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The Stanford Heart Transplant data were collected to model survival in patients using penalized smoothing splines for covariates
whose values change over the course of the study. The basic idea of the present study is to use a logistic regression model and
a generalized additive model with B-splines to estimate the survival function. We model survival time as a function of patient
covariates and transplant status and compare the results obtained using smoothing spline, partial logistic, Cox’s proportional

hazards, and piecewise exponential models.

1. Introduction

Cox’s proportional hazards model has been proposed based
on the relationship between survival and the patient char-
acteristics observed when the patient entered the study [1].
When the values of covariates change over the course of
the study, however, a number of theoretical problems with
respect to the baseline survival function and the baseline
cumulative hazard function need to be solved [2]. Several
prognostic models [3-6] have become as widely used as Cox’s
proportional hazards model for the analysis of survival data
having time-dependent covariates. The present study exam-
ines the nonlinear effects of the evolution of the covariates
over time using penalized smoothing splines.

Cox’s proportional hazards model postulates that the
hazard at time ¢ is the product of two components:

i=1

I
h(t) = hy (t) exp [Zb,-xi] , ©

where b = (b,,...,by) is a vector of coeflicients. The propor-
tional hazards assumption is that the baseline hazard h(t)
is a function of  but does not involve the values of covariates.
Several prognostic models for heart transplant survival data
have been developed using Cox’s regression analysis, and

the values of all covariates are determined at the time when
the patient entered the study [7-9]. However, situations may
exist in which the values of covariates change over the course
of the study. A time-dependent model uses the follow-up data
to estimate the effect of the evolution of the covariates over
time. The relative hazard h(t)/h,(t) then depends on time ¢,
and thus the proportional hazards assumption is no longer
satisfied [6, 10].

The time-dependent covariates Xl@ =

W
provided for patient no. d, where xl<1d ) is the midpoint of the

Ith time interval. Given the continuous survivor time, piece-
wise models arise from the partition of the time axis into
disjointed intervals. Biganzoli et al. [11, 12] show that by
treating the time interval as an input variable in a feed-
forward neural network, it is possible to estimate smoothed
discrete hazards as conditional probabilities of failure. To
apply a generalized additive model (GAM), discretization of
one-month or one-week intervals must be applied for the
continuous survivor time with time-fixed covariates. How-
ever we cannot determine which discretization, one-month
or one-week, should be applied; that is, the discretization is
not initially unique. In the case of time-dependent covariates

Xlw, x;fl ! is initially determined as the midpoint of the Ith

time interval for patient no. d. It is fairly straightforward

(d)

(x . xl(Id)) are
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to extend the model to survivor data with time-dependent
covariates. Furthermore, by regarding a GAM as an extension
of a partial logistic model (PLM), the unknown parameters
can be estimated by maximizing the partial log-likelihood
(13, 14].

We use the Stanford Heart Transplant data, which has
been collected to model survival in patients. Although Cox’s
proportional hazards model is not applicable in the case of
time-dependent covariates, the survivor function can be esti-
mated by taking h,(t) in (1) to be the piecewise exponential
hazard. Crowley and Hu [7], Aitkin et al. [8], and Lawless [9]
used piecewise exponential models and plotted the survival
function. Lagakos [15] also examined a graphical technique
for assessing covariates in Cox’s proportional hazards model
based on a permutation of the observed rank statistic. Most
previous studies compared the hazard functions to assess the
effect of transplantation on survival by fitting pretransplant
and posttransplant data separately.

The difficulty is that there is no easily used measure of
the difference between the transplanted and nontransplanted
groups. Inferences must be based on a comparison of the
estimated function. As Aitkin et al. [8] pointed out, there are
always dangers in making inferences about the effect of treat-
ment without adequate control groups. We thus provide an
analysis that includes pretransplant and posttransplant data
simultaneously as time-dependent covariates. It should be
emphasized that patients who are not transplanted constitute
a control group relative to patients who have undergone heart
transplantation by the same covariates.

We use the 1977 version of the data, as given in Crowley
and Hu [7], which is for 103 patients. As four of the trans-
planted patients have incomplete data on the mismatch score,
our analysis is based on 99 patients to assess for what values
of these covariates, if any, transplantation is likely to prolong
survival. More than 30 percent of cases are censored. In
these data, survival times are the number of days until death
following a heart transplant, as in Lagakos [15]. A distinctive
feature of the present problem is that some of the covariates
are time-dependent (and possibly random). For example,
Table 1 shows the values of covariates for transplant status
(i.e., waiting time), age at transplant (in years), mismatch
score (as time-dependent covariates), and previous open-
heart surgery for patient no. 18. The previous surgery status
does not change with time. In order to extend this setting, the
covariate for transplant status is taken as an indicator (coded
as 0 before the point of transplant and 1 after transplant). All
the other time-dependent covariates are treated as being zero
before transplant but changing from zero to the actual value
of the particular covariate at the time of transplant. Patient
no. 18 generated six observations. The proposed methods
allow for simultaneous investigation of several covariates and
provide estimates of the survival function as well as the
significance.

2. Generalized Additive Models

By extending the PLM for the grouped data based on partial
likelihood as introduced by Cox [16] and Efron [17], a PLM
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can be proposed for ungrouped data [13, 14] having time-

dependent covariates for the discrete hazard rate hl(d> of
patient no. d at the time interval I:

hl< @ ()

PLM: ln(—u)> = By + Bix;,
1-h
2
R
+oo ﬁleld).

In recent years, a variety of powerful techniques have been
developed for exploring the functional form of effects. Here,
GAM with smoothing splines proposed by Hastie et al. [18,19]
will be used by extending the generalized linear model (GLM)
in McCullagh and Nelder [20], where the linear predictor in
(2) is specified as a sum of smooth functions s(x) with twice
continuously differentiable functions of some or all of the
covariates:

WD

1
o (5 @) 4 sy (x@) O

Y

GAM: In (

The smooth functions in (3) can be represented as

9o
s (x) = Zﬁjboj (),
=i

9
$1(0) = Y Bosiby; (%),
j=1

(4)
ar
sp(x) = Z;ﬁq,,1+jb1j (%),
=
where q;,¢,, . .., q; are the numbers of knots, and
/; = (ﬁO’ /31’ e ’ﬁqo’ ﬁq0+l’ ﬂq0+2’ s ’ﬁq0+q1’
Byt B ©)

e /3‘10“11*"'*‘11) :

For time interval [ of patient no. d, we have the following
definitions:

1: patient no. d died at time interval

8@ =1 for the Ith clinic visit,
0: otherwise,
1: patient no. d was censored at
81' @ time interval [,

0: o.w,
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TaBLE 1: Covariate values for patient no. 18.

Time interval [ Midpoint x, Transplant status x, Age at transplant x, Mismatch score x, Previous surgery x;
(days) (years)

1 3.5 0 0 0 0
2 10.5 0 0 0 0
3 17.5 1 56 2.05 0
4 24.5 1 56 2.05 0
5 315 1 56 2.05 0
6 38.5 1 56 2.05 0

vlw = (8§d),8{<d> ,8§d>,8;(d>, Two model-fitting issues remain. The first concerns the

selection of smoothing parameter A; in (9). The optimum

""61@1) ,S;E‘f)) =(0,0,...,0), smoothing parameter choice is outweighed by the easy

identification of a covariate’s functional form as well as

vl' @ _ (v;d), 81<d>) = (0, 0,...,0, 8;d>) , the applicability of established inferential methods to short-

©6) term survival prediction. In order to select the smoothing

parameters, the algorithm developed by Wood [22-24] can

where vl@ is the history of defaults and is censored for the beapplied by'm1n.1mlz1n% generalized cross Vahdat101111 (CiCV)

first ] 1 time intervals of patient o, d and v/@ = (v(@ 5@ as an approximation to leave-one-out CV [23]. It should be

rst[ -1 time intervals of patient no. d and v, = (v/"",6;")  poted that the leaving-one-out CV is to allow the deletion of

is the same history extended to include 61(d>. Using the above
model and notation, Tsujitani and Sakon [13] derived the full
log-likelihood for all patients

n ld
1nL:1nL([3)+ZzlnP(5z'<d> |Vlr<d>) (7)
d=11=1

with the partial log-likelihood

I-1

InL(B) = dzl {Z In (1-h®) +8 Inh®

I=1

®
c(1-69)n (1 - 1) }

Although In L(p) is not a log-likelihood in the usual sense,
it possesses the usual asymptotic properties under fairly
broad conditions, as proven in Andelsen and Gill [21]. To
avoid overfitting, such models are estimated by penalized
maximum likelihood

InL(B) = Z «{ldz_lln@ - )

)

where A; are smoothing parameters that control the trade-off
between the fit and the smoothness. The functions s;(x) in (9)
are represented by the B-spline basis functions b,(x); see, for
details, Tsujitani et al. [14].

only one observation. On the other hand, the ordinal v-fold
CV divides the data randomly into v groups so that their sizes
are as nearly equal as possible. This partition should be made
to avoid possible biases, as described in Zhang [25]. In many
problems, the ordinal v-fold CV is, thus, unsatisfactory in
several respects for time-dependent covariates. Applying this
kind of data structure to the CV algorithm, we obtain insights
into how the partition of data should be carried out. A natural
extension of the v-fold CV algorithm by setting v = n is to
allow the deletion of the patient with several observations;
see, for details, Tsujitani et al. [14].

A second issue is the goodness-of-fit test of the model.
After choosing the optimum smoothing parameters via the
variant v-fold CV algorithm, the deviance allows us to test
the goodness-of-fit:

Dev=2(InL,, —InL,), (10)

max

where InL_ denotes the maximized partial log-likelihood
under some current GAM and the log-likelihood for the
maximum (full) model InL _,, is zero. The deviance (10) is,
however, not even approximately an x* distribution for the
case in which ungrouped binary responses are available; see,
for example, Collett [26], Landwehr et al. [27], and Tsujitani
and Sakon [13]. The number of degrees of freedom required
for the test for significance using the assumed y* distribution
for the deviance is a contentious issue. No adequate distri-
bution theory yet exists for the deviance. The reason for this
is somewhat technical; for details, see Section 3.8 in Collett
[2]. Consequently, the deviance on fitting a model to binary
response data cannot be used as a summary measure of the
goodness-of-fit of the model. Thus, bootstrapping is applied
to the deviance (10) in order to obtain the goodness-of-fit; see,
for details, Efron and Tibshirani [28] and Tsujitani et al. [14].
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TABLE 2: Optimum smoothing parameters.
Covariates Variant v-fold CV GCV
Midpoint (x,) 0.0001 2.75x 107"
Age (x3) 0.01 1.30x10°°
Mismatch score (x,) 0.01 2.53x107°
3. Example

As an initial model for the Stanford Heart Transplant data, we
employ

Model I s (x;) + x, + 5 (x3) + 5 (x4) + x5. (11)

GCV is only an approximation of leaving-one-out CV. Alter-
natively the variant v-fold CV is leaving-one-out CV based
on each of n = 99 patients to allow the deletion of the
patient with several observations. By using variant v-fold
CV and GCV for the initial model, the optimum smoothing
parameters for GAM are determined as shown in Table 2. By
using a backward elimination procedure, we obtain

Model II: s (x;) + x, + s (x3) + x3. (12)

The likelihood ratio (LR) statistic based on deviance can be
computed to test the significance of spline effects (i.e., nonlin-
earity). For example, the spline effect of “Midpoint(x,;)” can
also be tested by using

Model IIL: x; + x, + s (x3) + Xs. (13)

By comparing Model II with III, the reduction in the value
of deviance is A = 4.59 with 1.85d. f. This is significant at the
10% level. The spline effect for “Age(x;)” is not significant. We
thus obtain the final optimum GAM

Model IV: s (x;) + x, + X3 + X5 (14)

with a variant v-fold score of 654.754.

Figure 1 shows a histogram of the bootstrapped Dev(b)
for the optimum model. The bootstrap estimate of the 95th
percentile Dev® is Dev* = 685.65. The comparison to Dev =
639.77 of (10) suggests that the model fits the data.

Figure 2 shows the estimated contribution 5(x;) of
“Midpoint(x;)” to ln{fll(d)/ 1- le@)}, together with the +2
standard deviation (SD) curves for the final optimum Model
IV. The spline effects of x, are visualized in Figure 2. Figure 2
nicely shows that the spline function s(x; ) of dying decreases
initially as the midpoint x, increases. Subsequently, however,
s(x) is stably maintained after 500 midpoint. For the purpose
of comparison, Figure 3 shows the estimated contribution
S(x,) for GCV. From Figure 3, it is clear that the estimated
S(x;) of x; is flat until 1500 and then tumbles because of
too small smoothing parameter (i.e., overfitting), as shown in
Table 2. So variant v-fold CV is superior to GCV. The analyses
in this example are carried out using library{mgcv} in R.

The survival function for our discretized situation is

P = 1 (1- 1), )

1<i<l
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FIGURE I: Histogram of the bootstrapped Dev(b) for B = 400.
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FIGURE 2: Estimated contribution 5(x;) of x; (solid curve) and
S(x;) + 2SD[5(x,)] (dashed curves).
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FIGURE 3: Estimated contribution 5(x;) of x; (solid curve) and
S(x;) = 2SD[S(x,)] (dashed curves) for GCV.
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TABLE 3: P values for the significance test of covariates.

Covariates GAM Partial logistic Proportional hazard Piecewise exponential
Transplant status (x,) 0.0107 <0.0001 0.0076 0.0081
Age (x5) 0.011 0.0135 0.0190 0.0199
Previous surgery (x;) 0.0575 0.0672 0.0830 0.0867

The average probability of survival at time interval / for
patient no. d in group g can be estimated as

lg]

m

S, (0= =Y P, g=121-12.., (6
a=1

lg
n

where nl[g 'is the total number of patients at time interval / in

group g and Pr([ig J(1) is the survival function Pr(l) of patient
no. d at time interval [ in group g; see, for example, Thomsen
et al. [29].

The data are analyzed to discover which values of the
covariates are likely to be of benefit. We compare the results
obtained using smoothing spline, partial logistic, Cox’s pro-
portional hazards, and piecewise exponential models [7, 8].
The results of fitting the various models are summarized in
Table 3. It is clear from Table 3 that

(i) all covariates for the smoothing spline model are
strongly significant (in particular, Crowley and Hu [7]
suggested a quadratic effects of age) and

(ii) there is little difference between Cox’s proportional
hazard model and the piecewise exponential model.
It should be noted that binary covariates in the model
remain linear.

As shown in Aitkin et al. [8, Figure 2], it is more appro-
priate to compare survivorship functions if the hazards are
not proportional. One point of interest is a comparison
of survival experience of transplanted and nontransplanted
patients. Our proposal for comparing the survival function
is to use the estimated survival function for only 41 heart
transplanted patients who died to assess the efficacy of
transplantation and the effects of covariates by means of
modeling the change in hazard at transplantation by using
(15) and (16). Our particular interest is the effect of waiting
time on posttransplant survival according to several models.
In Figure 4, two time periods are used (group 1: up to 20 days;
group 2: longer than 20 days). Figure 4 shows a comparison
of the estimated survival function. The estimated survival
functions based on the smoothing spline suggest that patients
with a short waiting time face a greater early risk than
those who had a longer waiting time. However the estimated
survival functions based on piecewise exponential models
cannot reveal the difference between a short and long waiting
times. Our method provides an alternative to Arjas’ [10]
suggestion of comparing separate estimates of cumulative
hazard based on the levels of the waiting time. Although
Arjas [10] did not include waiting time as a covariate in Cox’s
proportional hazard model because of nonproportionality
issues, we used transplant status (i.e., waiting time), which is

0.9 4
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0.5 T T T T

Time

—— Spline (<21 days)

—— Spline (>20 days)
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(<21 days)
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(>20 days)

FIGURE 4: Survival function describing the effect of the waiting time
for 41 heart transplanted patients who died.

strongly significant for the smoothing spline model according
to the results shown in Table 3.

A fundamentally different type of analysis was suggested
by Crowley and Hu [7] to investigate the effect of trans-
plantation with a low mismatch score. They pointed out that
transplantation may be beneficial for younger patients only
based on regression coefficients for Cox’s proportional haz-
ards model, but our conclusion can be derived by graphical
analysis as well as significance testing of covariates. Defining
a low mismatch score as less than or equal to one for all 29
heart transplanted patients [7], Figure 5 shows a graphical
comparison of the estimated survival function for two groups,
namely, the younger patients (less than 50 years old at
acceptance) and older patients (greater than or equal to 50
at acceptance). From Figure 5, it is clear that older patients
face a greater early risk than younger patients; see, for details,
Crowley and Hu [7, Chapter 5] with respect to the cutpoints
for low mismatch score as less than or equal to one and the
younger patients as less than 50 years old. Kalbfleish and
Prentice [30, Section 4.6.3] estimated the cutpoint for age,
based on all 65 transplanted patients, as 46.2. Figure 6 shows
a graphical comparison of the estimated survival function for
two groups, namely, the younger patients (less than or equal
46 years old at acceptance) and older patients (greater than
46 at acceptance). As Kalbfleish and Prentice point out,
transplantation is beneficial for younger patients.
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4. Conclusion

We confined our attention to time-dependent covariates.
Allowing covariates to vary over the duration of the study
not only enabled us to study time-varying risk factors, but
also provided a flexible way for modeling censored survival
data using penalized smoothing splines. We illustrated the
procedures using data of the Stanford Heart Transplant data.

By introducing the maximum likelihood principle into
GAM,

(i) we could visualize the spline effects of the midpoint
of the time interval;
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(ii) the smoothing parameters could be selected by using
variant v-fold CV;

(iii) the goodness-of-fit of GAM could be tested based on
bootstrapping;

(iv) the estimated average probabilities of survival enabled
us to investigate the effect of transplantation with
a low mismatch score for two groups, namely, the
younger and older patients.
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