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Aims Clinical scoring systems for pulmonary embolism (PE) screening have low specificity and contribute to computed tom-
ography pulmonary angiogram (CTPA) overuse. We assessed whether deep learning models using an existing and rou-
tinely collected data modality, electrocardiogram (ECG) waveforms, can increase specificity for PE detection.

...................................................................................................................................................................................................
Methods
and results

We create a retrospective cohort of 21 183 patients at moderate- to high suspicion of PE and associate 23 793
CTPAs (10.0% PE-positive) with 320 746 ECGs and encounter-level clinical data (demographics, comorbidities, vital
signs, and labs). We develop three machine learning models to predict PE likelihood: an ECG model using only
ECG waveform data, an EHR model using tabular clinical data, and a Fusion model integrating clinical data and an
embedded representation of the ECG waveform. We find that a Fusion model [area under the receiver-operating
characteristic curve (AUROC) 0.81 ± 0.01] outperforms both the ECG model (AUROC 0.59 ± 0.01) and EHR
model (AUROC 0.65 ± 0.01). On a sample of 100 patients from the test set, the Fusion model also achieves
greater specificity (0.18) and performance (AUROC 0.84 ± 0.01) than four commonly evaluated clinical scores:
Wells’ Criteria, Revised Geneva Score, Pulmonary Embolism Rule-Out Criteria, and 4-Level Pulmonary Embolism
Clinical Probability Score (AUROC 0.50–0.58, specificity 0.00–0.05). The model is superior to these scores on fea-
ture sensitivity analyses (AUROC 0.66–0.84) and achieves comparable performance across sex (AUROC 0.81) and
racial/ethnic (AUROC 0.77–0.84) subgroups.

...................................................................................................................................................................................................
Conclusion Synergistic deep learning of ECG waveforms with traditional clinical variables can increase the specificity of PE de-

tection in patients at least at moderate suspicion for PE.
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Graphical Abstract

Improving PE screening using AI 57



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Keywords Pulmonary embolism • Electrocardiogram • Machine learning • Deep learning

Introduction

Pulmonary embolism (PE) is a life-threatening complication of
venous thromboembolism (VTE) with high short- and long-term
cardiovascular morbidity and mortality globally.1,2 Given the lack
of specificity in presenting symptoms and existing clinical decision
rules, diagnostic uncertainty in PE remains high and requires clini-
cians to use thoracic imaging modalities, most commonly com-
puted tomography pulmonary angiogram (CTPA), to confirm
diagnosis, especially in those who are at moderate- to high suspi-
cion of PE.3 Overreliance on CTPA has been documented across
health systems and has important implications for resource utiliza-
tion. In a multicentre analysis of medical centres in the USA, only
3.1% of CTPA scans were positive for PE.4 More importantly,
widespread CTPA confers risk to patients through large radiation
doses and may be contraindicated in specific subpopulations.5,6

An effectively developed framework improving CTPA diagnostic
yield for PE using routinely collected clinical information would
have crucial implications for PE detection and management,
increasing patient safety, and mitigating systemic inefficiencies.

Integration of different data modalities and analytic approaches
may provide a means to improve prediction. For example, deep
learning models leveraging non-traditional data forms [such as raw
electrocardiogram (ECG) waveforms] set themselves apart from
other classes of models by their ability to computationally derive fea-
tures without pre-specification.7 Previous work has demonstrated
that such ECG models can be used to predict future arrhythmias
from normal sinus rhythm ECGs, characterize right- and left-sided
ventricular function, and increase detection of left ventricular dys-
function in a primary care setting.8–11 The results of these investiga-
tions suggest that deep learning models can be used to detect subtle
signals indiscernible to clinicians and effectively augment the clinical
workflow.

In this article, we provide a preliminary fusion modelling frame-
work that integrates ECG waveform and clinical data to predict the
likelihood of acute PE. Our approach differs from previous PE predic-
tion approaches because it integrates a deep learning-based embed-
ding representation of ECG waveforms into the prediction
framework.12–15 We hypothesize that ECG waveforms and clinical
data can be combined synergistically in a machine learning modelling
framework to detect PE in those patients with at least moderate PE
suspicion.

Methods

Data sources and study population
We conducted a retrospective cohort study to predict the probability
of a PE (Figure 1A) in patients at moderate- to high suspicion of PE using
data between 1 January 2003 and 3 June 2020 from five hospitals in the
Mount Sinai Health System (New York City, NY, USA) serving a diverse
and urban population. Dataset curation, study design, and model

development are reported using the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) and the Transparent
Reporting of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD) statements16,17 (Supplementary material
online, Tables S1 and S2). The study was approved by the Mount Sinai
Institutional Review Board.

For cohort selection, we extracted all the patients who had CTPA,
for whom radiologist annotated CTPA reports (report text, time of
acquisition) were obtained from the Mount Sinai Data Warehouse
(MSDW). Details on the patient encounter selection in our dataset
are described further in the Supplementary material online, Methods,
Figures S1, and S6. In addition to CTPA reports, we also extracted the
following data and temporally linked them to CTPA reports: ECG
morphology parameters (e.g. PR-interval length, ventricular rate),
physician-confirmed diagnostic reads, and raw signals or waveforms
were parsed from ECG data from the General Electric (GE) MUSE
data management system. Waveforms recorded at 500 Hz for 10 s
(total of 5000 data points) were available for all linearly independent
leads: I, II, V1, V2, V3, V4, V5, and V6. Tabular EHR data consist of
demographics, comorbidities, vitals, and labs. Database codes repre-
senting unique comorbidities, vital signs, and important labs were
manually consolidated across the five hospital sites. ECG metadata
was used to fill in missing demographics (age, sex, and race) for pa-
tient encounters missing those data from MSDW. Patients were only
coded as having a comorbidity if the corresponding diagnostic codes
were created before the start of the CTPA-related encounter
(Supplementary material online, Table S3). Vital signs (heart rate,
blood pressure, respiration rate, temperature, and oxygen satur-
ation) and labs [D-dimer, brain-natriuretic peptide (BNP), and tropo-
nin-I] were also extracted.

Computed tomography pulmonary

angiogram report acquisition and labelling
The MSDW database was queried by IT personnel for all thoracic
computed tomography scans acquired between 1 January 2003 and 3
June 2020 in adult patients (age >_ 18). We use natural language proc-
essing (NLP) of semi-structured reports to determine PE status and
to exclude scans ordered for an indication other than assessment of
the pulmonary vasculature. Pretrained NLP models from SciSpacy,
which are trained using biomedical, scientific, and clinical text,18 were
used to preprocess, tokenize, and stem all text in the CTPA reports.
Full details on CTPA report preprocessing may be found in
Supplementary material online, Methods (page 2). To annotate CTPA
reports, we used a two-stage approach predicated on two assump-
tions: (i) that the majority of CTPA reports are negative for a PE and
(ii) that the absence of a PE in the ‘Impression’ section is reported in a
standardized format (Supplementary material online, Figure S1). In the
first stage, we identify all reports negative for a PE by matching those
containing a highly specific pattern (Supplementary material online,
Figure S2). In the second stage, we used a team of four Internal
Medicine residents and one medical student to annotate the presence,
chronicity, and vascular location of a PE in the remaining reports.
Chronic PEs without any acute or subacute changes that may be asso-
ciated with the presentation were classified as PE-negative to restrict
the PE-positive class to only acute PEs causing the current
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..symptomology. Given controversy over their clinical significance, we
also excluded CTPAs that only documented subsegmental PEs.19–22

Further details may be found in Supplemental material online, Methods
(page 2).

Linking electrocardiogram and EHR data

with computed tomography pulmonary

angiogram labels
For a given patient encounter, ECGs and CTPAs were linked differently
with one another depending on whether the CTPA was PE-positive or
PE-negative (Figure 1C). If the CTPA was PE-positive, ECGs recorded
within 24 h of the CTPA were retained and labelled as PE-positive. If an
ECG was taken after 24 h of the CTPA, it was discarded to minimize the
impact of medical intervention started after the positive scan.
Electrocardiograms taken before 24 h but less than 6 months of a positive
CTPA were also conservatively discarded, since knowledge of when the
PE began could not be assessed through ordinary means. If the CTPA was

PE-negative, all ECGs were labelled as PE-negative. Example scenarios
are shown in Supplementary material online, Table S4.

Experimental design
Given the low number of PE-positive CTPAs and the resulting class
imbalance, we used a stratified k-fold approach to create our cross-
validation (training and validation) and testing sets. We first split all
patients by those who have at least one positive CTPA (‘positive’)
and those who have only negative CTPAs (‘negative’) to ensure no
leakage of patient data between the training, validation, and testing
sets. Next, we split each subset into 90% for cross-validation and
10% for testing. We further stratify the cross-validation set into nine
folds to maintain an overall 80–10–10 training–validation–test split.
The positive and negative patients from each split are combined to
yield the final nine-fold cross-validation sets and holdout testing set.
Given the prognostic severity of PEs, thresholds for classification
were set at the greatest value (to maximize specificity) at which the

Figure 1 Study design. (A) Our pipeline for creating models to detect pulmonary embolism consists of using three data modalities: electrocardio-
grams, clinical data [electronic health records (EHR)] including patient demographics, comorbidities, vital signs, and relevant labs, and computed tom-
ography pulmonary angiograms that are labelled using a two-stage approach combining natural language processing pattern matching and manual
clinician annotations. These data are linked together to develop, analyse, and benchmark models to predict pulmonary embolism. (B) We split our
dataset for training, validation, and testing first by first identifying all unique patients (not unique computed tomography pulmonary angiogram or
unique electrocardiogram) and separating them based on whether they have at least one PE-positive computed tomography pulmonary angiogram
scan (PEþ) or not (PE-). This stratum is further split into 90% for nine-fold cross-validation (89% for training, 11% for model selection and model de-
velopment) and 10% for testing to assess model performance and benchmark against clinical scores. (C) Electrocardiograms are labelled as PEþ if
they are recorded within 24 h of a PEþ computed tomography pulmonary angiogram. Electrocardiograms recorded 24 h after or between 6 months
and 24 h before a positive computed tomography pulmonary angiogram are discarded. Electrocardiograms not meeting the above criteria for PEþ
computed tomography pulmonary angiograms are labelled PE-. EHR data are retained if collected within 24 h of the computed tomography pulmon-
ary angiogram and labelled equally with the computed tomography pulmonary angiogram finding.
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models achieved 100% sensitivity (i.e. no false negative PEs) on the
validation set.

Modelling overview
Details of ECG preprocessing to remove baseline drift and exclude poor
quality waveforms are found in Supplementary material online, Methods
(page 2) and Supplementary material online, Figures S4 and S5. Each ECG
is treated as a series of eight contiguous leads (I, II, V1–V6) of length 5000
data points (10 s). To predict the probability of PE from raw ECG wave-
forms, we employ a convolutional neural network (CNN) model (‘ECG’)
composed of a series of 12 residual blocks followed by a fully-connected
layer and an output sigmoid activation layer (Figure 2A). Details on model
architecture and training are discussed in Supplementary material online,
Methods (pages 2–3).

For the EHR-only (‘EHR’) models, all demographics, comorbidities,
vitals, labs, and ECG morphology parameters (PR interval, QRS inter-
val length, QTc, and R-wave axis) presented in Table 1 were used as
inputs. Vitals, labs, and ECG-derived parameters were associated with
a patient encounter if they were collected within 24 h of the time the
CTPA scan was ordered. For encounters with multiple vitals and labs
within the 24-h time period, the closest one to the CTPA order time
was used. To predict PE from the EHR dataset, we evaluated four
classes of models [logistic regression, ElasticNet, random forest, and
Extreme Gradient Boosting (XGBoost)] under different conditions
(Supplementary material online, Table S5).

We use a fusion modelling approach to combine ECG waveform infor-
mation and tabular EHR data.23 To represent ECG waveform data, we

use the output after all convolutional blocks (i.e. ‘flatten’ layer) from the
ECG model. Since the dataset size for fusion modelling is much smaller
(i.e. samples of patient-encounters vs. samples of ECGs), we use principal
components analysis (PCA) to reduce the dimensionality of this inter-
mediate output to 20 components. This lower-dimensional representa-
tion of ECG waveforms after PCA is combined with tabular EHR data
and used as the model’s input. Independent PCA components are also
beneficial for interpretability analysis used below.24 For these fusion mod-
els (‘Fusion’), ECGs for PE-negative patients recorded outside of the 24-h
window were not discarded, since these prior ECGs may still contain
relevant information about a patient’s clinical status. To predict PE from
this fusion dataset, we use the best performing model from the EHR
experiments as our scaffold and assess the model’s robustness through
feature sensitivity studies against a holdout test set (Supplementary
material online, Figures S10 and S11).

All models were developed in Python (version 3.5.1) and PyTorch
(version 1.5.1).25

Model interpretability
We evaluated feature contributions towards model prediction using
Shapley Additive Explanations (SHAP) scores26 for the EHR and Fusion
models. SHAP scores are a game-theoretic approach to model interpret-
ability; they provide explanations of global model structures based upon
combinations of several local explanations for each prediction. To inter-
pret and rank the significance of input features towards the final predic-
tion of the model, mean absolute SHAP values were calculated for each
feature across all observations in the holdout test set for each model

A B C

Figure 2 Modelling overview, performance, and interpretability. (A) The electrocardiogram model, which is a convolutional neural network with
residual connections, trains and infers pulmonary embolism likelihood using 10-s long waveform from 8 leads (I, II, V1–V6) recorded at 500 Hz. The
EHR model is an Extreme Gradient Boosting (XGBoost) model that uses tabular clinical data (demographics, comorbidities, labs, and vital signs) and
electrocardiogram morphology parameters to predict the likelihood of pulmonary embolism. Finally, the fusion model is an XGBoost model that
uses a principal component decomposition of an electrocardiogram waveform embedding from the electrocardiogram model, tabular clinical data,
and electrocardiogram morphology parameters in an XGBoost framework to predict the likelihood of pulmonary embolism. (B) Mean receiver-
operating characteristic (top) and precision-recall (bottom) curves with 95% confidence intervals for the electrocardiogram (red), EHR (blue), and
Fusion (orange) models, with the mean and standard deviations for the area under each respective curve (AUROC, AUPRC) in the figure legend. In
top plot, the horizontal and vertical lines correspond to optimal threshold. The Fusion model outperforms both the electrocardiogram and EHR
models. (C) SHAP dependency plots for the EHR model (top) and Fusion model (bottom), representing the marginal contribution from patient
encounters in the test set (dots, coloured by value of feature) of different features (y-axis, in descending order of importance) on the model output
(x-axis, positive favours increased pulmonary embolism likelihood). Grey dots represent samples with missing data points.
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..trained on a cross-validation fold. These values are visualized using SHAP
dependency plots (Figure 2C), which show how different values (dot col-
our) of features (y-axis) affect model output (x-axis). We also perform
extensive feature sensitivity analyses to investigate the effect of features

that may cache clinician driven bias (e.g. a BNP lab may be drawn if com-
peting diagnoses, like [congestive heart failure (CHF)], are high in suspi-
cion or may be a sign of PE prognostication) by assessing change in model
performance after their removal from the model input feature set.

..................................................

....................................................................................................................................................................................................................

Table 1 Baseline characteristics in the PE-positive and PE-negative cohorts

CTPA or PE-encountera

Missing Overall Negative Positive P-value

n 23 793 21 358 2435

Age (years), mean (SD) 122 57.9 (17.7) 57.6 (17.8) 60.7 (17.0) <0.001

Sex, n (%)

Female (code = 0) 13 14 786 (62.2) 13 441 (63.0) 1345 (55.3) <0.001

Male (code = 1) 8994 (37.8) 7907 (37.0) 1087 (44.7)

Race, n (%)

Asian 189 591 (2.5) 531 (2.5) 60 (2.5) <0.001

Black 6376 (27.0) 5674 (26.8) 702 (29.0)

Hispanic 3486 (14.8) 3217 (15.2) 269 (11.1)

White 8083 (34.2) 7170 (33.8) 913 (37.8)

Other 5068 (21.5) 4595 (21.7) 473 (19.6)

Arrhythmia, n (%) 2642 2371 (11.2) 2112 (11.1) 259 (11.8) 1.000

Coronary artery disease, n (%) 2642 3272 (15.5) 2950 (15.6) 322 (14.7) 1.000

Cancer, n (%) 2642 5030 (23.8) 4507 (23.8) 523 (23.8) 1.000

Chronic kidney disease, n (%) 2642 1811 (8.6) 1612 (8.5) 199 (9.1) 1.000

Coagulopathy, n (%) 2642 378 (1.8) 333 (1.8) 45 (2.1) 1.000

Chronic obstructive pulmonary disease, n (%) 2642 2235 (10.6) 2062 (10.9) 173 (7.9) 0.001

Diabetes mellitus, n (%) 2642 3752 (17.7) 3378 (17.8) 374 (17.0) 1.000

History of DVT or PE, n (%) 2642 1875 (8.9) 1548 (8.2) 327 (14.9) <0.001

Congestive heart failure, n (%) 2642 2704 (12.8) 2406 (12.7) 298 (13.6) 1.000

Hypertension, n (%) 2642 7439 (35.2) 6634 (35.0) 805 (36.7) 1.000

Pregnancy, n (%) 2642 613 (2.9) 568 (3.0) 45 (2.1) 0.466

Pulmonary hypertension, n (%) 2642 1364 (6.4) 1173 (6.2) 191 (8.7) <0.001

Rheumatological disease, n (%) 2642 3904 (18.5) 3500 (18.5) 404 (18.4) 1.000

Heart rate (b.p.m.), mean (SD) 5031 90.6 (22.6) 90.3 (22.9) 93.1 (20.3) <0.001

Systolic blood pressure (mmHg), mean (SD) 5175 128.7 (26.8) 128.8 (27.1) 127.4 (23.9) 0.538

Diastolic blood pressure (mmHg), mean (SD) 5127 71.2 (15.1) 71.1 (15.3) 72.0 (14.1) 0.241

Respiration rate (breaths per minute), mean (SD) 5227 19.6 (4.4) 19.6 (4.3) 20.3 (5.6) <0.001

Oxygen saturation (%), mean (SD) 7592 96.9 (14.8) 96.9 (13.8) 96.9 (21.4) 1.000

BNP (pg/mL), mean (SD) 18 986 437.7 (1078.4) 449.2 (1115.4) 381.7 (873.6) 1.000

D-dimer (mg/mL FEU), mean (SD) 16 248 2.7 (7.2) 2.3 (7.1) 6.5 (6.5) <0.001

Troponin (ng/mL), mean (SD) 10 375 0.2 (4.3) 0.2 (4.5) 0.3 (1.7) 1.000

PR interval length (ms), mean (SD) 7737 151.5 (29.5) 151.5 (29.3) 151.3 (31.0) 1.000

QRS duration (ms), mean (SD) 6402 89.3 (19.9) 89.2 (20.0) 90.0 (19.7) 1.000

QTc (ms), mean (SD) 6402 450.0 (37.4) 449.3 (36.9) 454.8 (40.3) <0.001

Cardiac axis (degrees), mean (SD) 6402 26.1 (50.0) 26.2 (49.4) 24.8 (54.5) 1.000

PE location, n (%)

No PE 0 21 358 (89.8) 21 358 (100.0) <0.001

Truncal 126 (0.5) 126 (5.2)

Main 515 (2.2) 515 (21.1)

Lobar 692 (2.9) 692 (28.4)

Segmental 1102 (4.6) 1102 (45.3)

aUnit of analysis is unique patient encounter or, by extension, unique CTPAs.
DVT, deep vein thrombosis; FEU, fibrinogen equivalent units.
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Comparison to existing clinical scores
To understand the performance of these models relative to existing clin-
ical screening tools in the diagnostic workflow particularly patients with
CTPA (who are at moderate- to high suspicion of PE), we compare the
performance of our model against common clinical criteria for assessing
patient likelihood of having PE: Wells’ Criteria for PE (Wells’),27 the
Revised Geneva Score for PE (Geneva),28 PE Rule-Out Criteria
(PERC),29 and 4-Level PE Clinical Probability Score (4PEPS).30 However,
three of the clinical scores used (Wells’, Geneva, and 4PEPS) require D-
dimer in their framework to determine whether a CTPA is warranted.
To restrict clinical bias that may be embedded in those patients in our
dataset with missing D-dimers and ensure a fairer comparison, we com-
pose a manual validation sample of 100 patient encounters selected from
the holdout test set, 50 of whom have D-dimer and 50 of them are ran-
domly selected without replacement. Details on the chart review for
examining these cases are found in Supplementary material online,
Methods.

Statistical analysis
Unique CTPAs were the unit of analysis chosen to make univariate com-
parisons. Cohen’s kappa statistic was used to assess for interrater reliabil-
ity on the test set of PE annotations. To assess model performance, mean
receiver operating characteristic (ROC) and mean precision-recall (PRC)
curves with 95% confidence intervals (alpha = 0.05) on the holdout test
set across each fold were plotted and the mean and standard deviation
areas under the ROC curve (AUROC) and PRC curve (AUPRC) were
calculated. Analysis of variance was used to compare inter-model per-
formance. Sensitivity, specificity, positive predictive value, and negative
predictive value were estimated using the optimal threshold ensuring
maximal sensitivity while maximizing specificity on the validation set.
Model calibration plots showing the fraction of positives at each average
predicted probability value for the fusion model were created. Brier
score loss was used to quantitatively assess fusion model calibration.
McNemar’s test was used to compare the diagnostic performance of the
fusion models against the clinical scores. All statistical analyses were per-
formed using the statsmodels library (version 0.12.0)31 in Python (version
3.5.1).

Role of the funding source
The funders had no role in study design, data collection, data analysis,
data interpretation, writing the report, or the decision to submit the
paper for publication. The corresponding author had full access to all
data and the final responsibility to submit for publication.

Results

Study population
A total of 30 109 potential CTPAs were retrieved from our health-
care system. After NLP-augmented annotation of these reports
(Supplementary material online, Figure S1), a total of 28 496 CTPA
reports were labelled, of which 25 099 reports (88.1%) were PE-
negative and 3397 reports (11.9%) were PE-positive. Mean interrater
reliability on the test set for annotation was 0.97 with a standard devi-
ation of 0.03. After preprocessing and linking with the ECG datasets
(Supplementary material online, Figure S4–S6), a total of 23 793
CTPAs (10.0% positive for PE) and 320 746 ECGs (12.8% positive for
PE) across 21 183 unique patients were available for model develop-
ment and testing. Within the PE-positive CTPAs, there were 126
(5.2%) truncal, 515 (21.1%) main, 692 (28.4%) lobar, and 1102

(45.3%) segmental PEs. In our sample (Table 1), PE-positive CTPAs
were more common in patients who were older (mean age 60.7 vs.
57.6 years), were more likely to have a history of deep vein throm-
bosis (DVT) or PE (14.9% vs. 8.2%), and had higher heart rates (93.1
vs. 90.3 beats per minute) and D-dimer levels (6.5 vs. 2.3mg/mL FEU)
on admission. Additional univariate analysis of our dataset by data
split, PE location, and feature missingness are provided in
Supplementary material online, Tables S6–S8.

Model evaluation
For predicting PE from ECG waveforms, the deep neural network
achieved modest performance for the cross-validation set (AUROC
0.69). Results for optimization experiments to fine-tune the sampling
method, learning rate, kernel size, and model depth can be found in
Supplementary material online, Table S9. XGBoost was chosen as the
scaffold for both EHR and fusion models since it performed best-in-
class in the EHR-only experiments (AUROC 0.64 on the selected
cross-validation set). For predicting PE from both ECG waveforms
and EHR data, the fusion model achieved an AUROC of 0.82 on the
selected cross-validation set.

On the holdout test set (Figure 2B), the fusion model performed
the best (AUROC of 0.81± 0.01, AUPRC of 0.35± 0.01), followed
by the EHR model (AUROC 0.65 ± 0.01, AUPRC 0.17± 0.01) and
the ECG model (AUROC 0.59 ± 0.01, AUPRC 0.18± 0.02). For ECG
model, we have also predicted the performance using PCA compo-
nents only and the results (AUROC 0.59, AUPRC 0.14) are close to
the original CNN results. EHR model SHAP scores on this holdout
set (Figure 2C) demonstrated that higher values of age, male gender,
history of DVT or PE, absence of chronic obstructive pulmonary dis-
ease (COPD), higher heart rates, lower oxygen saturation, and lower
QRS duration on ECG shifted the model output to predict PE, with
the largest impact stemming from a positive history of DVT or PE (to-
wards predicting PE) and positive history of COPD (towards predict-
ing not PE). Fusion model SHAP scores on the holdout set showed
model output being driven more by continuous features, such that
model output was shifted to predict PE with older age, higher D-
dimer, higher QTc, lower QRS duration, lower values of the first
principal component from the ECG waveform representation (PCA
1), and higher values of PCA 3. In subgroup analysis of model per-
formance by PE location, all models detected truncal PEs the best, fol-
lowed in order by main, lobar, and segmental PEs (Supplementary
material online, Figure S7). Finally, we found comparable performance
in fusion model performance by gender (mean AUROC 0.81) and
race (mean AUROC 0.77–0.84) (Supplementary material online,
Figure S8).

To assess the impact of missingness and data derived from clinician
decision-making on model prediction, we perform a series of feature
sensitivity experiments (Supplementary material online, Figure S9).
Model performance on the holdout test set remained the same when
removing race and sex (AUROC 0.81 ± 0.01), comorbidities
(AUROC 0.81 ± 0.01), and vitals (AUROC 0.81 ± 0.01) but
decreased with removal of D-dimer (AUROC 0.78 ± 0.01), all labs
(AUROC 0.76 ± 0.01), and ECG morphology parameters (AUROC
0.75 ± 0.01). The fusion model was overall well-calibrated (Brier
score 0.076) and particularly had greater accuracy for negative-PE
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cases, for which the prediction probability of the model is lower and
maps to label of 0 (Supplementary material online, Figure S10).

Model performance against clinical
scores
On all patients in the sample holdout set, we benchmark our model
performance against standard-of-care scoring systems through a
threshold-independent metric (AUROC) and a threshold-dependent
metric (specificity). On threshold-independent evaluation (Figure 3A),
the fusion model with D-dimer (AUROC 0.84± 0.02) and without
D-dimer (AUROC 0.70 ± 0.02) outperformed the clinical scores:
Wells’ criteria (AUROC 0.54), revised Geneva score (AUROC 0.52),

PERC (AUROC 0.50), and 4PEPS (AUROC 0.58). When thresholding
these scores based on published standards to exclude PE without the
need for a D-dimer, the Wells’ criteria score missed the most PEs (8),
followed by the Geneva Score (7) and 4PEPS (3). Only PERC missed
no PEs. For equitable comparison, the fusion model trained without
D-dimer (since this is not available to these clinical scores) using cross-
validation set achieved perfect sensitivity (1.00) with greater specificity
(0.18) than the Wells’ criteria (0.00) and PERC (0.03) (Table 2). Even
when setting classification thresholds to achieve perfect sensitivity by
adjusting the threshold for PE using the holdout test set, the fusion
model without D-dimer had greater specificity (0.30) compared to
4PEPS (0.05), PERC (0.03), Wells’ criteria (0.00), and the revised
Geneva score (0.00) (Table 2). To assess the impact of missingness on

Figure 3 Clinical benchmark and integration. (A) Mean receiver-operating characteristic (ROC, left) and precision-recall (PRC, right) curves with
95% confidence intervals for the Fusion model with (pink) and without (brown) D-dimer, whereas ROC and PRC are shown for the clinical scores—
Wells’ Criteria (yellow), Revise Geneva Score (green), PERC (red), and 4PEPS (purple). In top plot, the horizontal and vertical lines correspond to op-
timal threshold. Mean and standard deviations for the area under each respective curve (AUROC, AUPRC) for the Fusion models are displayed in the
legend, whereas area under each respective curve (AUROC, AUPRC) are shown for the clinical scores. (B) The Fusion model may be used to recom-
mend computed tomography pulmonary angiogram or exclude pulmonary embolism in patients with moderate to high likelihood of pulmonary em-
bolism after clinical stratification or those at low suspicion with an abnormal D-dimer.
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model performance, another feature sensitivity study was performed
on the fusion model, which demonstrated better performance of these
fusion model (AUROC 0.63–0.84) relative to the clinical scoring sys-
tems (AUROC 0.50–0.58) (Supplementary material online, Figure
S11). Notably, model performance suffered minimally with removal of
demographics (AUROC 0.83), comorbidities (AUROC 0.83), vitals
(AUROC 0.83), and ECG morphology parameters (AUROC 0.81).

Discussion

In this study, we present a novel approach for detecting PEs through
a fusion modelling framework built on a large dataset of readily avail-
able clinical data and routinely collected ECG waveforms linked to
annotated CTPA reports. We demonstrate that raw ECG waveform
embeddings act synergistically with tabular clinical data to detect PE
with greater specificity (AUROC 0.84, specificity 0.18) in those at
moderate- to high-suspicion relative to commonly employed clinical
scores (AUROC 0.50–0.58, specificity 0.00–0.05) in our retrospect-
ive cohort.

Improving PE detection remains a crucial modelling task for infor-
maticians and clinical researchers. Despite the steady decrease in
mortality attributable to PE, improving diagnostic yield remains im-
portant given that the condition remains underdiagnosed globally.32

However, given the high morbidity and mortality risk of PE, current
clinical prediction models overpredict further workup with CTPA to
reduce missed PEs. The downside of this approach is the overreliance
on CTPAs and decreased diagnostic yield of PEs, which results in
greater patient exposure to contrast and ionizing radiation, contrib-
utes to increased patient time in the hospital, and worsens systemic
inefficiencies. Furthermore, this CTPA utilization is more selectively
increasing in older populations, who are at increased cancer risk from
ionizing radiation.33

Our work represents an integrated deep learning approach on a
clinically relevant subset of patients suspected of having acute PE.
Past work integrating machine learning approaches to PE has relied
on integrating EHR data on a smaller subset of CTPA images.14 This

past work also relies on clinical data alone, while we provide the first
integration of raw ECG waveforms and show that it improves out-
come prediction. For example, we note that traditional ECG meas-
urements such as QTc and QRS duration had an important influence
on model output. But we also found that embeddings from raw ECG
waveforms also had a large contribution on model prediction, sug-
gesting thereby that these ECG signals provide information beyond
what is contained in traditional ECG measurements. This is a novel
finding and suggests that further work must be done to identify rele-
vant clinical features our deep learning models are identifying from
ECGs that otherwise remain indiscernible to clinicians. For example,
we suspect that our framework may be picking up subtle electrocar-
diographic signs of increased predisposition to thrombus formation
(such as morphologic characteristics representing underlying hyper-
tensive heart disease) or more acute findings suggestive of subclinical
PE manifestation (such as right heart strain). This, however, remains
difficult to parse out and we are undergoing further post hoc analysis
to better understand the implications of our model’s outputs.

Moreover, while deep learning-based systems may lack straightfor-
ward interpretation, we remain encouraged by patterns emerging
from our outputs in analysis of the holdout data. First, we observe
that our model demonstrates monotonically increasing performance
in more proximal vascular territories, which have the most severe
clinical implications.34 In previous machine learning-based analysis of
PEs, it is unclear whether there was a differential preponderance for
the detection of more anatomically relevant lesions. Second, we note
that our interpretability analysis prioritized features traditionally asso-
ciated with increased PE incidence and risk, including age, previous
VTE, and vital sign abnormalities.35 The model also appropriately pre-
dicted lower PE likelihood in those with COPD, a feature inversely
predictive of PE probability and a prominent feature of other PE pre-
diction scores such as the 4PEPS algorithm.30 Third, our model per-
formance is comparable across gender and race stratifications, likely
reflective of the diverse population on which we trained our model.
Increased representation of minority groups and women is impera-
tive for increasing equity in artificial intelligence (AI) where White

....................................................................................................................................................................................................................

Table 2 Fusion model performance benchmarked against clinical scores

Threshold source Model Threshold TP TN FP FN Sensitivity Specificity PPV NPV McNemar test

Cross-validation fold Fusion model 0.037 22 14 62 0 1.00 0.18 0.26 1.00 (Base)

Fusion model (no D-dimer) 0.040 22 14 62 0 1.00 0.18 0.26 1.00 1.000

Wells et al.26 Wells’ criteria 1 14 24 52 8 0.64 0.32 0.21 0.75 0.005

Le Gal et al.27 Revised Geneva Score 4 15 20 56 7 0.68 0.26 0.21 0.74 0.041

Kline et al.28 PERC 1 22 2 74 0 1.00 0.03 0.23 1.00 0.185

Roy et al.29 4PEPS 0 19 19 57 3 0.86 0.25 0.25 0.86 0.002

Holdout test set Fusion model 0.091 22 43 33 0 1.00 0.57 0.40 1.00 (Base)

Fusion model (no D-dimer) 0.072 22 21 55 0 1.00 0.28 0.29 1.00 <0.001

Wells’ criteria 0 22 0 76 0 1.00 0.00 0.22 0.00 <0.001

Revised Geneva Score 0 22 0 76 0 1.00 0.00 0.22 0.00 <0.001

PERC 1 22 2 74 0 1.00 0.03 0.23 1.00 <0.001

4PEPS -1 22 4 72 0 1.00 0.05 0.23 1.00 <0.001

Encounters are classified as PE-positive if the clinical score or model likelihood is greater than or equal to the threshold value.
4PEPS, 4-Level Pulmonary Embolism Clinical Probability Score; FN, false negatives; FP, false positives; NPV, negative predictive value; PERC, Pulmonary Embolism Rule-Out
Criteria; PPV, positive predictive value; TN, true negatives; TP, true positives.
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.
males tend to be overrepresented in training data.36 We additionally
note that big data approaches, particularly ones relying on routinely
collected EHR data, are often hampered by data quality issues,
impeding the progress of algorithmic approaches. However, our ex-
tensive feature sensitivity experiments attest to the robustness of
our framework, even in the setting of missing or noisy data. Indeed,
even in the absence of strong prognostic markers such as D-dimer,
our approach outperforms other available clinical prediction rules
(Supplementary material online, Figure S11).

As a case study, we examined in greater detail a 53-year-old male
patient with diabetes mellitus, hypertension, and chronic stable an-
gina in our clinical validation cohort with a saddle PE. On admission,
the patient’s chief complaint was substernal chest pain that began
one day prior and resolved with nitroglycerine with a weeklong his-
tory of exertional fatigue, dyspnoea on exertion, and lightheadedness.
His physical exam on admission was remarkable only for tachycardia
(heart rate of 123) but notably without hypoxia, tachypnoea, or any
lower extremity oedema or pain. While a troponin-I was normal at
0.16 ng/mL and BNP of 19.78 pg/mL, D-dimer was notably remark-
ably elevated at 13.7mg/mL FEU. Sinus tachycardia with biatrial en-
largement and new concordance of previously discordant T-waves in
V5 and V6 were present on the admission ECG, while right ventricu-
lar hypokinesis was noted on bedside transthoracic echocardiog-
raphy. In the absence of any reported oestrogen use, a history of
recent immobilization or active cancer, haemoptysis, or other PE risk
factors, this gentleman had remarkably low initial clinical likelihood
scores for PE (Wells’ criteria of 1.5, Geneva score of 5, PERC of 2,
and 4PEPS of 1). From admission notes, the clinical suspicion for PE
from providers in the Emergency Department (ED) was low, with
the triad of troponin, BNP, and D-dimer initially drawn non-specifical-
ly and CTPA diagnosis ascertained 10 h after presentation. However,
both ECG (model output 0.26, threshold = 0.05), EHR (model output
0.18, threshold = 0.103), and fusion models (model output of 0.20,
for both with and without admission labs as features) provided out-
puts well above their decision thresholds for recommending evalu-
ation by CTPA (Table 2).

Our current study faces some limitations. First, given the retro-
spective nature of this dataset, the association of all input data modal-
ities as being PE-positive and PE-negative within a specific time frame
to strike an appropriate balance between missingness and timeliness
remains a source of modelling error. While our framework attests to
the value of combining ECG waveforms and routinely collected clin-
ical data, data collection will need to reflect information more opti-
mally at the point of presentation. However, this current framework
may serve as an effective pre-trained scaffold for this future analysis.
While overall discrimination was favourable for the fusion model, the
model was only well-calibrated up until a moderate clinical predicted
probability. This is consistent with the low overall prevalence of PE in
our development data. It is also important to mention the limitation
of comparing our models with the clinical scores, which have robust
performance in the general ED population (where the bulk of the
patients are at low suspicion of PE)30 but perform poorly in patients
with an elevated pretest probability of PE.25 Since this dataset con-
tains only patients who have already had CTPA and met some
threshold for PE suspicion, the clinical scores have a poor perform-
ance. This comparison only serves to demonstrate how limited these

scores are at discriminating moderate- to high-risk PE patients. But
we have shown that our models can improve the performance for
this group of patients. Inferences about how the model compares to
the scores in a general ED population requires further research.
Future work will focus on assessing the algorithm’s performance on
patients with low suspicion for PE that were excluded by a negative
D-dimer and ultimately never received a CTPA to compare against
existing clinical scoring systems more accurately. Despite demonstra-
tions of model robustness against missingness and cached clinician
decision making, there is a risk that the institutional and provider bias
in the diagnostic workup a patient undergoes, or just as importantly
fails to undergo, has been embedded in this algorithm. However, it is
difficult to discern whether the marginal loss in performance from
feature ablation stems from inability to capitalize on this embedded
clinical decision-making bias or an informative signal helping to pro-
vide information about the pathophysiological state of the patient.
Given that clinical decision-making tools have existed for decades,
we assumed that medically appropriate diagnostic workup was
undertaken since our source data comes from an academic hospital
that reflects the European Society of Cardiology (ESC) guidelines for
PE diagnosis. To improve generalizability, we plan to validate the algo-
rithm at external sites that have different patient populations, clinical
workflows, and different data collection modalities (e.g. ECG
machines, blood chemistry assays).

In summary, we present a fusion modelling framework that uses
raw ECG waveforms and traditional clinical variables to predict acute
PE more accurately and specifically than existing clinical scores in
those patients with at least a moderate clinical suspicion of acute PE.

Supplementary material

Supplementary material is available at European Heart Journal – Digital
Health online.
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