We first
deposited SU-8 3025 or 3010 photoresist onto a silicon
wafer and spun to achieve the desired layer height. Next, we
used a photomask to pattern microfluidic channels on the
wafer and removed uncrosslinked regions with SU-8 devel-
oper. We then placed the patterned wafer into a petri dish,
submerged in uncured PDMS (Dow Corning Sylgard®

184) (11:1 polymer:cross-linker ratio) and cured at 72◦C for
at least 1 h. After PDMS polymerization, we excised the pat-
terned PDMS device from the mold and bonded it to a glass
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microscope slide via plasma treatment. Finally, we treated
the microfluidic channels with Aquapel (Pittsburgh Glass
Works) to make the channels hydrophobic.

Cell culture and staining

We subcultured MOLT-4 cells (American Type Culture Col-
lection) in a 1:8 ratio every 2 days in RPMI-1640 medium
(Gibco) supplemented with 10% fetal bovine serum (FBS)
(Gibco) and 1X Antibiotic-Antimycotic (Gibco). We sub-
cultured SK-BR3, MCF7 and U-2 OS cells (American
Type Culture Collection) in a 1:4 ratio every 2 days and
in Dulbecco’s-modified Eagle’s medium (DMEM), high
glucose (Gibco) supplemented with 10% FBS and 1×
Antibiotic-Antimycotic. On the day of experiment, we col-
lected each cell type and washed twice with DPBS (Gibco).
We then stained cells with 10 �M dye in DPBS for 30 min
on ice. In droplet transducer and OR gate experiments,
we stained with CellTrace™ Calcein AM (Invitrogen). In
all other droplet experiments, we used CellTrace™ Calcein
Red-Orange AM (Invitrogen). We then washed cells twice
and resuspended in FluoroBrite™ DMEM (Gibco) contain-
ing 12.4 U/�l RNase If (New England Biolabs) and 0.025
U/�l DNase I (Thermo Fisher). We performed the ESR1
experiment (Supplementary Figure S2), multiplex trans-
ducer experiment (Figure 3C and D) and droplet OR gate
experiment (Figure 4G) with an earlier protocol that did
not include nuclease treatment and used DPBS instead of
DMEM.

Bulk LAMP and DNA logic assays

We performed bulk RT-LAMP and DNA logic assays on
purified RNAs, cells and mixtures of cells in triplicate us-
ing a Bio Rad CFX Connect quantitative PCR (qPCR) ma-
chine. We incubated the reactions at 65◦C and monitored
FAM, HEX and/or SYBR fluorescence channels. Each re-
action comprised a total volume of 10 �l, consisting of 1.6
�M each FIP/BIP primer, 0.2 �M each F3/B3 Primer, 0.4
�M each LoopF/B Primer, 1× WarmStart LAMP Master
Mix (New England Biolabs) and 0.5 U/�l SUPERase•In™
RNase Inhibitor (Invitrogen). We added DNA complexes
at varying concentrations given in Supplementary Table S2.
LAMP primer and logic gate sequences are shown in Sup-
plementary Table S1. In reactions without any DNA com-
plexes, we included LAMP Fluorescent Dye (New England
Biolabs) as a general LAMP indicator. For experiments per-
formed on purified RNAs, we added in vitro transcribed
KRT19, VIM and/or PTPRC RNAs at the concentrations
shown in Supplementary Table S2. For experiments per-
formed on cells, we also included 2.5% Tween-20 (Sigma
Aldrich) in the reaction buffer to act as a lysis reagent. We
then added intact, unstained cells immediately before start-
ing an experiment at a final concentration of 50 cells/�l per
cell type.

Single-cell experiments in microfluidic droplets

We used microfluidic dropmakers to encapsulate cells with
LAMP components and lysis reagents into 500 pL droplets
(Supplementary Figure S5). This dropmaker included two

to three aqueous inlets depending on the experiment type.
The device flow rates and inlet compositions are given in
Supplementary Table S3. Supplementary Table S2 lists the
final concentration of each logic gate for droplet logic exper-
iments. We used standard LAMP primer concentrations, as
described in ‘Bulk RT-LAMP Assays.’ In all experiments,
we adjusted the cell concentration such that approximately
one in every ten droplets contained a single cell. We col-
lected droplets into a microcentrifuge tube and incubated at
65◦C for 1 h prior to analysis. We then reinjected droplets
onto a second microfluidic device with additional oil for
spacing and measured their fluorescence in FAM/SYBR,
HEX and Alexa Fluor 647 channels. We performed subse-
quent gating and analysis in Flowjo software. For single-
target experiments, we omitted all LAMP primers as a neg-
ative control. For multiplexed experiments, we performed
unamplified negative controls that were only incubated at
65◦C for 5 min. We analyzed at least 10 000 cells for each
replicate of each experiment, except for the droplet logic
gate and ESR1 experiments, where we analyzed over 1000
cells.

During the course of SNAPD development, we made
several refinements to reduce false positive events. We
switched from a 3-inlet droplet generator to a 2-inlet de-
sign. We also added RNase If (New England Biolabs)
and DNase I (Thermo Fisher) to the cell suspension to
destroy extracellular DNA and RNA. Likewise, we pre-
treated the LAMP mastermix with DNase I for 30 min
at room temperature, followed by a 30-min inactivation
with Dithiothreitol (DTT) on ice, followed by primer ad-
dition. We used the 3-inlet, no-nuclease method for ESR1,
droplet transducer, and droplet OR experiments, and the 2-
inlet method with nuclease treatment for all other droplet
experiments.

Droplet fluorescence data processing

Our microfluidic measurements produce fluorescence time
traces of the droplets passing the laser. We used a fixed
threshold to distinguish droplets from the carrier oil, and
the average fluorescence within each droplet was recorded
at multiple wavelengths. The resulting data looks similar to
flow cytometry data with many events across multiple flu-
orescence channels. For single-target experiments, we per-
formed signal compensation to reduce crosstalk between
the FAM/SYBR and HEX channels. We then gated out
excessively large/small drops by examining the droplet size
(duration of signal) and removing the top and bottom 8%
of events (Supplementary Figure S7). Next, we selected
the cell-containing droplet population by manually gat-
ing droplets displaying the calcein red–orange cell stain
in the HEX channel. We then down-sampled 10 000 ran-
dom events from the resulting droplet population to allow
comparisons across samples. We defined a positive/negative
LAMP amplification threshold as 2.8-fold higher than the
median fluorescence of the empty droplet population. These
same thresholds were applied to negative control conditions
without LAMP primers. For the droplet logic experiment,
we used a different optical configuration and different fluo-
rophores, but used the same general compensation and gat-
ing strategy.
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RNA Flow-FISH

We performed assays in triplicate using the Primeflow RNA
Assay Kit™ (Thermo Fisher) with Alexa Fluor 647 ERBB2
target probes, following the recommended protocol. We
stained MOLT-4 and SK-BR-3 cells with LIVE/DEAD™
Fixable Green Dead Cell Stain Kit, for 488 nm excitation
(Invitrogen) prior to treatment. As a negative control, we
also performed the entire protocol without the ERBB2 tar-
get probes. We analyzed the samples on a BD Fortessa X-20
Flow Cytometer using APC and FITC channels, and per-
formed subsequent gating and data analysis in FlowJo soft-
ware (Supplementary Figure S7).

Simulating SNAPD’s ability to detect rare cells

We used data from ERBB2 limit of detection experiments
(Figure 2D) to estimate SNAPD’s false positive rate (FPR)
as 0.02%. Similarly, we used data from SK-BR-3 ERBB2
amplification (Figure 2B) to estimate SNAPD’s true posi-
tive rate (TPR) as 97.1%. For each trace in Figure 2E, we
fixed the number of cells analyzed, and simulated varying
proportions of SK-BR-3 cells in a MOLT-4 background. In
each simulation, we generated a binomial distribution to ap-
proximate the pure MOLT-4 population using the estimated
FPR and the number of cells analyzed. We then calculated
the expected number of observed positive cells to be equal
to the number of MOLT-4 cells * FPR + the expected num-
ber of SK-BR-3 cells * TPR. We used this expected value to
perform a binomial test against the pure MOLT-4 popula-
tion and obtain a P-value for detecting positive cells.

Enrichment of ERBB2± cells via microfluidic droplet sorting

We used droplet sorting to enrich ERBB2+ cells from a
cell mixture, and verified enrichment using RT-qPCR. We
performed ERBB2 SNAPD on a 9:1 mixture of MOLT-4
and SK-BR-3 cells stained with CellTrace™ Calcein Red-
Orange AM (Invitrogen). We then reinjected these droplets
onto a dielectric sorting device (Supplementary Figure S5)
with flow rates of 100 �l/h for SNAPD droplets, 400 �l/h
for reinjection oil and 1000 �l/h for bias oil. We measured
the fluorescence of each drop in the FAM/SYBR and HEX
channels. We sorted 350 positive droplets containing cells
by applying a series of 250 800-V, 10-kHz DC pulses across
the sorting junction. We performed sorting experiments in
triplicate.

To verify enrichment, we extracted RNA from the sorted
droplets and performed RT-qPCR on GAPDH and KRT19.
We froze the sorted droplet samples at −20◦C overnight to
coalesce the emulsions and preserve RNA integrity. We then
thawed samples, extracted the aqueous layer containing the
RNA and pooled samples from the three sorting replicates
to increase the RNA yield. For the initial (unsorted) sam-
ples, we used a 150 000 cells/ml suspension containing a
9:1 mixture of MOLT-4:SK-BR-3 cells, and serially diluted
this mixture in 2-fold intervals to identify an RNA concen-
tration that matched the sorted droplets. We subjected this
cell mixture to bulk ERBB2 RT-LAMP to match the exper-
imental conditions of the sorted droplets. We then digested
DNA in the sorted and initial (unsorted) samples by dilut-
ing 10-fold and adding 0.1 U/�l DNase I (Thermo Fisher)

and 2 U/�l RNasin Plus RNase Inhibitor (Promega). We
performed DNase digestion at 37◦C for 1 h followed by a
95◦C inactivation for 5 min. We added 1 �l of the result-
ing DNase digestions to 10 �l RT-qPCR reactions (Luna
One-Step Universal RT-qPCR Kit, New England Biolabs)
containing 0.8 U/�l RNasin Plus (Promega) and GAPDH
or KRT19 primers (primer sequences listed in Supplemen-
tary Table S1). For non-template controls, we added water
instead of RNA. We performed thermocycling as recom-
mended in the RT-qPCR kit protocol. We performed all RT-
qPCR measurements in triplicate.

We calculated enrichment by evaluating how KRT19
levels changed relative to the GAPDH reference gene.
Since SK-BR-3 cells express the KRT19 gene, a high
KRT19/GAPDH ratio indicates SK-BR-3 enrichment rel-
ative to MOLT-4 cells. We derived an expression for enrich-
ment based on a modified version of the standard 2–��CT

method. This expression accounts for varying PCR efficien-
cies between the target and reference gene (41). Enrichment
was calculated as:

E = Xsorted/Rsorted

Xinital/Rinitial

= (1 + ER)(Ct,R,sorted− Ct,R,initial ) · (1 + EX)(Ct,X,initial− Ct,X,sorted)

where Xsorted and Rsorted correspond to target (KRT19) and
reference (GAPDH) RNA levels in the sorted sample, re-
spectively; and Xinital and Rinital correspond to the initial
sample. Ct,R,sorted is the number of PCR cycles for the ref-
erence gene to reach a defined threshold in the sorted sam-
ple, Ct,R,initial corresponds to GAPDH in the initial sample,
Ct,X,sorted corresponds to KRT19 in the sorted sample and
Ct,X,initial corresponds to KRT19 in the initial sample. ER
and EX are the PCR efficiencies for the reference and tar-
get, respectively; and were estimated to be EGAPDH = 0.36
and EKRT19 = 0.17 by running RT-qPCR assays at varying
cell lysate concentrations.

Optical configurations used in droplet experiments

We used two custom-built optical setups for droplet ex-
periments, as shown in Supplementary Figure S8a and
b. For the orthogonal droplet transducer experiment, we
used the four-color setup depicted in Supplementary Figure
S8b. For all other droplet experiments, we used the three-
color setup shown in Supplementary Figure S8a. Individual
lasers (Thor Labs, Supplementary Figure S8a) or a com-
bination unit with four lasers (Changchun New Industries
Optoelectrics, Supplementary Figure S8b) were redirected
and filtered via a set of dichroic mirrors and bandpass filters
(Semrock) to illuminate the microfluidic device on a stan-
dard brightfield microscope (Lukas Microscopes Services
Inc.) at 10×–40× magnification. We monitored droplet pro-
cessing using a high-speed camera (Vision Research). Dur-
ing droplet analysis, fluorescence was passed through a set
of dichroic mirrors and bandpass filters (Semrock) and de-
tected by a set of photomultiplier tubes (Thor Labs) and
analyzed in LABVIEW software. For sorting experiments,
we used a Trek PZD700A high-voltage amplifier to redirect
droplets. Wavelengths and specifications for each optical se-
tups are shown in Supplementary Figure S8a and b.
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Statistical testing

All P-values reported in this work were performed using a
two-sided t-test with n = 3, assuming homoscedasticity.

RESULTS

A microfluidic platform for transcriptional profiling of single
cells

We developed SNAPD to perform RT-LAMP-based detec-
tion of specific mRNA transcripts from single cells (Figure
1A). The SNAPD workflow is simple, rapid and requires
minimal hands-on processing. Live cells are stained with a
live/dead indicator dye and loaded directly into a microflu-
idic device. Single cells are encapsulated into droplets con-
taining RT-LAMP and lysis reagents, along with target-
specific primer sets. Droplets are then collected and incu-
bated at a constant temperature, allowing the RT-LAMP
reaction to proceed. Finally, the droplets are reinjected onto
a second microfluidic device, where their fluorescence is an-
alyzed in high-throughput to detect RT-LAMP-based am-
plification of the target markers.

We first benchmarked our SNAPD platform by mea-
suring single-cell expression of the 60S Ribosomal Protein
L3 (RPL3) housekeeping transcript. RPL3 is known to be
uniformly expressed across single bone marrow progeni-
tor cells (42), and thus, we used the leukocytic leukemia
line MOLT-4 as a positive control. We performed SNAPD
on MOLT-4 cells with an RPL3 primer set, and also per-
formed a no-primer negative control (Figure 1B and C). Mi-
croscopy showed that cells (red) were loaded into ∼10% of
droplets, as expected, and nearly all cell-containing droplets
displayed RPL3 amplification as visualized by SYBR green.
In contrast, the no-primer negative control experiment dis-
played no SYBR green signal, indicating that RT-LAMP-
based mRNA amplification was responsible for the SYBR
green signal in the cell-containing droplets.

We reinjected the SNAPD droplets onto a high-
throughput fluorescence detection device, and measured the
fluorescence of 10,000 cells. A majority of drops displayed
a strong correspondence between the cell stain and RT-
LAMP amplification. There were a small fraction of drops
that displayed RT-LAMP amplification in the absence of
cells, presumably due to free transcripts or dead cells that
weren’t stained. There were also a small fraction of drops
that displayed stained cells with no RT-LAMP amplifica-
tion. We gated the cell-containing droplets, and found that
93.5% of MOLT-4 cells amplified with the RPL3 primer
set, as compared to 0.1% for the no-primer negative control
(Figure 1D). These results demonstrate that SNAPD can re-
liably detect specific mRNA targets in single cells. We were
able to perform droplet generation and analysis at a rate of
300 Hz, allowing SNAPD to transcriptionally characterize
over 100,000 cells per hour.

Quantifying single-cell gene expression in heterogeneous cell
populations

Single cell analysis methods can be used to distinguish dif-
ferent cell types and characterize heterogeneous cell popu-
lations. We used SNAPD to evaluate the expression of the

HER2 (ERBB2) breast cancer marker in two cell lines. The
SK-BR-3 breast cancer line overexpresses this gene, while
the MOLT-4 leukemia line has no detectable expression
(39). We performed SNAPD on pure cell lines and found
97.1% of the SK-BR-3 cells displayed ERBB2 expression,
as opposed to 0.1% of the MOLT-4 cells (Figure 2A and B).
We also tested whether SNAPD could distinguish different
cell types from the same tissue of origin by evaluating es-
trogen receptor (ESR1) expression in SK-BR-3 and MCF7
breast cancer lines. We found ESR1 was expressed in 1.9%
of SK-BR-3 and 67.9% of MCF7 cells (Supplementary Fig-
ure S2). ESR1 is known to be heterogeneously expressed
across single cells (43).

To further validate these results, we benchmarked
SNAPD against Thermo Fisher’s PrimeFlow™ RNA as-
say kit, a well-established and commercially available Flow-
FISH method to measure gene expression in single cells.
PrimeFlow™ detects RNA by fixing cells, hybridizing flu-
orescent probes, washing away excess probes and analyz-
ing the target RNA within each cell by flow cytometery.
SNAPD and PrimeFlow™ displayed highly similar ERBB2
gene expression profiles across the two cell lines (Figure
2A and B). There was no statistically significant differ-
ence between the SK-BR-3 (ERBB2+) detection rates of the
two methods, although SNAPD did show a slightly lower
MOLT-4 (ERBB2-) cell line amplification rate with statisti-
cal significance (P < 0.05). This implies that SNAPD can re-
liably identify ERBB2 positive cells with a lower FPR than
PrimeFlow™. We observed a small number of false positives
in negative controls lacking ERBB2 primers, which we be-
lieve are caused by cellular autofluorescence or events where
the laser directly strikes a cell’s nucleus (Supplementary Fig-
ure S3).

After verifying that SNAPD could distinguish different
cell types, we evaluated its ability to quantify specific cell
types within a heterogeneous cell population. To do this,
we combined SK-BR-3 and MOLT-4 in varying propor-
tions, and used SNAPD to analyze the ERBB2 marker in
these defined cell mixtures. We found that SNAPD could re-
liably quantify the percentage of SK-BR-3 cells with a near-
perfect linear fit (R2 = 1.00) and a slope of 0.95 (Figure 2C).
SNAPD provides a highly quantitative readout of a popu-
lation’s cell types based on gene expression.

Single-cell methods can provide valuable information
about rare cell types within a population. We tested
SNAPD’s ability to detect rare cells by spiking a small
known quantity of SK-BR-3 cells into MOLT-4 suspen-
sions, and counting the resulting number of ERBB2+ cells
within the sample. SNAPD could reliably count SK-BR-
3 cells in mixtures containing as few as 10 SK-BR-3 cells
per 10,000 total cells analyzed, and could distinguish these
mixtures from a negative control containing 100% MOLT-
4 cells (Figure 2D). SK-BR-3 cells at a prevalence of 1
in 10,000 total cells analyzed could not be distinguished
from the negative control (Supplementary Figure S4). In
this case, the total number of cells analyzed (10,000) limits
SNAPD’s ability to detect rare cells. We performed statis-
tical tests based on the observed FPR and TPR to explore
how the total number of cells analyzed affects rare cell de-
tection (Figure 2E). In each test, we calculated the expected
number of observed positive cells from a cell mixture and
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Figure 1. A microfluidic platform for high-throughput single-cell RNA profiling. (A) Schematic of the SNAPD workflow. Single cells are encapsulated into
microdroplets with assay reagents, collected and incubated offline, and the fluorescence of each droplet is subsequently measured to indicate amplification
of target RNAs. SNAPD can analyze 300 droplets per second. (B) Microscopy image and scatterplot of SNAPD droplet fluorescence. We assayed MOLT-4
cells for expression of the housekeeping transcript RPL3. Red fluorescence indicates the presence of a cell, while the green dye indicates target amplification.
Droplets that appear yellow in the microscopy image contain cells and also displayed RPL3 amplification. Scale bars indicate a length of 200 �m. The
numbers on the scatter plot indicate the number of droplets in each fluorescence quadrant. (C) Microscopy images and scatterplot of a SNAPD negative
control with RPL3 primers omitted. Scale bars indicate a length of 200 �m. (D) Histograms of the cell-containing droplets SYBR fluorescence. On average,
reactions containing the RPL3 primer set (blue) displayed 93.5% amplification, while the no primer negative control (red) only amplified at 0.1%. These
results demonstrate that SNAPD can reliably detect specific mRNA targets in single cells with high specificity.

used a binomial test to compare it to the expected bino-
mial distribution for the pure MOLT-4 population. From
these tests, we estimate our ERBB2 SNAPD assay should
be able to detect positive cells at a prevalence of 1 in 10,000
by screening only 100,000 cells total. Based on these results,
SNAPD is capable of enumerating specific cell types from
mixtures based on their RNA content, even when these tar-
get cells are rare.

The SNAPD single-cell assay can be combined with high-
throughput droplet sorting to isolate specific cell types
based on their RNA biomarker status. With a droplet
microfluidic sorting device adapted from a previous de-
sign (Supplementary Figure S5) (36), we used the ERBB2
marker to enrich SK-BR-3 cells from an initial popula-
tion containing 90% MOLT-4 and 10% SK-BR-3 cells (Fig-
ure 2F). We then performed RT-qPCR on the initial and
sorted pools to verify enrichment of SK-BR-3 cells. We used
GAPDH as a reference gene, and estimated the samples’
proportion of SK-BR-3 cells by measuring the relative ex-
pression of the SK-BR-3-specific marker KRT19. We found
the GAPDH levels were similar between samples, while the

sorted sample contained higher KRT19 levels, indicating a
higher proportion of SK-BR-3 cells (Figure 2G). We ob-
served poor amplification efficiency in RT-qPCR reactions,
and therefore we could not accurately quantify enrichment
values using standard approaches. We estimated enrichment
by taking each target’s observed RT-qPCR efficiency into
account following established RT-qPCR calculations (41)
and by assuming GAPDH expression in SK-BR-3 cells is
greater than or equal to its expression in MOLT-4 cells
(39). With these assumptions, we estimate that microflu-
idic sorting achieved at least a 3.2-fold enrichment of SK-
BR-3 cells over MOLT-4 cells. These results demonstrate
that SNAPD can be combined with microfluidic droplet
sorting to enrich target cell types from a heterogeneous
population.

Multiplex SNAPD to profile multiple RNA targets

Analyzing multiple RNA targets in single cells would allow
SNAPD to identify more complex cellular phenotypes and
classify cells with greater selectivity and sensitivity. Multi-
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Figure 2. Quantification and enrichment of specific cell types. (A) SNAPD and PrimeFlow™ histograms comparing ERBB2 (HER2) expression in MOLT-4
and SK-BR-3 cells. The overall fluorescence distributions are nearly identical, indicating SNAPD is comparable with well-established and commercially
available single-cell analysis methods. (B) The percentage of ERBB2+ cells as measured by SNAPD and PrimeFlow™. Experiments were performed in
triplicate. There was no significant difference between SNAPD and PrimeFlow™ when analyzing SK-BR-3 cells, while SNAPD displayed a lower FPR
when analyzing MOLT-4 cells (P < 0.05). (C) SNAPD quantification of ERBB2+ cells in mixtures of MOLT-4 and SK-BR-3 cells at varying proportions.
Each measurement was performed in triplicate. These results indicate that SNAPD can quantify specific cell types across a broad range of proportions with
high accuracy and precision. (D) SNAPD can detect rare ERBB2+ cells in mixtures containing low proportions of SK-BR-3 cells spiked into MOLT-4
cells. All experiments were performed in triplicate. A mixture containing 0.1% SK-BR-3 cells was distinguishable from a sample of pure MOLT-4 cells (P <

0.05), indicating a limit of detection below 1 in 1000 cells. (E) Simulation results exploring how the total number of cells analyzed affects SNAPD’s ability
to detect rare cells. Analyzing 100 000 cells should be sufficient to detect positive cells at a prevalence of 1 in 10 000. (F) SNAPD can enrich specific cell
types from mixtures using microfluidic sorting. MOLT-4 and SK-BR-3 cells were mixed at a 9:1 ratio, analyzed for ERBB2 expression using SNAPD and
droplets displaying ERBB2 amplification were isolated using a microfluidic droplet sorting device. (G) SNAPD-based cell enrichment of SK-BR-3 cells,
validated via RT-qPCR on the SK-BR-3-specific KRT19 marker. RT-qPCR measurements were performed in triplicate. * P < 0.05, ** P < 0.01, *** P <

0.001.

plex SNAPD requires simultaneous RT-LAMP-based am-
plification of multiple RNA targets, in addition to orthogo-
nal fluorescent readouts of each amplified target. Coupling
RT-LAMP amplification to a specific fluorescence signal is
challenging due to the unpredictable and heterogeneous mix
of concatemers generated by LAMP (25).

We designed a polymerase-driven DNA strand displace-
ment scheme to detect RT-LAMP products in a sequence-
specific manner (Figure 3A). The goal was to build a molec-
ular transducer that would convert a LAMP dumbbell
product into a short DNA oligo that could then activate a
fluorogenic reporter, or be fed into additional downstream
strand displacement reactions. The molecular transducer
consists of a ‘gate’ strand hybridized with an ‘output’ strand
to produce a DNA duplex with a 3′ overhanging ‘toehold’.
The LAMP dumbbell can hybridize to the transducer’s toe-

hold, and its 3′ end acts as a primer for the polymerase to
replicate the gate strand. The polymerase displaces the out-
put strand during extension, releasing it. The free output
strand can then activate a quenched fluorogenic reporter by
displacing the quencher strand from the fluorophore strand.
By designing a unique transducer for each LAMP product
and a unique reporter for each transducer, we can link each
RNA target’s amplification to a unique fluorophore. This
detection strategy allows flexible multiplexing with minimal
crosstalk.

We tested our LAMP detection scheme and its abil-
ity to be multiplexed by designing two orthogonal
amplification/transducer/reporter systems. The first pro-
duces a FAM signal in response to the mesenchymal marker
vimentin (VIM), and the other produces a HEX signal in re-
sponse to the epithelial marker cytokeratin 19 (KRT19). We
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Figure 3. Multiplexed SNAPD profiles multiple mRNA targets in single cells. (A) Molecular transducer that converts the LAMP dumbbell product to a
fluorescent readout in a sequence-specific manner. The Bst polymerase that is present in the RT-LAMP reaction drives the displacement of the output
strand; this output strand can then activate a fluorogenic reporter through toehold-mediated strand displacement. (B) Sequence-specific molecular trans-
ducers can operate orthogonally to link amplification of specific RNA targets to unique fluorescent outputs. We designed transducers that produce FAM
fluorescence in response to VIM amplification and HEX fluorescence in response to KRT19. We added LAMP primer sets targeting VIM and KRT19 and
the two molecular transducers to lysates from either MOLT-4 or SK-BR-3 cells. The fluorescence of each reaction was monitored over time. The MOLT-4
lysate displayed specific activation of the VIM channel, while the SK-BR-3 lysate activated the KRT19 channel. A mixture of the two lysates activated
both channels. We performed each measurement in triplicate. (C) Simultaneous profiling of VIM and KRT19 expression in single cells using SNAPD. We
combined the orthogonal VIM/KRT19 transducers and SNAPD to analyze SK-BR-3 cells (blue) and the mesenchymal cell line U-2 OS (orange). Num-
bers of each cell type within each quadrant are indicated. 99.4% of SK-BR-3 cells occupy the VIM-/KRT19+ quadrant, while 71.2% of U-2 OS cells fall
into the VIM+/KRT19- quadrant. (D) Violin plots showing the marginal distributions of VIM and KRT19 signal in a multiplexed SNAPD experiment.
SK-BR-3 cells display low VIM and high KRT19 expression, while U-2 OS cells display high VIM and low KRT19. Also shown are the droplet fluorescence
distributions before amplification to demonstrate the observed signals are a result of RT-LAMP.
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added these orthogonal transducers to lysate from MOLT-4
(VIM+/KRT19-) and SK-BR-3 (VIM-/KRT19+) cells. As
designed, the MOLT-4 lysate produced a FAM signal only,
the SK-BR-3 produced a HEX signal only and a 1:1 mixture
of the lysates activated both channels (Figure 3B). These re-
sults demonstrate that LAMP can amplify multiple targets
in highly concentrated cell lysate, and that our transducer
designs operate orthogonally to activate two separate fluo-
rophores without signal crosstalk.

We combined our orthogonal LAMP transducers and
SNAPD to evaluate the expression of KRT19 and VIM
in single cells. These two markers indicate a cell’s posi-
tion along the epithelial-mesenchymal axis, and thus pro-
vide valuable information about cellular differentiation and
cancer invasiveness (44). We analyzed the epithelial-derived
SK-BR-3 (VIM-/KRT19+) cells and found that 99.4% fell
into the VIM-/KRT19+ quadrant (Figure 3C and D). We
also performed an unamplified negative control to identify
the signal background. Next, we analyzed the mesenchymal
cell line U-2 OS (VIM+/KRT19-) and found that 71.2% fell
into the VIM+/KRT19- quadrant. These results demon-
strate that SNAPD can be multiplexed and used to profile
multi-gene phenotypes in single cells.

Analysis of complex phenotypes with molecular logic

Cellular phenotypes often depend on expression profiles
across a multitude of genes. Our transducer-based multi-
plexing strategy is highly scalable; however, crowding within
the optical spectrum restricts the number of orthogonal flu-
orescent reporters. To overcome these limitations, we de-
vised a molecular logic scheme to integrate signals from
multiple LAMP reactions and return a single fluorescent
output based on a multi-level logical computation.

We used the Bst polymerase-driven strand displacement
mechanism to design molecular logic gates comprising
YES, NOT, OR, AND and AND-NOT operations (Fig-
ure 4A–E and Supplementary Figure S6). These designs
build off of the LAMP transducer mechanism described in
the previous section (Figure 3A). The YES gate is simply a
transducer and converts a LAMP product to a fluorescent
output. The NOT gate inverts a LAMP signal by passing
the output of a transducer to displace an unquenched flu-
orophore, which can then hybridize to a strand containing
a quencher. The OR gate is composed of two transducers
that accept different input sequences, but produce identi-
cal output strands. The presence of either LAMP signal will
produce the output and generate a fluorescent signal. The
AND gate similarly incorporates two transducers, but also
contains a ‘threshold strand’ which sequesters the transduc-
ers’ output. When only one of the transducers is activated,
the threshold strand sequesters all of the output; however,
activation of both transducers produces a stoichiometric ex-
cess of the output strand over the threshold strand, leaving
a sufficient amount of output strand to activate the fluoro-
genic reporter. Thus, a fluorescent signal is only produced
when both LAMP signals are present. The AND-NOT gate
is composed of a transducer that generates a fluorescent re-
porter in response to the first LAMP input, and is then fol-
lowed by a not gate that inverts this signal in response to
the second LAMP input. This gate will produce a fluores-

cent signal if the first input is on and the second input is off.
This set of molecular logic gates is functionally complete,
so in principle individual gates can be combined to produce
any conceivable logical operation.

We constructed molecular logic gates to detect the pres-
ence of VIM and KRT19 signals, and tested their ability to
produce the expected truth tables. We added the molecular
logic gates to RT-LAMP reactions containing various com-
binations of purified RNA targets, and found the gates pro-
duced the desired logic with a high signal-to-background
ratio. Across all gates, the average ON signal was 1.3-fold
higher than the average OFF signal. The AND gate showed
the lowest signal-to-background ratio with a 1.1-fold dif-
ference between the average ON state and the average OFF
state.

We next built a multilevel logic cascade to integrate three
LAMP inputs and activate a single fluorescent reporter
(Figure 4F and Supplementary Figure S6). We designed
this circuit to implement (KRT19 OR VIM) AND-NOT
PTPRC (CD45), a logical operation which could be used
to distinguish epithelial or mesenchymal circulating tumor
cells (CTCs) from leukocytes in blood samples (45). We
found that this circuit correctly identified each combina-
tion of RNA inputs with a signal-to-background ratio of
1.2. This demonstrates that our molecular logic gates can be
stacked for profiling higher-dimensional cell phenotypes.

We combined the molecular OR gate and SNAPD to
evaluate whether single cells express KRT19 or VIM (Fig-
ure 4G). As expected, both SK-BR-3 cells (KRT19+/VIM-)
and U-2 OS cells (KRT19-/VIM+) produced a fluorescent
output. This shows that our LAMP based logic gates can
analyze single cells in droplet reactions. Together, these logic
gates provide a powerful means to enhance SNAPD and en-
able multiple transcripts to be profiled with a single fluores-
cence output.

DISCUSSION

Multicellular organisms are composed of hundreds of dis-
tinct cell types that interact to drive physiological, develop-
mental, and disease processes. Single-cell analysis methods
provide a valuable means to study specific cell types within
heterogeneous cell populations. Single-cell approaches have
been applied to a myriad of biological topics: dissecting
heterogeneity in solid tumors (46), elucidating drivers of
cell fate during embryogenesis (47) and reconstructing tran-
scriptional regulatory networks (48), among others. In this
work, we developed SNAPD to analyze RNA biomarker
expression in tens of thousands of single mammalian cells.
SNAPD provides a simple, low cost, rapid and scalable ap-
proach to detect subtypes within heterogeneous cell popu-
lations.

Existing single-cell transcriptomic methods include
single-cell RNA Sequencing (scRNA-seq), single-cell
qPCR (sc-qPCR), in situ hybridization methods such as
Flow-FISH and PCR-Activated Cell Sorting (PACS) in
droplets. While methods such as scRNA-seq and sc-qPCR
can analyze thousands of different transcripts, they suffer
from expensive workflows and long turnaround times.
On the other end of the spectrum, Flow-FISH and PACS
profile smaller numbers of transcripts across millions of
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Figure 4. Molecular logic gates integrate multiple LAMP signals. (A–E) Molecular logic gate designs for YES, NOT, OR, AND and AND-NOT opera-
tions. The designs leverage Bst polymerase’s strand displacement activity to drive the reaction cascade. We tested the designs on various combinations of
purified RNA targets and all designs displayed the correct truth tables with a high signal-to-background ratio. Colors and values within each truth table
square indicate the normalized percent activation from the fluorogenic probe. (F) Multi-level logic circuit that integrates RT-LAMP signals from KRT19,
PTPRC and VIM targets. The circuit displayed the intended logical outputs based on all 23 combinations of inputs. (G) Integrating information across
multiple markers in single cells. We applied a molecular OR gate to combine KRT19 and VIM signals from single SK-BR-3 or U-2 OS cells in a SNAPD
experiment. As expected, both cells activated the molecular OR gate, while an unamplified negative control displayed low fluorescence levels.

cells (19). However, Flow-FISH and PACS both suffer
from expensive and complex workflows as well. SNAPD
occupies a unique position among single-cell analysis
methods by providing an inexpensive, rapid and simple
single-cell enumeration process. SNAPD achieves a high
throughput with over 100,000 cells per hour, comparable
to Flow-FISH and PACS. SNAPD’s analysis throughput

could be reasonably scaled tenfold by optimizing the
droplet size and device flow rates (36,49). Furthermore,
when combined with molecular logic, SNAPD can detect
multiple transcripts and integrate these signals to produce a
single fluorescence output. In principle, this molecular logic
strategy could be scaled to process 10s of transcriptional
inputs. Finally, SNAPD’s experimental workflow is highly
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streamlined, requires minimal hands-on processing, and
provides results within a few hours.

We evaluated SNAPD’s ability to detect specific cell types
with high sensitivity and specificity by analyzing defined
mixtures of ERBB2-positive and -negative cells. We found
SNAPD could reliably quantify the proportion of positive
cells across a range spanning from 0.1% to 100%. Fur-
thermore, we compared SNAPD to Thermo Fisher’s well-
established Flow-FISH (PrimeFlow™) kit and found the
two methods detected the same number of ERBB2-positive
cells. However, SNAPD displayed nearly a 3-fold lower false
positive rate (FPR) for ERBB2-negative cells, suggesting
that it has substantially higher specificity than Flow-FISH.
This low FPR allowed us to detect rare cells from mixed
populations with high sensitivity and specificity. We suc-
cessfully detected ERBB2-positive cells at 0.1% prevalence
in a mixture, suggesting SNAPD’s limit of detection is less
than 1 target cell per 1,000 total cells. Based on our re-
sults, we predict that ERBB2-positive cells could be reli-
ably detected at a prevalence of 0.01% if the number of
analyzed cells were increased from 10,000 to 100,000 (Fig-
ure 2E). This level of sensitivity would be sufficient for
numerous rare cell detection applications, including isolat-
ing mesenchymal stem cells from bone marrow (50), peri-
cytes from adipose tissue (51) and breast cancer progeni-
tors from pleural effusions (51). These are therefore feasi-
ble applications for our SNAPD platform with scaled up
throughput.

In this work, we developed a novel multiplex RT-LAMP
detection scheme to analyze multiple RNA targets simul-
taneously. Previous efforts to perform sequence-specific
detection of LAMP products have relied on a branch
migration-based strand displacement mechanism targeting
the loop region of the LAMP dumbbell structure (52,53).
Our LAMP detection scheme also uses a strand displace-
ment mechanism, but takes advantage of the LAMP reac-
tion’s Bst polymerase to drive strand displacement using the
3′ end of the LAMP product as a primer. The displaced
strand can then displace a DNA duplex containing a fluo-
rophore:quencher pair, thereby producing a fluorescent sig-
nal. Polymerase-driven strand displacement should display
faster kinetics than branch migration because it does not
rely on a random-walk strand exchange process (54,55). In
addition, the rate of polymerase-driven strand displacement
depends only linearly on the length of the transducer’s du-
plex region, allowing longer duplex domains that result in
less background leakage. Our polymerase-driven strand dis-
placement scheme enables fast, robust, and orthogonal de-
tection of specific LAMP products, even in complex mix-
tures. This capability was essential for our SNAPD platform
to analyze the expression of multiple transcripts from sin-
gle cells, but could also find more general applications in
point-of-care nucleic acid detection.

We designed and implemented a novel set of DNA logic
gates to integrate multiple LAMP signals into a single flu-
orescent output. Our designs leverage Bst polymerase ac-
tivity to drive strand displacement, resulting in simple and
robust DNA logic gates with fast kinetics. A similar DNA
logic approach was recently described that used Bst poly-
merase to drive chemical reaction networks consisting of
single-stranded oligos and primers (56). Individual DNA

logic gates can be combined into multi-input, multi-layer
circuits that perform complex logical operations on nucleic
acid inputs (56–59). This would allow us to design logic cir-
cuits to identify very specific cell types based on the expres-
sion of multiple genes. DNA logic gates can also be used to
build digital encoders that convert 2n binary inputs to n dis-
tinct outputs (60). We could apply digital encoders to pro-
file gene expression states of 16 different transcripts using
only four fluorescence channels. This would allow enumer-
ation of large numbers of distinct cell phenotypes in het-
erogeneous populations, while maintaining a simple optical
detection setup. The modularity, flexibility, and robustness
of our polymerase-driven DNA logic gates provides avenues
for numerous SNAPD applications.

Our SNAPD single-cell analysis platform has several lim-
itations that could be addressed in future iterations. First,
we found RT-LAMP primer design to often require screen-
ing multiple designs to identify a primer set with fast am-
plification and low background. Some of this variability
is likely caused by mRNA secondary structure or the spe-
cific splice isoforms present in each cell type. To overcome
this, we found it was useful to include two redundant RT-
LAMP primer sets targeting each transcript. This strategy
increased the overall RT-LAMP signal and resulted in a
lower false negative rate in SNAPD. To ensure successful
amplification, we also targeted exonic regions shared be-
tween highly expressed splice variants. However, a system-
atic primer design framework that considers mRNA sec-
ondary structure across splice isoforms may improve the re-
liability of our method.

Another potential limitation involves measuring poorly
expressed mRNA targets, an issue which is common to
single-cell RNA sequencing assays (61). Some markers may
only have 1–10 transcripts per cell and result in low femto-
molar concentrations when diluted into a ∼500 pL droplet.
RT-LAMP assays have achieved sub-femtomolar and even
attomolar detection of nucleic acids (62,63). However, it is
unclear whether this high level of sensitivity will translate to
our droplet assay, which operates in dense cell lysate and has
a high surface-to-volume ratio due to the microemulsion
environment. Many of the transcriptional markers tested
in this work are considered highly expressed, with normal-
ized expression (NX) values ranging from 49.5 to 284.6 (39).
The lowest expressed marker tested was ESR1, with an NX
value of 24.3 in MCF7 cells. This is only 5% of the high-
est expressed gene in the MCF7 cell line (39). Future work
should explore SNAPD’s ability to measure lowly expressed
transcripts, and compare it to the high dropout rates ob-
served in single-cell RNA-seq.

Many applications require isolating a specific cell type
from a population; this enriched sample can then be an-
alyzed using other methods such as mass-spectrometry or
RNA-seq. In this work, we integrated our single-cell anal-
ysis technique with high-throughput droplet sorting to iso-
late specific cell types based on their RNA biomarker ex-
pression, achieving an enrichment of ∼3.2-fold. These re-
sults demonstrate that SNAPD can be combined with mi-
crofluidic droplet sorting, providing some added flexibility
to our method. However, the observed enrichment ratio was
suboptimal and the resulting RNA was scarce and challeng-
ing to analyze using standard methods. We suspect this may
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result from RNA degradation during the LAMP process
due to slightly alkaline buffer conditions, elevated temper-
atures, and potential RNase activity. The enrichment ratio
and RNA scarcity we observed could also result from er-
rors in the sorting process. If flow rates are not perfectly
equilibrated, off-target droplets can be diverted into the
sorted droplet channel. We would expect empty droplets
to dilute the captured RNA while droplets containing neg-
ative cells would lower the enrichment ratio. Thus, our
technology is not currently compatible with downstream
RNA-dependent applications. However, this could be fea-
sible upon further optimization of RNA preservation and
sorting processes.

A final limitation involves the detection of ultra-rare cells
such as circulating tumor cells (CTCs). CTCs are typi-
cally found in blood samples at frequencies on the order
of one CTC per 10 million nucleated blood cells (64,65).
We estimate that SNAPD is currently appropriate for enu-
merating rare cells at frequencies of one target cell per
1,000 total cells. To detect CTCs, we would need to reduce
SNAPD’s FPR by approximately three orders of magni-
tude. We believe many false positive events arise when a
cell nucleus passes through the laser, causing a large spike
in the SYBR signal due to the genomic DNA. This could
be addressed by using transducers instead of intercalating
dyes, processing the time traces to filter large spikes, or ex-
amining the emission spectra in multiple channels to cor-
rect for cellular auto fluorescence (66). Another source of
false positive events came from amplification of extracel-
lular RNA and/or DNA, which has been observed previ-
ously in droplet PCR (18,19). We reduced the impact of
these rogue nucleic acids by adding RNase I and DNase I
to the input cell suspension, and then inactivated the nu-
cleases with reducing agents during cell encapsulation into
droplets. We also pre-treated the RT-LAMP mastermix so-
lution with DNase I to eliminate product contamination,
and quenched with reducing agents prior to the assay. We
found this approach reduced the FPR as much as 100-
fold without reducing the true positive rate (TPR). Addi-
tional nucleases and other additives may decrease the FPR
even further. Despite these various sources of false posi-
tive events, SNAPD remains a highly selective assay with
an overall FPR that is significantly lower than established
Flow-FISH methods.

Increasing SNAPD’s cell analysis throughput would im-
prove rare cell detection and provide a more comprehensive
view of heterogeneity within cell populations. The through-
put of our system is currently limited by the microfluidic flu-
orimeter device, which processes droplets at a rate of ∼300
Hz. Attempts to operate this device at faster flow rates re-
sulted in droplet shredding due to the large size of the drops
relative to the microfluidic channels. The system’s through-
put could be increased by either redesigning the microfluidic
device to better accommodate large droplets or by decreas-
ing the droplet volume. We initially chose a relatively large
500 pL droplet size to mitigate LAMP reaction inhibition
by concentrated cell lysate. However, lysate titration experi-
ments (Supplementary Figure S1) suggest that we could de-
crease droplet sizes to at least 100 pL, which would increase
the screening throughput 5-fold. Decreasing the droplet size
has the additional benefits of reducing reagent cost and

analysis time, thereby further enabling larger samples and
more accurate rare cell detection.

Experimental methods that capture properties of individ-
ual cells across large heterogeneous populations are essen-
tial for understanding the intricate and complex behaviors
of biological systems. Methods to enumerate cells based on
RNA biomarkers are currently hampered by long work-
flows and expensive reagents. In this work, we developed
the SNAPD platform to address the limitations of existing
single-cell analysis methods. SNAPD is simple, rapid, low
cost and scalable, making it a powerful approach to char-
acterize RNA targets at the single-cell level. With these ad-
vantages, SNAPD could help lower the barrier to entry for
single-cell methods and allow widespread adoption among
life science researchers.
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