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Abstract

Background: Lumbar disc herniation (LDH) is a prevalent cause of low back pain.

LDH patients commonly experience paraspinal muscle atrophy and fatty infiltration

(FI), which further exacerbates the symptoms of low back pain. Magnetic resonance

imaging (MRI) is crucial for assessing paraspinal muscle condition. Our study aims to

develop a dual-model for automated muscle segmentation and FI annotation on MRI,

assisting clinicians evaluate LDH conditions comprehensively.

Methods: The study retrospectively collected data diagnosed with LDH from

December 2020 to May 2022. The dataset was split into a 7:3 ratio for training and

testing, with an external test set prepared to validate model generalizability. The

model's performance was evaluated using average precision (AP), recall and F1 score.

The consistency was assessed using the Dice similarity coefficient (DSC) and Cohen's

Kappa. The mean absolute percentage error (MAPE) was calculated to assess the

error of the model measurements of relative cross-sectional area (rCSA) and

FI. Calculate the MAPE of FI measured by threshold algorithms to compare with the

model.

Results: A total of 417 patients being evaluated, comprising 216 males and 201

females, with a mean age of 49 ± 15 years. In the internal test set, the muscle seg-

mentation model achieved an overall DSC of 0.92 ± 0.10, recall of 92.60%, and AP of

0.98. The fat annotation model attained a recall of 91.30%, F1 Score of 0.82, and

Cohen's Kappa of 0.76. However, there was a decrease on the external test set. For

rCSA measurements, except for longissimus (10.89%), the MAPE of other muscles

was less than 10%. When comparing the errors of FI for each paraspinal muscle, the

MAPE of the model was lower than that of the threshold algorithm.

Conclusion: The models demonstrate outstanding performance, with lower error in

FI measurement compared to thresholding algorithms.
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1 | INTRODUCTION

Lumbar disc herniation (LDH) is a common condition leading to low

back pain.1 Each year, a large number of individuals are affected by

this condition, impacting both work and daily life.2 Patients with LDH

often experience accompanying atrophy of the paraspinal muscles

and increased intramuscular fat content, which further exacerbates

the symptoms of low back pain.3–5 Research on LDH not only focuses

on the herniated intervertebral disc itself but also on the condition of

the paraspinal muscles.

Magnetic resonance imaging (MRI) provides clear visualization of

the intervertebral disc, nerve roots, spinal cord, and paraspinal mus-

cles.6 It holds significant importance for both the diagnosis and treat-

ment of LDH.7 The muscles at the level of L2 to L5 in the lumbar

region are the most abundant and serve as a focal area in many stud-

ies.8,9 Assessing the condition of lumbar muscles on MRI involves

measuring the area of muscle regions and the ratio of fat area to mus-

cle area.10 These procedures are time-consuming, and an efficient and

accurate deep learning (DL) model can greatly assist in this regard.

Previous studies have reported segmentation models for lumbar

structures.11–13 However, these models do not encompass all regions

comprehensively. The erector spinae have traditionally been regarded

as a singular entity, yet they consist of the iliocostalis (IL) and longissi-

mus (LO) components, which could be more accurately identified sep-

arately.14 For the assessment of fat infiltration degree, the

predominant method is the application of automated thresholding

algorithm techniques.15,16 While offering operational simplicity and

speed, they may lack precision when quantifying fat content. Seman-

tic segmentation techniques within DL enable simultaneous learning

of both the morphological characteristics and signal intensity

(SI) differences of regions of interest (ROIs),17 making them particu-

larly suitable for identifying fat regions within muscles.

Our study is focused on the development of a dual-model tailored

for the fully automated segmentation of muscles and annotation of

fat regions in lumbar spine MRI. This model aids clinical practitioners

in swiftly and accurately delineating each structure within lumbar MRI

scans, facilitating the calculation of muscle area and intramuscular fat

ratio. Such capabilities are pivotal for the comprehensive assessment

of LDH severity in clinical practice.

2 | METHOD

This research received approval from our institutional review board

and complied with ethical regulations. Due to the retrospective nature

of the study and minimal risks involved, patient informed consent was

waived.

3 | DATASET PREPARATION

This study retrospectively collected patients diagnosed with LDH and

admitted for treatment between December 2020 and May 2022.

Inclusion criteria comprised: (1) The diagnosis of LDH confirmed;

(2) The duration of low back pain and/or leg pain exceeding 6 months;

(3) Undergoing lumbar spine MRI examination within 1 month prior to

admission. Exclusion criteria included: (1) Previous lumbar spine sur-

gery with internal fixation devices; (2) Unclear MRI images; (3) MRI

performed with contrast enhancement. Cases meeting the selection

criteria had their lumbar spine MRI images collected, along with gen-

eral and clinical information during their inpatient stay (such as sex,

age, disease duration, symptoms, the BMI, and chronic medical

history).

The MRI scans selected axial T2-weighted images, encompassing

the range from the second to the fifth lumbar vertebrae, with one

image acquired per intervertebral space (three scans were performed

for each intervertebral space, and the second scan, positioned at the

center of the intervertebral disc, was chosen for analysis). Cases were

randomly allocated into training/validation sets and internal testing

sets at a 7:3 ratio. MRI scanning was conducted using a 1.5 T platform

(General Electric, USA) with specific parameters: Echo time ranging

from 120 to 125 ms, repetition time ranging from 3600 to 4000 ms,

section thickness of 4.5 mm, matrix size of 512 � 512, and a field of

view of 200 � 200 mm2. The images were saved in DICOM format,

standardized with uniform coding, and patient information was

anonymized.

An independent medical institution collaborating with us col-

lected a dataset of lumbar spine MRI scans from patients with LDH. In

this dataset, samples were screened using the same inclusion and

exclusion criteria as mentioned above. Among the screened samples,

50 samples were randomly selected as an external test set, with image

extraction and processing methods consistent with the internal

dataset.

4 | DATASET ANNOTATION

The training/validation set was annotated by three spinal surgeons.

The annotated images did not contain any patient information. Ini-

tially, labeling for the lumbar vertebrae and muscles was performed

using the open-source image annotation software LabelMe (version

3.16.2) in Python. The lumbar spine structures were delineated using

polygonal annotation boxes, including: intervertebral discs (IVD), ver-

tebral arch (VA), psoas major (PM), quadratus lumborum (QL), LO, IL,

and multifidus (MF) (Figure S1). Subsequently, the pixel values of the

images were standardized to a standard normal distribution using

the SimpleITK (Python library). The ROIs for muscle categories were

cropped from the images, and the intramuscular fat regions

were labeled using 3D Slicer (Figure S2). For ensuring precise annota-

tion, all images were manually labeled by raters, without employing

threshold-based segmentation assistance. The paint mode with a

2.0 mm diameter was utilized, and the annotated results were saved

in NRRD format.

The internal test set was annotated by a spinal expert with

26 years of clinical experience, serving as the ground truth labels. To

facilitate comparison with the DL models, we also invited a spinal
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surgeon with 7 years of clinical experience to annotate the internal

test set. Additionally, this surgeon served as the ground truth labels

for annotating the external test set (Figure 1). The image annotation

standards were consistent with those of the training set, and no pixel

standardization was applied to the test set images.

5 | DL MODEL DEVELOPED

This study employed a dual-model architecture: Mask R-CNN18 as the

primary structure for lumbar structure recognition, and U-net19 as

the primary structure for intramuscular fat recognition.

The architecture of the Lumbar Structures Segmentation Model

(Seg Model) includes a cascade region-based convolutional neural net-

work20 for instance segmentation, which employs Mask R-CNN as

the backbone network combined with Feature Pyramid Network

(FPN)21 as an intermediate layer. The backbone network adopts the

ResNet10122 structure, consisting of four stages, and utilizes pre-

trained model weights for initialization. The weights were sourced

from the Open-MMLab model library (github.com/open-mmlab/

mmdetection/tree/main/configs/cascade_rcnn). The FPN utilizes the

feature maps of the backbone network to generate a multiscale

feature pyramid. The region proposal network (RPN)23 is responsible

for generating candidate boxes for object detection, using the output

of FPN as input, predicting the target scores and bounding box offsets

of anchor boxes, and employing smooth L1 loss and cross-entropy

loss for bounding box regression and target classification, respectively.

The ROI head refines and predicts the class for each candidate box,

employing three cascading stages, each with its own bounding box

head. In the final cascading stage, a head measuring positional offsets

is utilized based on the characteristics of this task. Overall, the model

combines backbone network features with a multi-scale feature pyra-

mid and utilizes a cascade approach for object detection and instance

segmentation.

The Intramuscular Fat Infiltration Detection Model (FI Model) is

based on a generative neural network with a U-Net structure, used

for image semantic segmentation tasks. The U-Net structure consists

of an encoder and a decoder. In this model, the encoder comprises a

series of down-sample modules, each containing three consecutive

convolutional layers followed by a max-pooling layer, for feature

extraction and down-sampling of the input image. By gradually reduc-

ing spatial resolution, they transform the input image into a high-

dimensional feature representation. The decoder consists of a series

of up-sample modules, each containing a transposed convolutional

F IGURE 1 Flowchart of the study design for the internal dataset and the external test set.
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layer and three consecutive convolutional layers, for gradually restor-

ing the feature maps to the same size as the original input image. The

up-sample modules gradually restore high-dimensional features

through up-sampling operations and concatenate them with

features from corresponding layers of the encoder, achieving refine-

ment and precise segmentation of the image. The entire network

structure aims to achieve hierarchical feature extraction and restora-

tion of images through the encoder-decoder structure, thereby

achieving precise image semantic segmentation. Initialization of the

model excluded pre-trained weights; instead, initial weights were ran-

domly assigned to the model's layers to encourage exploration of

diverse feature representations during training.

The segmentation model comprises approximately 95.8 million

parameters and was trained for a total duration of 49 h, using a batch

size of 16 and an SGD optimizer with an initial learning rate of 0.02.

The FI model, with approximately 50.2 million parameters, was trained

for 15 h, using a batch size of 16 and an Adam optimizer with an initial

learning rate of 0.001. Additionally, the FI model employed a custom

Focal Loss function with γ = 5 to enhance its focus on crucial

information.

Considering the need for models to perform automatic recogni-

tion in clinical scenarios, we integrated the two models into a dual-

model structure and added result visualization functionality. When

test set images are inputted, the models automatically segment mus-

cles, label fat tissues, calculate muscle area, and intramuscular fat

ratio. Finally, it outputs the segmented image and the fat-labeled

image (Figure 2). To evaluate the performance of the dual model, we

divided the evaluation into three groups (Manual Segmentation &

Threshold Algorithm, Manual Segmentation & FI Model, Seg Model &

FI Model) compared to the standard group (Manual Segmentation &

Manual Fat Annotation) (Figure 3).

Both models were implemented using PyTorch (version 1.8.0) and

trained on NVIDIA GeForce RTX GPU devices using CUDA (version

11.1). The Seg Model was trained using the MM Detection API (ver-

sion 2.25.0). Pre-trained model weights were obtained from the MM

Detection Model Zoo.

F IGURE 2 A 47-year-old male admitted with a 10-year history of low back pain, exacerbated with left lower limb pain for the past 2 months.
From left to right are T2-weighted axial lumbar magnetic resonance imaging images at the L2/L3, L3/L4, and L4/L5 levels. From top to bottom
are the original input images, lumbar structures segmentation model output images, and intramuscular fat infiltration detection model output
images.
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5.1 | Thresholding image segmentation algorithm

Initially, utilizing ROIs delineated based on the reference standard, an

in-depth analysis of the SI of each pixel within is conducted, aiming to

derive an optimal threshold that minimizes the intra-class variance of

pixel SIs. Subsequently, employing OpenCV, the primary signal thresh-

olds for each muscle are computed, with subsequent statistical analy-

sis of the thresholds' mean and standard deviation. For individual

muscles, should the primary threshold exceed the range of ±1.96 stan-

dard deviations, the mean threshold derived from the remaining nine

muscles is employed as its definitive threshold; conversely, if falling

within the ±1.96 standard deviation range, the primary threshold is

retained. Ultimately, pixels with signal intensities below the definitive

threshold are classified as muscle tissue, while those surpassing it are

designated as fat tissue. The “imshow” function (Python library) is uti-

lized to visually render the binary masked image, thus facilitating

result visualization.

5.2 | Clinical measurements

To measure parameters using ROIs, including: the total cross-

sectional area (tCSA), fat cross-sectional area (fCSA), and fat infiltra-

tion (FI). tCSA represents the area of each ROI, fCSA denotes the

area of fat tissue within the ROI, and FI is defined as the ratio of

fCSA to tCSA. To mitigate the impact of height, weight, and body

type on paraspinal muscle parameters, we computed the relative

cross-sectional area (rCSA): defined as the ratio of paraspinal muscle

tCSA to intervertebral disc tCSA. The DL model performed separate

segmentation of muscles and CSA computation for both the left

and right sides.

5.3 | Statistical analyses

To assess the performance of the model on test set, we evaluated the

Intersection over Union (IoU) of predicted masks and ground truth

masks, with a threshold set at 0.75. Recall and average precision

(AP) were utilized to evaluate the Seg Model's identification efficacy,

and Dice similarity coefficient (DSC) were utilized to report the con-

sistency between raters. For the FI Model, Cohen's Kappa coeffi-

cient24,25 was employed to assess the consistency between the

model's predictions and ground truth, along with the calculation of

Recall, Specificity, Precision, F1 Score, and the Area Under Curve

(AUC) of the Receiver Operating Characteristic (ROC) curve to evalu-

ate its performance. The levels of agreement defined by Cohen's

Kappa are as follows26: Less than 0: poor; 0–0.2: slight; 0.21–0.4: fair;

0.41–0.6: moderate; 0.61–0.80: substantial; and 0.81–1: almost-

perfect agreement.

The rCSA and FI derived from the model's predictions need to be

quantitatively compared with the standard group, utilizing the mean

squared error (MSE) and mean absolute percentage error (MAPE).

These statistical metrics are computed using the Scikit-learn

(Python 3.9).

F IGURE 3 The process for grouped comparison of measurements: Relative cross-sectional area and fat infiltration of paraspinal muscles. FI
model: Intramuscular fat infiltration detection model.
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6 | RESULTS

Among 449 patients, cases with a history of lumbar spine surgery and

internal fixation devices (n = 15), suboptimal image quality (n = 6), or

contrast-enhanced MRI scans (n = 11) were excluded. A total of

417 patients were assessed, involving 1251 slices utilized for analysis.

The cohort comprised 216 males and 201 females, aged between

18 and 89 years, with a mean age of (49 ± 15) years. They were ran-

domly divided into 292 patients (70%) for training and validation, and

125 patients (30%) for internal testing. Within the internal testing set,

there were 64 males and 61 females, with ages ranging from 19 to

88 years and a mean age of (48 ± 16) years (Table 1).

6.1 | Model performance evaluation

The performance of the Seg Model on the test set is shown in

Table 2. In the internal test set, the model demonstrated excellent rec-

ognition performance, with an overall DSC of 0.92 ± 0.10, a recall of

92.60%, and an AP of 0.98. Its performance is very close to RATER

(DSC 0.93 ± 0.08, recall 93.29%). The DSC of IL and MF reached

0.91 ± 0.06 and 0.91 ± 0.08, respectively, which are higher than

RATER's results (0.90 ± 0.10, 0.88 ± 0.08). The recognition perfor-

mance of VA (DSC 0.90 ± 0.05, recall 93.02%) is worse than RATER

(0.95 ± 0.06, 95.73%). The Precision-Recall curves for each category

are shown in Figure S3.

In the external test set, the overall DSC of the model reached

0.91 ± 0.09, with a recall of 90.77%, which is slightly lower than that

of the internal test set. The AP is 0.98, equal to the internal test set

(Figure 4). LO showed a recall rate of 73.46% and an AP of 0.80, signif-

icantly lower than the internal test set. The metrics for the remaining

categories show slight decreases compared to the internal test set, and

the Precision-Recall curves for each category are shown in Figure S3.

The performance of the FI Model is shown in Table 3. In the inter-

nal test set, the model demonstrates outstanding recognition efficacy:

Recall 91.30%, Specificity 90.80%, F1 Score 0.82, and the consistency

with the reference standard is substantial (Cohen's Kappa 0.76). In the

external test set, the model's efficacy significantly decreases, with pre-

cision experiencing the most noticeable decline (74.27 internally and

57.67 externally), and the consistency also decreases significantly

(Cohen's Kappa 0.61). In the ROC curve (Figure 5), it can be observed

that the overall performance of the model is satisfactory, with the

AUC of the internal test set (0.97) higher than that of the external

AUC (0.93).

6.2 | Measurement of paraspinal muscles rCSA

The measurement results of the Seg Model are compared with the

reference standard, and the rCSA of each muscle at each level are

recorded in Table 4. As the lumbar levels descend, the areas of IL and

LO gradually decrease, while those of PM and MF gradually increase.

In the internal test set, the model's measurements are very close to

the standard results: the MAPE for all muscles is less than 10%, except

LO (10.89%); the MSE for PM, QL, and MF (0.0019, 0.0010, 0.0019)

is small, while that for IL and LO (0.0048, 0.0030) is slightly larger. In

the external test set, the model's predicted values are relatively close

to the standard results; there is a slight increase in MSE and MAPE for

each category compared to the internal test set, with the MAPE

for LO (12.10%) and MF (11.03%) exceeding 10%.

6.3 | Intramuscular FI measurement

We compared three measurement methods with the standard group

(Table 5). According to the measurement results of the standard

TABLE 1 Patient demographic and clinical characteristics.

Characteristics
All datasets Test dataset
(n = 417) (n = 125)

Age (years)a 49 ± 15 (18–89) 48 ± 16 (19–88)

Sex (male/female) 216/201 64/61

BMI (kg/m2)a 24.20 ± 3.57 25.03 ± 4.38

Symptom duration (months)a 10.50 ± 11.92 12.25 ± 14.03

aData are means ± standard deviations, with ranges in parentheses.

TABLE 2 The lumbar structures segmentation model performance.

Rater (internal dataset) Model (internal dataset) Model (external dataset)

DSC Recall (C75, %) DSC Recall (C75, %) AP (C75) DSC Recall (C75, %) AP (C75)

IVD 0.97 ± 0.05 100.00 0.97 ± 0.03 100.00 1.00 0.97 ± 0.02 100.00 1.00

PM 0.94 ± 0.07 99.55 0.95 ± 0.06 99.42 1.00 0.95 ± 0.05 99.62 1.00

QL 0.93 ± 0.09 95.09 0.92 ± 0.10 94.57 0.99 0.91 ± 0.09 93.46 0.98

IL 0.90 ± 0.10 92.49 0.91 ± 0.06 95.16 0.97 0.91 ± 0.06 93.46 0.97

LO 0.89 ± 0.09 79.64 0.88 ± 0.09 77.90 0.86 0.88 ± 0.10 73.46 0.80

MF 0.88 ± 0.08 86.98 0.91 ± 0.08 92.05 0.97 0.90 ± 0.08 88.46 0.95

VA 0.95 ± 0.06 95.73 0.90 ± 0.05 93.02 0.97 0.90 ± 0.05 92.31 0.96

Total 0.93 ± 0.08 93.29 0.92 ± 0.10 92.60 0.98 0.91 ± 0.09 90.77 0.98

Abbreviations: AP, average precision; C75, The intersection over union threshold was 0.75; DSC, Dice Similarity Coefficient; IL, iliocostalis; IVD,

intervertebral disc; LO, longissimus; MF, multifidus; PM, psoas major; QL, quadratus lumborum; VA, vertebral arch.
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group, the muscle with the highest FI is MF: 0.30 ± 0.06 in the inter-

nal test set and 0.28 ± 0.04 in the external test set; and the least is

QL (0.16 ± 0.04 internally, 0.15 ± 0.04 externally). Among the three

groups, the measurement results of FI Model group are closest to the

standard group, with errors significantly lower than the other two

groups. The measurement errors of Seg & FI Model group and thresh-

olding algorithm group are similar, with slightly better performance in

Seg & FI Model group.

In the internal test set, the measurement results of FI Model

closely approximate the standard, with the highest MAPE for QL

(35.22%) and the lowest for IL (22.39%). In the Seg & FI Model group,

the results for PM (30.62%), IL (27.96%), and MF (30.87%) are rela-

tively good, while QL (42.14%) and LO (44.18%) have slightly larger

MAPEs. The MAPE of thresholding algorithm group is significantly

higher compared to the other two groups.

In the external test set, the results of FI Model group are closest

to the standard group, while the performance of Seg & FI Model

group and thresholding algorithm group is essentially the same.

Furthermore, the MAPE of both FI Model group and Seg & FI Model

group increases significantly compared to the internal test set, while

there is no significant change in thresholding algorithm group.

7 | DISCUSSION

Changes in paraspinal muscles can significantly impact the therapeutic

efficacy of lumbar diseases.27 Studies have identified impaired func-

tion of paraspinal muscles can affect lumbar alignment and compro-

mise spinal biomechanics, thereby increasing the risk of intervertebral

disc injury.28,29 In addition, research has reported that paraspinal mus-

cle atrophy and significant intramuscular fat infiltration exist in

patients with low back pain.30 Clearly, evaluating the condition of

paraspinal muscle is essential before formulating treatment strategies

for LDH.

Our developed lumbar structures segmentation model can automati-

cally identify various paraspinal muscles, while the intramuscular fat

F IGURE 4 The Precision-Recall Curve for lumbar structures segmentation model performance on internal and external test datasets. AP,
Average precision.

TABLE 3 The intramuscular fat
infiltration detection model performance.

Recall Specificity Precision F1 score Cohen's Kappa

Internal dataset 91.30 90.80 74.27 0.82 0.76

External dataset 89.42 84.08 57.67 0.70 0.61
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infiltration detection model can mark the fat within these muscles. Both

models have demonstrated excellent performance and reliable generaliz-

ability on internal and external test sets. Moreover, the consistency

between the model's identification results and the annotations by spine

specialists is remarkably high. Thesemodels are capable of assisting doctors

in performing rapid and automated evaluations of the paraspinal muscles.

Numerous studies31–33 have manually measured the rCSA of

paraspinal muscles in patients with lumbar degeneration, which

aligns with the measurement results of the DL model in this study.

Manual measurements are time-consuming, making the development

of a fully automated segmentation model essential. Shen et al.11

reported their designed Spine Explorer model, which segmented

structures in lumbar MRI. The Spine Explorer model recognition was

limited to images of the L4-L5 intervertebral space. Our model rec-

ognition covered the mid-lumbar spine (L2-L5) region. Measure-

ments across multiple intervertebral spaces tend to yield more

reliable results.34 Additionally, the test set used in our study had

more samples and included an external test set to evaluate the

model's generalizability. Li et al.35 developed a model capable of

segmenting the erector spinae and multifidus in lumbar MRI,

F IGURE 5 The receiver operating
characteristic (ROC) curve for
intramuscular fat infiltration detection
model performance on internal and
external test datasets. AUC, Area under
the curve.

TABLE 4 The comparison of relative cross-sectional area (rCSA) of paraspinal muscles: standard measurement and model prediction.

Standard rCSA Seg Model rCSA

MSE of total MAPE of total (%)L2/L3 L3/L4 L4/L5 L2/L3 L3/L4 L4/L5

Internal data

PM 0.80 ± 0.17 0.88 ± 0.17 0.95 ± 0.18 0.78 ± 0.16 0.86 ± 0.17 0.94 ± 0.16 0.0019 5.44

QL 0.27 ± 0.09 0.29 ± 0.09 0.32 ± 0.10 0.26 ± 0.09 0.28 ± 0.09 0.31 ± 0.08 0.0010 8.42

IL 0.75 ± 0.16 0.70 ± 0.16 0.55 ± 0.14 0.73 ± 0.15 0.67 ± 0.14 0.52 ± 0.13 0.0048 7.72

LO 0.48 ± 0.10 0.39 ± 0.09 0.34 ± 0.10 0.45 ± 0.09 0.37 ± 0.09 0.35 ± 0.08 0.0030 10.89

MF 0.23 ± 0.07 0.32 ± 0.08 0.52 ± 0.08 0.22 ± 0.06 0.29 ± 0.06 0.49 ± 0.07 0.0019 9.98

External data

PM 0.79 ± 0.18 0.86 ± 0.16 0.97 ± 0.17 0.78 ± 0.17 0.84 ± 0.16 0.96 ± 0.16 0.0027 5.87

QL 0.27 ± 0.09 0.29 ± 0.10 0.33 ± 0.10 0.26 ± 0.08 0.28 ± 0.08 0.32 ± 0.09 0.0014 9.08

IL 0.76 ± 0.17 0.70 ± 0.15 0.58 ± 0.14 0.74 ± 0.14 0.64 ± 0.14 0.58 ± 0.13 0.0056 8.16

LO 0.50 ± 0.09 0.41 ± 0.09 0.37 ± 0.10 0.47 ± 0.08 0.40 ± 0.08 0.37 ± 0.10 0.0036 12.10

MF 0.23 ± 0.07 0.33 ± 0.07 0.53 ± 0.08 0.20 ± 0.06 0.30 ± 0.06 0.49 ± 0.07 0.0025 11.03

Abbreviations: IL, iliocostalis; IVD, intervertebral disc; LO, longissimus; MAPE, mean absolute percentage error; MF, multifidus; MSE, mean squared error;

PM, psoas major; QL, quadratus lumborum; Seg Model: lumbar structures segmentation model.
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demonstrating excellent performance. In contrast, our model, while

maintaining robust performance, was able to identify a greater num-

ber of lumbar structures. Wang et al.36 developed a model for

three-dimensional morphological recognition of erector spinae, inter-

vertebral discs, neural roots, and spinal cord at the L4-L5 level. The

model proposed by Hess et al.37 can recognize psoas major, multifi-

dus, erector spinae, and quadratus lumborum in the axial plane, as

well as vertebrae and intervertebral discs in the sagittal plane.

Our model improved upon previous approaches by distinguishing

the erector spinae into two targets: the IL and LO. IL primarily sup-

ports spine extension and lateral flexion, while LO contributes not

only to these movements but also plays a role in head and neck move-

ment control. Their differing activation patterns and susceptibility to

atrophy emphasize the need for separate assessment. This segmenta-

tion enhanced precision in muscle function evaluation and supports

targeted treatment strategies.

Initial studies38–40 employed visual grading for the assessment of

fat infiltration. This method relies on subjective evaluation and lacks

quantitative analysis. Subsequent research11,15 proposed utilizing

automatic thresholding algorithm for assessment. This technique is

user-friendly and enables quantitative analysis of fat infiltration levels.

However, the performance of thresholding technique is limited and is

effective for simple differences in SI. Thresholding technique performs

poorly when dealing with complex structures and blurred boundaries,

especially when there is uneven SI distribution or partial volume

effects. In comparison, DL models exhibits better robustness to varia-

tions in noise and image quality. Models can automatically learn com-

plex features, identifying textures and high-level semantic

information in images. Our research demonstrated that DL models

outperform thresholding techniques. For Fat Infiltration Measurement

of each muscle, the MAPE of DL models is significantly lower than

that of the thresholding technique.

Mask R-CNN excels in instance segmentation tasks, effectively

capturing the morphological characteristics and positional information

of targets, making it highly suitable for lumbar structure segmentation

tasks. U-net has significant advantages in semantic segmentation. Its

encoder-decoder structure is adept at capturing detailed information

in images, making it suitable for pixel-level recognition tasks. This

characteristic enables U-net to perform exceptionally well in fat iden-

tification tasks.

Our research found that FI model's performance on external test

set was subpar compared to its performance on internal test set, while

the segmentation model's performance was comparable in both sets.

This situation is related to the characteristics of how the models cap-

ture features, as mentioned earlier. The segmentation model relies on

the morphology and location of targets for identification, which makes

it less susceptible to variations in image quality. In contrast, fat identi-

fication focuses more on pixel-level features in images, which requires

higher image quality.

The MR machines for the internal and external test sets come

from different manufacturers, and different parameters were used dur-

ing scanning. This resulted in variations in image quality. Comparing

the performance on both test sets can reflect model's generalizability

and test whether the model is applicable to any type of MRI machine.

Our study showed that the segmentation model performed reliably

under various conditions, indicating its potential for widespread clinical

application. On the other hand, the FI model's performance relied on

high image quality, which may affect its broader adoption.

Additionally, we observed that in fat infiltration measurement,

the model's MAPE was relatively high, and the FI measurements for

each category were higher than the standard. We analyzed the possi-

ble reasons as follows: The rater only labeled the fat within the mus-

cle, while fat outside muscle or in the muscle gaps was not marked.

However, the model sometimes mislabels fat outside the muscles,

TABLE 5 Comparison of fat infiltration measurement results from three techniques with reference standard.

Standard
FI model Thresholding algorithm Seg model and FI model

Fat infiltration Fat infiltration MAPE (%) Fat infiltration MAPE (%) Fat infiltration MAPE (%)

Internal dataset

PM 0.19 ± 0.05 0.23 ± 0.09 24.05 0.27 ± 0.12 49.97 0.24 ± 0.10 30.62

QL 0.16 ± 0.04 0.21 ± 0.08 35.22 0.24 ± 0.11 57.26 0.22 ± 0.08 42.14

IL 0.25 ± 0.05 0.30 ± 0.07 22.39 0.35 ± 0.12 47.55 0.30 ± 0.09 27.96

LO 0.24 ± 0.05 0.31 ± 0.10 33.19 0.37 ± 0.11 62.42 0.34 ± 0.10 44.18

MF 0.30 ± 0.06 0.36 ± 0.09 28.65 0.43 ± 0.10 50.79 0.38 ± 0.10 30.87

External dataset

PM 0.18 ± 0.05 0.25 ± 0.09 44.79 0.27 ± 0.10 55.81 0.26 ± 0.10 54.97

QL 0.15 ± 0.04 0.22 ± 0.10 50.69 0.22 ± 0.10 55.76 0.23 ± 0.10 57.06

IL 0.23 ± 0.05 0.30 ± 0.08 35.15 0.34 ± 0.12 54.83 0.32 ± 0.09 45.46

LO 0.23 ± 0.06 0.32 ± 0.12 45.24 0.36 ± 0.13 65.98 0.33 ± 0.13 49.42

MF 0.28 ± 0.04 0.37 ± 0.10 38.62 0.40 ± 0.13 49.12 0.37 ± 0.11 42.79

Abbreviations: FI Model, intramuscular fat infiltration detection model; IL, iliocostalis; LO, longissimus; MAPE, mean absolute percentage error; MF,

multifidus; PM, psoas major; QL, quadratus lumborum; Seg Model, lumbar structures segmentation model.
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resulting in FI measurements higher than the standard, thereby

increasing the MAPE. For such complex situations, the model's judg-

ment ability still lags behind manual assessment. Nevertheless, com-

pared to previous FI measurement methods, the DL model

significantly reduces the error. Relying on its automatic and rapid

characteristics, the model can provide a preliminary muscle quality

assessment for patients undergoing MRI, thereby improving the effi-

ciency of clinical workflow.

MR Dixon sequence and MR fingerprinting are novel methods for

measuring FI, with high accuracy and stability. However, these tech-

niques are not routinely performed in patients with LDH, and adding

these extra examinations would increase the economic burden on

patients. In contrast, DL models can perform evaluations using T1 or

T2 sequences from conventional lumbar MRI scans. DL models can

automatically process large volumes of images without manual inter-

vention, offering advantages in speed and cost-efficiency.

To meet the demands of clinical settings, we integrated two

models through an intermediate module and added visualization func-

tionality, achieving fully automated output results. After inputting the

image, the system can automatically output segmented muscle

images, annotated fat images, as well as the measured values of mus-

cle rCSA and intramuscular FI. This system has significant potential for

application in medical imaging platforms. Before doctors diagnose

MRI scans, the DL model can automatically label images, calculate

rCSA and FI, and conduct preliminary assessments. This capability

enhances diagnostic efficiency, and reduces human error.

For this study, there are still some limitations. Firstly, the recogni-

tion area of the DL model is from L2 to L5 segments, which does not

cover the entire lumbar region. Given the richness and representative-

ness of muscles in the L2–L5 segments, previous studies have com-

monly chosen this area to assess paraspinal muscles.41,42 Thus, our DL

model evaluated paraspinal muscles based on the L2–L5 segments is

reliable. Additionally, the performance of FI Model on external test

sets showed a significant gap compared to internal test sets. We

believe that enriching the database by including multicenter MRI

images in the training set can address this issue. However, increasing

the sample size implies the involvement of more doctors in the anno-

tation process, which poses another challenge. Lastly, due to limited

available time, the expert completed annotations only for the internal

test set. Since there was only one rater for the external test set, we

assessed the inter-rater annotation repeatability by having the rater

independently annotate the dataset twice, with a 2-week interval

between annotations.

8 | CONCLUSION

The Seg Model and FI Model demonstrate outstanding performance,

with lower error in FI measurement compared to thresholding algo-

rithms. The model can automatically identify images and output

results, providing effective assistance to physicians in assessing the

condition of patients' paraspinal muscles.
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