
Computational Phenotype Discovery Using
Unsupervised Feature Learning over Noisy, Sparse, and
Irregular Clinical Data
Thomas A. Lasko1*, Joshua C. Denny1,2, Mia A. Levy1,2,3

1 Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America, 2 Department of Medicine, Vanderbilt

University School of Medicine, Nashville, Tennessee, United States of America, 3 Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville,

Tennessee, United States of America

Abstract

Inferring precise phenotypic patterns from population-scale clinical data is a core computational task in the development of
precision, personalized medicine. The traditional approach uses supervised learning, in which an expert designates which
patterns to look for (by specifying the learning task and the class labels), and where to look for them (by specifying the
input variables). While appropriate for individual tasks, this approach scales poorly and misses the patterns that we don’t
think to look for. Unsupervised feature learning overcomes these limitations by identifying patterns (or features) that
collectively form a compact and expressive representation of the source data, with no need for expert input or labeled
examples. Its rising popularity is driven by new deep learning methods, which have produced high-profile successes on
difficult standardized problems of object recognition in images. Here we introduce its use for phenotype discovery in
clinical data. This use is challenging because the largest source of clinical data – Electronic Medical Records – typically
contains noisy, sparse, and irregularly timed observations, rendering them poor substrates for deep learning methods. Our
approach couples dirty clinical data to deep learning architecture via longitudinal probability densities inferred using
Gaussian process regression. From episodic, longitudinal sequences of serum uric acid measurements in 4368 individuals we
produced continuous phenotypic features that suggest multiple population subtypes, and that accurately distinguished
(0.97 AUC) the uric-acid signatures of gout vs. acute leukemia despite not being optimized for the task. The unsupervised
features were as accurate as gold-standard features engineered by an expert with complete knowledge of the domain, the
classification task, and the class labels. Our findings demonstrate the potential for achieving computational phenotype
discovery at population scale. We expect such data-driven phenotypes to expose unknown disease variants and subtypes
and to provide rich targets for genetic association studies.

Citation: Lasko TA, Denny JC, Levy MA (2013) Computational Phenotype Discovery Using Unsupervised Feature Learning over Noisy, Sparse, and Irregular Clinical
Data. PLoS ONE 8(6): e66341. doi:10.1371/journal.pone.0066341

Editor: Joseph Devaney, Children’s National Medical Center, United States of America

Received December 18, 2012; Accepted May 7, 2013; Published June 24, 2013

Copyright: � 2013 Lasko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded in part by a grant from the Edward Mallinckrodt, Jr. Foundation, and Vanderbilt University Medical Center. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tom.lasko@vanderbilt.edu

Introduction

One of the key advances necessary to achieve precision,

personalized medicine will be to transition away from using

historical, clinically driven descriptions of each disease, and instead

to allow the data to speak for themselves, to tell us what all of the

phenotypes really are. This perspective is supported by recent

results indicating that long-recognized diseases such as asthma or

heart failure are not really single entities, but instead are

collections of many different phenotypes that may or may not

coincide with historical disease boundaries [1–3].

The unbiased, data-driven phenotype discovery necessary for this

advance could conceivably be achieved using a massive biomedical

dataset and a computationally intense analysis capable of

identifying all of the phenotypes in the dataset. The analysis

might be aimed at identifying all of the unanticipated effects,

beneficial and adverse, of any given medication; or at identifying

all undiscovered subtypes of every known disease; or at identifying

all clinical phenotypes that have never been seen in the past, but

appear to be emerging now. These kinds of analyses require

computational algorithms capable of coping with not only the

massive size of the dataset, but also the massive scope of the

phenotype discovery task.

Traditionally, the task of finding phenotypic patterns in

biomedical data has been undertaken one specific question at a

time using supervised learning, in which a computational algorithm

searches for patterns among input variables (or features) that model

a specific outcome variable. For example, we might build a logistic

regression model to identify the phenotypes of patients at risk for

developing acute kidney injury during a hospital admission [4]. In

this approach a domain expert decides on the specific question or

learning task, constructs potential features as inputs, and prepares

the outcome values for training and testing the model.

While this approach has served well for decades, it has limited

capacity to scale beyond individual models developed to predict or

explain pre-specified outcomes. The skillful identification of input

features is typically the key step in determining the accuracy of a

supervised model, and it takes a great deal of effort. The

PLOS ONE | www.plosone.org 1 June 2013 | Volume 8 | Issue 6 | e66341

preparation of the outcome variable (which is often a binary class

label) can also be labor intensive, commonly requiring an expert to

examine every last input instance and designate its outcome label.

These manual steps limit the speed with which we can develop a

supervised model.

A much greater limitation of using supervised methods for

phenotype discovery is the fact that supervised methods find only

the patterns that we choose to look for (by specifying a learning

task and an outcome variable), and only where we choose to look

for them (among the predefined features). So while supervised

learning is good at finding patterns that explain phenotypes we

know enough to label in advance, it is unsuited to the scenario in

which we don’t know enough to label the phenotypes, and we wish

to discover them from the data.

Recently, an alternative approach known as unsupervised feature

learning has proven to be scalable in the number of input records as

well as in the scope of the learning task, in part because it is

capable of finding its own patterns with little human guidance [5].

These properties make it a good match to the task of phenotype

discovery. Rather than relying on an outcome label to define

which patterns are important, unsupervised feature learning finds

a set of patterns that form a complete representation of the entire

source dataset (meaning that any record in the source data can be

accurately constructed as a combination of the learned patterns).

This learned representation illuminates potentially unknown

structure and captures characteristic variations in the landscape

of data. The elements of the learned representation can serve as a

complete and powerful yet general set of input features for

multiple different downstream learning tasks [5]. Because of this

common use, the learned patterns that form the new representa-

tion are called features.

Unsupervised feature learning has recently become the state of

the art in certain image object detection tasks [6]; in this paper we

introduce its use for clinical phenotype discovery. We also present

an approach to overcome the difficulties of applying unsupervised

feature learning to the noisy, sparse, and irregular data typically

found in an Electronic Medical Record, and we give encouraging

results from a simple demonstration project.

Previous work using unsupervised methods to find useful

patterns in longitudinal biomedical data has focused on extracting

those patterns from a symbolized representation of regularly and

densely sampled time-series [7,8], identifying repeating patterns

among discrete events [9], aligning the times of index events and

searching for common patterns in the distribution of related events

[10], converting measurements to an interval-based temporal

abstraction [11] and then using frequent itemset mining to find

common patterns [12,13], or ignoring time all together and using

vector-space methods for feature learning [14]. Unsupervised

feature learning is different because rather than finding patterns

that are simply common, it finds a set of patterns that form a

complete and compact (though possibly approximate) representa-

tion of the source data. Our own work builds on standard

unsupervised feature learning methods by allowing continuous,

longitudinal features to be learned from noisy, sparse, and

irregularly sampled data, and accounting for the inherent

uncertainty of doing so.

Related work that reaches back fifty years [15–18] investigates

supervised feature learning, where the expert selects the learning

task, a set of raw input variables and the outcome labels, and then

the algorithm tries to construct features from the input variables

either individually [12,15,16] or as an entire feature space [19]

that best predict the outcome. These methods can reduce some of

the human bottleneck, or they can be used where there is

insufficient domain knowledge to generate manual features for a

given task. But they only find features with task-specific utility, they

are as a rule not as effective as features engineered by an expert for

a specific task [20], and they don’t seek to provide a complete

representation of the input data.

New enthusiasm for unsupervised feature learning has emerged

with the discovery of deep learning, an approach to constructing a

hierarchy of progressively complex feature layers with each layer

forming a complete data representation [5,21,22]. (The word deep

refers to the number of layers in the feature hierarchy.) Although

deep learning operates using no domain knowledge, in some cases

it produces, all on its own, features that resemble the products of

decades of feature-engineering research. For example, deep

learning produces edge and spot detectors as translation-invariant

features for photographic images [23], stereotyped object parts as

features for images of objects [23], and phonemes as features from

speech recordings [24]. It is not too much of a stretch to claim

that, at least in some areas, a deep learning algorithm constructs

from a single large dataset domain knowledge rivaling that of

decades of research. Unsupervised features have met or exceeded

the state of the art on several standardized machine-learning tasks.

Recent results using the largest deep architecture to date achieved

a 70% improvement over the previous best performance on an

extremely difficult object recognition task, where each object

belonged to one of 22,000 different categories [6]. It would be

prohibitively time consuming to train a separate supervised

classifier for each category, but a single (very large) deep

architecture learned features that handled all categories at once.

Our hope is that deep learning will prove to be as successful

with phenotype discovery as it has been for object detection. We

expect that it will produce a similarly appropriate representation of

biomedical data that saves us the decades of labor often needed to

design a hand-crafted, general-purpose alternative. We also expect

that it will provide new insight into the structure of the data, and

we hope that this new insight will illuminate new details of the

nature of disease and therapeutic processes.

An obvious data source for clinical phenotype discovery

research is a large-scale Electronic Medical Record (EMR). But

because EMRs are primarily designed for clinical care, adapting

them for secondary use as a research data source requires some

effort. EMRs have previously been used in clinical [25–27] and

genomic [28,29] research by leveraging expert domain knowledge

to manually engineer phenotype specifications that identify clinical

cohorts of interest. A recent example includes cohorts of

individuals with type II diabetes, rheumatoid arthritis, Crohn

disease, multiple sclerosis, or atrial fibrillation and their corre-

sponding controls [30]. These phenotype specifications are

typically composed of Boolean predicates and logical operators

over structured data such as laboratory values, medication doses,

vital signs, billing codes and concepts extracted via natural

language processing of unstructured narrative clinical text [31].

Creating these specifications can take months of labor and

interaction between clinical experts and informaticians. Some

progress has been made using supervised machine learning to

define disease-level cohorts [32,33], which avoids the manual

phenotype specification but still includes all of the other effort

associated with supervised methods. Moreover, it is a nontrivial

task to compactly represent the time-dependent, longitudinal

behavior of clinical variables that could help define the cohort.

Our research seeks to replace these labor-intensive efforts with

unsupervised methods that computationally find the phenotypic

patterns, including characteristic longitudinal variations, needed

for any downstream cohort definition.

Unfortunately, standard deep learning on its own cannot easily

learn compact longitudinal features from the noisy, sparse, and

Computational Phenotype Discovery

PLOS ONE | www.plosone.org 2 June 2013 | Volume 8 | Issue 6 | e66341

irregular observations typically contained in an Electronic Medical

Record. To bridge this gap, we introduce the use of Gaussian

process regression to transform the raw data into a continuous

longitudinal probability density.

In the following sections we present the details and results of a

demonstration project using these methods. The experiment was

the simplest we could devise that would test the potential of

unsupervised feature learning for longitudinal clinical phenotype

discovery from episodic EMR data. In this experiment, each

learned feature represents a phenotype discovered from the set of

time-dependent clinical measurements of a single variable in

deidentified medical records. The features function as low-level,

high-resolution phenotypes analogous to the edge detectors

typically learned by the lowest architectural layers using image

datasets.

Our evaluation assessed the face validity of the learned

phenotypes, their ability to illuminate potentially unknown disease

population subtypes, and their ability to distinguish large-scale

disease phenotypes known to exist in the data, but which were

unknown to the feature learning algorithm. We compared the

discrimination capability of the learned features to that of features

engineered by an expert and tailored to the specific discrimination

task, and found the expert-engineered features to be no more

powerful than the learned features, despite the considerable

advantages given to the design of the expert features.

Results

In this project we learned continuous, unsupervised features

from longitudinal serum uric acid measurements made at irregular

points in time, separated by intervals ranging from hours to years.

Uric acid is the end product of purine metabolism in humans. It is

excreted by the kidney and has a normal serum concentration of

about 3.5 mg/dl in infants, gradually increasing to about 6 mg/dl

in adults in developed countries [34,35]. Elevated concentration

results from increased production or decreased excretion.

Sustained high concentration can result in needle-like crystals

precipitating out of solution and causing substantial pathology. In

the disease gout, any of a number of genetic mutations combined

with environmental factors cause elevated uric acid concentration,

with crystals precipitating into joints and causing an exquisitely

painful arthritis [36]. Additionally, kidney stones or kidney failure

can occur if the crystals precipitate in the urinary tract. In some

neoplastic diseases such as acute leukemias, continuous white

blood cell turnover raises uric acid concentration throughout the

course of the disease, and tumor lysis syndrome [37] can occur

with the bolus of purines released from cells after a chemotherapy

treatment. In both gout and acute leukemias, uric acid levels are

monitored and treated with medication. The different pathophys-

iology of the two types of diseases combined with their different

treatment goals and protocols tends to give rather different

longitudinal signatures to their uric acid measurements. In this

project, we tested whether our learned features could differentiate

the gout vs. the leukemia phenotype signature manifest in the uric

acid concentration over time.

Our feature-learning approach consisted of a transformation

step using Gaussian process regression followed by a feature

learning step using deep learning. While both Gaussian processes

and deep learning are well known in the machine learning

community, we will briefly describe them below, because they are

not as widely used in the biomedical domain. Our descriptions will

follow the concrete, simple example of our demonstration project,

but they readily generalize to other data types and greater

phenotype complexity.

Data
After obtaining IRB approval, we extracted all necessary data

from Vanderbilt’s Synthetic Derivative, a deidentified mirror of

our production EMR [38]. This mirror contains over 15 years of

longitudinal clinical data on over 2 million individuals. For

simplicity, we will use the term sequence to refer to the set of all

time-stamped uric acid measurements in a single individual’s

deidentified medical record.

We identified 4368 records of individuals with either gout or

acute leukemia, but not both (Table 1). We extracted the full

sequence of uric acid values and measurement times from each

record and associated it with the appropriate disease label. The

disease label served as the reference standard for downstream

evaluation, but was not used in the feature learning. Roughly a

third of the records were set aside as a final test set.

Transformation Step
The transformation step assumed that there was an unobserved

source function for each individual that represented the true uric acid

concentration over time, and considered each uric acid sequence

to be a set of possibly noisy samples taken from that source

function. We like the transformation step that infers this source

function from the sampled data, but this inference is an example of

an ill-posed inverse problem – there are an infinite number of

functions that could fit the data [39–41]. To make any judgments

on candidate functions we must impose some kind of constraint

that allows us to prefer one over another. Proposing suitable

constraints is one of the few places in our method where domain

knowledge and human judgement is used. As we will see, these

constraints can be rather vague expressions of how we think

pathophysiologic processes tend to behave.

Gaussian process regression. Gaussian process regression

is a Bayesian nonparametric method that provides weak

constraints on candidate functions without imposing parametric

forms on them. The topic is a large one for which extensive

tutorials are available [42–44]. We outline here the prior results

from the Gaussian process community needed to understand our

approach, and we state them in a slightly less general form that is

directly applicable to our context.

The weak constraint imposed on candidate functions by

Gaussian process regression is a Gaussian process prior, which we

will briefly explain. A Gaussian process is a useful way to represent a

probability density P(f (t)) over arbitrary continuous functions

f (t). The word Gaussian in the title refers to the shape of the

probability density, not the shape of any function f . A Gaussian

process can be seen as a multivariate Gaussian distribution that

has been generalized to an infinite number of variables, with each

variable representing a point in time. So just as we define the

Table 1. Statistical characteristics of uric acid sequences in
gout vs. leukemia.

Attribute Gout Leukemia

Number of Sequences 2194 2174

Minimum 0.9 0.0

1st Quartile 6.2 3.0

Median 7.7 4.2

3rd Quartile 9.5 5.6

Maximum 34.0 75.0

doi:10.1371/journal.pone.0066341.t001

Computational Phenotype Discovery

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e66341

probability of a given vector of points f [Rn in terms of an n-

dimensional multivariate Gaussian distribution N with a mean

vector m [Rn and a covariance matrix C [Rn|n, or.

P(f)~N (m,C),

we likewise define the probability of a given continuous function

f (t) in terms of an infinite-dimensional Gaussian process GP with

a mean function m(t) and a covariance function C(t1,t2), or

P(f (t))~GP(m(t),C(t1,t2)):

The mean function m is a function of time, and the covariance

function C is a function of the pair of times t1 and t2. The

covariance function defines the dependence between two function

values f (t1) and f (t2). Following the common practice, we defined

the mean function m(t):0, and allowed the density P(f (t)) to be

completely defined by the covariance function C.

The Gaussian process defined by C represents a prior

probability density over all possible source functions for the given

sequence. Gaussian process regression produces a second Gaussian

process that represents a posterior probability density given the

prior and the observations in the sequence.

Gaussian processes have the critically useful property that while

they model the probability density of the continuous function f (t),
we can calculate the densities P(f (ti)) at a finite set of times ti, and

get the same values as if we had calculated the entire P(f (t)) and

then sampled it at the times of interest ti . This allows the

regression calculations that follow to be tractable.

Given a vector of observations yo [Rn made at times to [Rn, we

would like to compute the posterior probability P(f (t) ~ yDyo, to)
that the true source function f passes through the point (t,y). This

is the same as the probability that a new measurement made at

time t would produce the value y.

Gaussian process regression assumes that at any time t, the

posterior density is Gaussian, or

P(f (t)~yDyo,to)~
1ffiffiffiffiffiffiffiffiffiffi

2pŝs2
p exp½{ (y{ŷy)2

2ŝs2
�, ð1Þ

where

ŷy~kTK{1yo

is the posterior mean value,

ŝs2~k{kTK{1k

is the posterior variance, K is a matrix with elements

Kij~C(to
i ,to

j), k is a vector with elements ki~C(to
i ,t), and

k~C(t,t) is a scalar [44,45]. As mentioned above, this imposes

a (very reasonable) parametric form only on the probability density

at a given time t, not on the shape of any potential function f (t).

Efficient calculation of (1) for many values of t is made possible

by the fact that only k and k depend on the particular point t. The

matrix K is obtained by applying the covariance function between

all pairs of observed data, so it need only be calculated and

inverted once (for each sequence). This inversion is the dominant

step in terms of computational complexity, requiring O(n3) time,

where n~DyoD is the length of the original sequence, but most

sequences are rather small, and the calculation is quite tractable.

We used (1) to compute functions representing the best estimate

ŷy(t), uncertainty in the estimate ŝs2(t), and the probability density

P(f (ti)~yDyo,to) over values of y, all calculated at times ti. This

was the goal of the transformation step. Figure 1 displays two

example sequences and their estimated densities, selected from the

4592 successfully transformed sequences.

Covariance functions. The specifics of the estimates ŷy(t)

and ŝs2(t) depend completely on the choice of the covariance

function C, and this is where we injected our domain knowledge.

In our context, we wanted C to quantify the rather simple notion

that measurements made close in time should be highly correlated.

The most common function used to describe this notion is the

squared exponential CSE :

CSE(t1,t2)~s2 exp½{ (t1{t2)2

2t2
�, ð2Þ

where the hyperparameter s defines the magnitude of highly

correlated and the hyperparameter t defines the time scale of close.

The squared exponential covariance function is often sufficient

for modeling simple phenomena, but uric acid concentrations

reflect a complex interaction of many different processes that may

operate on several different time scales. The rational quadratic

function

CRQ(t1,t2)~s2½1z
(t1{t2)2

2at2
�{a ð3Þ

is one covariance function among many that can model this

complexity. It can be seen as an infinite sum of squared

exponential covariance functions, each with a different time scale

t and their relative contribution defined by a gamma distribution

over l~t{2, parameterized by aw0 [42].

We can choose between candidate covariance functions and

tune their hyperparameters for an optimum fit using several

different methods [42]. We used the exact marginal likelihood of

the hyperparameters (collected into the vector h) because it

balances the fit against the complexity of the model:

log P(yoDto,h)~{
1

2
yoTK{1yo{

1

2
log DKD{

n

2
log 2p ð4Þ

The first term assesses the fit of the observed data, the second

term is a complexity penalty on K (and therefore on C), and the

third term is a normalization constant. We computed (4) for each

record in the dataset and optimized over the sum of all records,

which produced hyperparameters t~2:43, s2~0:46, and

a~0:16. These parameters were then used to compute the

regression for each sequence with (1). As an independent

verification, we obtained similar results using leave-one-out cross

validation within sequences, which is particularly efficient for

Gaussian processes [42].

Time warping. Although the rational quadratic covariance

function allows for a mixture of time scales, it does not allow for

varying those scales as a function of time. That is, the time scale t
(and any other hyperparameter) is assumed not to vary as a

function of t. A dataset that meets this assumption is called

stationary. Many types of clinical data, including our uric acid

values, are clearly nonstationary. For example, if a patient is treated

Computational Phenotype Discovery

PLOS ONE | www.plosone.org 4 June 2013 | Volume 8 | Issue 6 | e66341

for acute leukemia, her uric acid level will rise dramatically, and

then fall just as dramatically when she is given rasburicase to treat

the hyperuricemia and prevent tumor lysis syndrome. (In practice,

the drop often precedes the rise as the patients are treated in

anticipation of hyperuricemia.) This can happen multiple times

during a treatment cycle. A stationary Gaussian process will see

these dramatic changes and determine that uric acid can change

very quickly and unexpectedly, and it will inappropriately fit large

uncertainties to the rest of the sequence when we would expect the

values to be less volatile.

Methods exist to model this nonstationarity in Gaussian

processes [46–48]. Rather than add their complexity to our

models, however, we developed a simpler transformation that

takes advantage of the tendency for clinical measurements to be

made when a clinician thinks they are necessary, as opposed to a

regular or a random schedule. That is, when the patient’s uric acid

concentrations are more volatile due to active disease or treatment,

the clinician will tend to measure them more frequently. This

implies that if we shorten the longer intervals between measure-

ments and lengthen the shorter intervals, we might bring a

sequence closer to stationarity. Using domain knowledge, we

constructed candidate warping functions of the form d ’~f (d),
where d is the original distance between two adjacent observations

and d ’ is the warped distance. We found that

d ’~d1=azb ð5Þ

provided a useful parametric form for exploring warping, and we

used grid search combined with human-guided search over values

of a[½1,10� and b[½0,100� to explore possible functions. We

subjectively evaluated the results based on the inferred uncertain-

ties of the longitudinal probability densities. We selected

a~3:0,b~0 as a reasonable choice for all sequences (for example,

Figure 1).

A warping approach has been previously described for spatial

models [47], with the added complexity that the warping function

was learned from the data. In broader use, learning the warping

function may be beneficial, and would certainly be more scalable if

different functions are required for different data types, but in this

project we opted for our simpler method.

Feature Learning Step
Following the transformation step, the feature learning step

inferred meaningful features from the longitudinal probability

densities, without using any outcome label to guide the learning.

This section describes the details of this step.

Autoencoders. Autoencoders are frequently used as the

unsupervised learning element in each layer of a deep learning

architecture [21,49,50]. We will describe them here using prior

results from the deep learning community, and identify any

modifications we made to the usual practice.

At its simplest, an autoencoder is a network of three layers – an

input layer with M nodes representing the original data (one node

per element in the data vector), a hidden layer with H nodes

representing a transformed version of the data, and an output

layer with M nodes representing a reconstruction of the input data

using only the values in the hidden layer. The first transformation

is called the encoder, and the second is the decoder.

The encoder typically transforms an input data vector m [RM

into the hidden or transformed representation h [RH by

h~u(Wmzb), ð6Þ

where the matrix W [RH|M is a matrix of learned weights, the

Figure 1. Gaussian process regression transforms noisy, irregular, and sparse observations to a longitudinal probability
distribution. A cross section at any point in time in these plots is a proper Gaussian probability density centered at posterior mean mi with standard
deviation si . The top panel is a selected leukemia sequence, the bottom panel a selected gout sequence. Black dots: observed values. Dark blue line:
posterior mean mi . Light blue lines: standard deviation si .
doi:10.1371/journal.pone.0066341.g001

Computational Phenotype Discovery

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | e66341

vector b [RH is a vector of learned bias offsets, and u is a pre-

specified nonlinear function such as the logistic sigmoid

u(x)~1=(1z exp ({x)).

The decoder computes a reconstruction m̂m using the analogous

function

m̂m~v(W
0
hzb

0
), ð7Þ

where the function v is generally either a sigmoid function if the

input data values m are binary, or the identity function (producing

a linear decoder) if the input data values are continuous. The weights

in W
0

can either be learned separately or tied such that W
0
= WT .

The weights and biases are typically learned with a convex

optimization algorithm such as L-BFGS [51,52]. The cost function

for this optimization is usually the squared-error loss

L(m,m̂m)~
XM

i~1

(m̂mi{mi)
2: ð8Þ

In our specific problem we wanted to reconstruct the predictive

means mi~ŷy(ti) from (1) while taking into account the uncer-

tainties si~
ffiffiffiffiffiffiffiffiffiffiffi
ŝs2(ti)

p
, so instead of (8) we optimized the normalized

squared error

LN (m,m̂m,s)~
XM

i~1

½m̂mi{mi

si

�2 ð9Þ

that allows a looser reconstruction in areas where the uncertainty

is high.

If we were to use a hidden layer larger than the input layer

(H§M), it would be trivial for the autoencoder to learn the

identity transform and perfectly reproduce the input. We can

avoid this trivial result by forcing dimensional reduction with

HvM, but alternatively it can be advantageous to learn an

overcomplete (HwM) but regularized (elements of W are small)

and sparse (most elements of h are near zero) representation. To

promote regularization and sparsity we added appropriate terms

to the loss function, to arrive at an overall cost function J :

J(W,W
0
,b,b

0
)~
XN

j~1

LN (m(j),m̂m(j),s(j))zl
X

k,l

(W 2
klzW

02
lk)

z b
XH

i~1

D(r,r̂ri),

ð10Þ

where the superscript (j) denotes the jth data instance (of N total

instances), the sparsity measure r̂ri is the average activation of the

ith hidden node

r̂ri~
1

N

XN

j~1

h
(j)
i ,

the function D is the Kullback-Leibler divergence [53]

D(r,r̂r)~r log
r

r̂r
z(1{r) log

1{r

1{r̂r

that drives all r̂ri toward the sparsity target r, and l and b are

tunable parameters to adjust the influence of the regularization

and sparsity factors. This cost function produces a sparse autoencoder

[50].

Once the weights in W are learned, each row Wi is a vector

representing one of the learned features or phenotypes that are the

goal of this step. (The weights W
0

are not used beyond training.)

The Wi form a compact set of prototypical inputs that combine

nonlinearly to form the input data vectors. If regularization and

sparsity are enforced, the features Wi can be interpretable in the

domain of interest. For example, if the original data are natural

images, the lowest layer of features turns out to be a set of oriented

edge and grating detectors, and higher layers consist of recogniz-

able parts and views of objects in the input dataset [54].

Given a set of learned features Wi, any data vector m, including

a previously unseen one, can be represented in terms of those

features using (6). The resulting element hi is the activation of

feature Wi for the input m, indicating how strongly Wi is present

in m.

The property of autoencoders that allows their use in a deep

architecture is that they can be stacked and trained individually

from the bottom up. The input instances for each new encoder are

the activations h from the encoder below. Each layer learns its own

weights by reconstructing its own input, and features learned by

higher layers are more complex than those learned by lower layers.

The progression in complexity is enabled by the nonlinear

function u in (6), which prevents higher layers from learning

simple linear combinations that could have been learned by lower

layers. In this project we learned two layers of sparse autoencoders

using the cost function (10), with the normalized squared error loss

(9) in the first layer as written in (10), and the squared error loss (8)

substituted in the second layer.

Learning from small patches. We followed the common

practice of training the autoencoders on relatively small patches of

each input vector, rather than the whole vector at once.

Specifically, we randomly extracted patches of 30-day contiguous

elements from m and the corresponding section of s, and each

patch was treated as an independent training instance. Training

on patches produces features that can be combined to describe 30-

day trajectories of uric acid concentration (Figures 2 and 3).

Training on patches improves computational efficiency, but it also

has the benefit of providing features with translational invariance

because a given feature can represent 30-day trajectory regardless

of its position in the overall sequence.

The feature-learning step produced 100 first-layer features

(Figure 2) and 100 second-layer features (Figure 3).

Evaluation
Our evaluation assessed 1) the face validity of the learned

features as low-level, high-resolution phenotypes, 2) their ability to

illuminate unknown disease population subtypes, and 3) their

accuracy in distinguishing between disease phenotype signatures

known to exist in the data, but which were unknown to the feature

learning algorithm.

On evaluation tasks 2 and 3, the performance of each layer of

learned features was calibrated by comparing it to the perfor-

mance of expert-engineered features. The engineered features

were specifically constructed by hand to capture the essential

differences in uric acid behavior in gout vs. leukemia, such as the

generally lower values, more frequent measurements and wilder

variations exhibited in leukemia and its treatment (Table 2).

Face validity. The learned features are composed of contin-

uous, interpretable 30-day trajectory components of uric acid

concentration (Figures 2 and 3). The fact that the features are

Computational Phenotype Discovery

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e66341

continuous lends face validity to the results, because nothing in the

code or the constraints mandated this continuity. Interestingly, the

continuity does not emerge if the regularization and sparsity

constraints are absent.

The first-layer learned features represent simple functional-

element detectors, in various combinations and time shifts

(Figure 2). This is consistent with prior work [54], and adds

further face validity. Many first-layer features are single- or

multiple-edge detectors at various locations in their 30-day span.

Others are single or multiple spot detectors, and some are

combinations of interpretable elements. The spot detectors may

function as Fourier components at periods of one-half to three

cycles per patch at various phases.

Notably, there are 16 nearly identical uphill ramps and 16

nearly identical downhill ramps. These are not simply filling

surplus feature slots – when we reduced the number of features

from H~100 to H~80, the proportion of ramps remained about

the same (data not shown). The redundancy is probably an artifact

of our sparsity criteria, since ramps are present in most patches,

and dividing the activation between 16 features lowers the sparsity

measure r̂r. If there were only one ramp feature, its activation

would be nearly saturated on every data instance.

The multiple-ramp phenomenon emphasizes that the learned

features are not mutually exclusive, but rather that the information

needed to represent a given input is distributed among all features

acting in superposition, like simultaneous notes in a musical chord

rather than sequential notes in a melody. In fact, our autoencoders

learned to use constructive and destructive interference effects,

where details in different features act either to reinforce or to

cancel each other (Figure 4). This is important because a

distributed representation can be exponentially more compact

and expressive than a local representation [21].

Second-layer features were nonlinear combinations of first-layer

features, and have similar face validity (Figure 3). They are slightly

more complex, with a notable absence of ramp detectors.

Illumination of population subtypes. We investigated the

landscape defined by the space of each feature set by embedding

them in a two-dimensional space using t-Distributed Stochastic

Neighbor Embedding (t-SNE) [55] (Figure 5). The t-SNE

algorithm learns a low-dimensional embedding that preserves

Figure 2. First-layer learned features are simple functional element detectors, in various combinations and phases. For example,
uphill- and downhill-ramp detectors (blue), single- and multiple-spot detectors/Fourier components (red), short- and long-edge detectors (green),
and mixed-element detectors (grey). These features are visualized directly as the normalized rows Wi .
doi:10.1371/journal.pone.0066341.g002

Computational Phenotype Discovery

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e66341

high-dimensional distances between near neighbors at the expense

of distances between far neighbors. This tends to preserve and

emphasize clusters in the original data, and any substructure

within clusters. Macro-scale cluster shape and relative positions are

distorted, so we cannot draw conclusions from those aspects of the

embedding.

Under this visualization, all three feature sets show a separation

between the two known phenotypes of gout and leukemia, but the

learned feature sets (Figure 5 A and B) show additional cluster

structure, suggesting subtypes among the disease populations. We

conjecture that the subtypes largely reflect differences in treatment

approaches, but may also reflect some underlying differences in

pathophysiology. Investigating these subpopulations is a focus of

future work.

The engineered feature space (Figure 5 C) arranges the data in a

potentially separable way, allowing for accurate discrimination in

a sufficiently flexible supervised model, but it fails to illuminate

much additional structure. In fact, if the colors were removed from

the figure, it would be difficult to discern more than a single large

cluster.

Generalized discrimination performance. We objectively

assessed the learned features’ ability to perform in a supervised

classification task unknown to the feature-learning algorithm. This

is a common method to evaluate the usefulness of unsupervised

learned features [56,57]. Because the features were not optimized

for the evaluation task, the task serves as a test of generalized

performance. We compared their performance to that of the

expert features, which held the considerable advantage that they

Figure 3. Second-layer learned features are complex nonlinear combinations of first-layer features. Because second layer features
cannot be visualized directly, each feature in this set is represented as the confluence of the 100 input patches that most strongly activate the feature
(those with the highest values of hi for feature i).
doi:10.1371/journal.pone.0066341.g003

Computational Phenotype Discovery

PLOS ONE | www.plosone.org 8 June 2013 | Volume 8 | Issue 6 | e66341

were optimized for the specific task. The selected learning task was

to distinguish the known gout vs. leukemia phenotypes using only

the uric acid sequences.

Our particular classification algorithm for this task was chosen

to optimally illuminate differences in quality between the input

feature sets. This is different from the common use of supervised

learning, where the goal is to maximize predictive accuracy of the

model as a whole. We chose logistic regression [58] as our

classification algorithm because as a simple linear classifier it is

more likely to illuminate differences in feature quality than a more

sophisticated algorithm such as a support vector machine that

would automatically extract complex interactions from input

features to augment their descriptive power. Logistic regression is

also one of the most widely used classifiers in biomedical research,

so the choice also provides an evaluation of the features in a typical

use case in our domain.

We trained four supervised classifiers that were identical except

for the input features they used: 1) a classifier using first-layer

learned features, 2) a classifier using second-layer learned features,

Table 2. Expert Engineered Features.

Number of observations n

Time span of all observations T

Density of obervations n/T

Steepest positive slope between neighboring observations

Steepest negative slope between neighboring observations

Standard deviation of all slopes between neighboring observations

Minimum measured value

Maximum measured value

Mean measured value

Standard deviation of all measured values

Fraction of (standardized) measured values greater than 1.5

doi:10.1371/journal.pone.0066341.t002

Figure 4. Learned features form a distributed representation and interact via constructive and destructive interference. The
interference, as well as the autoencoder’s use of ramp detectors in blocks, are manifest in the confluence of features of this waterfall display. Thick
blue lines: selected reconstructions of 30-day patches from the top panel in Figure 1. Stacked thin black lines: all 100 first-layer features, scaled and
sorted by the magnitude of their contribution to the reconstruction.
doi:10.1371/journal.pone.0066341.g004

Computational Phenotype Discovery

PLOS ONE | www.plosone.org 9 June 2013 | Volume 8 | Issue 6 | e66341

3) a gold-standard classifier using expert-engineered features 4) a

baseline classifier using the sequence mean as the only input

feature. The first two classifiers evaluated the learned features. The

gold-standard classifier was intended to estimate the upper-bound

performance using the best feature set we could produce for the

task. The baseline classifier was intended to establish how well a

single basic feature would do on the task. The gout and leukemia

disease labels were used as the class labels for all classifiers.

We evaluated the performance of all classifiers using the area

under the Receiver Operating Characteristic curve (AUC) [59] on

a held-out test set. Despite the considerable avantage that the

expert features were designed with full knowledge of the

classification task and training labels, they were not able to

perform better than the learned features (Table 3).

Both learned-features classifiers performed equivalently in our

logistic regression model. We believe this is partly due to the

relative easiness of the supervised task (even the baseline model

produced an accuracy of 0.93), and the fact that both models

performed near the upper limit of what we believe is possible for

this task given the input data. But it is also consistent with the goal

of each layer to produce a set of expressive features that can

capture characteristic signatures of the various phenotypes in the

training set. Their statistically equivalent performance suggest that

both layers accomplished this goal equally well, at least with

respect to the gout vs.leukemia phenotypes. In higher layers, we

would expect features to become more specialized and explicit,

capturing more complex structure in fewer variables, and possibly

progressing as far as learning a single feature for each

subphenotype of gout or leukemia. In contrast, the lower layers

would need to use more features in combination to distinguish the

phenotypes.

All three classifiers performed better than the baseline classifier

by a margin of 0.04, a respectable improvement for a supervised

model (Table 3). The baseline classifier used the sequence mean as

its single feature, a suitable generic baseline feature for a generic

longitudinal classification task over instances with highly varying

numbers of points per record. As it happened, the sequence mean

was also the most predictive of all expert-engineered features, so its

use here may have produced a misleadingly high baseline

performance.

For all four models the test set performance was slightly better

than the training set performance (but usually within the

confidence interval). If not due to sampling variability, we

speculate that this may be due to using cross-validation on the

training set (which is convenient for the learning algorithm), but

bias-corrected and accelerated bootstrap sampling (which can be

more accurate) on the test set. Our primary purpose in reporting

the training set accuracy is to demonstrate the absence of

overfitting.

The high AUC values in Table 3 reveal the classification task to

be a fairly easy one for the expert-engineered features. Indeed, we

selected it because the two phenotypes appeared to have fairly

distinct behavior, and we judged that a domain expert could create

some effective task-specific features for the gold standard. The fact

that the general-purpose, unsupervised features performed as well

as the task-specific gold standard features, but without using any

domain knowledge or expert input, is promising.

Figure 5. Data distribution in the learned feature spaces suggests disease subpopulations. A: First-layer features. B: Second-layer
features. C: Expert engineered features. These two-dimensional embeddings using t-SNE suggest several subpopulations of gout (red) and leukemia
(blue) in both learned feature spaces. We suspect that these subpopulations largely represent differences in treatment approach, but they may also
be illuminating pathophysiologic differences. The engineered feature space separates the two known phenotypes adequately for a discrimination
task, but offers only weak suggestions of subpopulations: without the colors corresponding to known phenotypes, it would be difficult to identify
more than a single large cluster in this space. The t-SNE algorithm preserves near neighbor distances at the expense of far neighbor distances, so we
cannot draw conclusions from the macro-scale shape or relative orientation of the clusters, only their number and substructure.
doi:10.1371/journal.pone.0066341.g005

Table 3. Unsupervised features were as powerful as expert-
engineered features in distinguishing uric acid sequences
from gout vs. leukemia.

Classifier AUC (training) AUC [CI] (test)

First-Layer Learned Features 0.969 0.972 [0.968, 0.979]

Second-Layer Learned Features 0.965 0.972 [0.968, 0.979]

Expert Engineered Features 0.968 0.974 [0.966, 0.981]

Baseline (sequence mean only) 0.922 0.932 [0.922, 0.944]

The second column gives the performance of an Elastic Net model under cross-
validation on the training set. The third column gives the performance on the
held-out test set, with 95% confidence intervals determined using the bias-
corrected and accelerated bootstrap. The nearly identical overlap of the
confidence intervals indicates that the classifiers built from each of the two
learned feature layers and the expert-engineered feature set were equally
useful in the supervised learning task. Likewise, the 0.04 difference in
performance between the baseline model and the other three is both
statistically significant and a respectable improvement as supervised models
go. AUC: Area under the Receiver Operating Characteristic curve. CI: 95%
Confidence Interval.
doi:10.1371/journal.pone.0066341.t003

Computational Phenotype Discovery

PLOS ONE | www.plosone.org 10 June 2013 | Volume 8 | Issue 6 | e66341

Discussion

We used unsupervised feature learning for computational

phenotype discovery from noisy and irregular longitudinal EMR

data. Our methods achieved encouraging results in a demonstra-

tion project, in which we attempted to identify the unlabeled

phenotypes expressed in the sequences of serum uric acid

measurements contained in the records of people with either gout

or leukemia. The learned features emerged as continuous,

interpretable components of the longitudinal trajectory of serum

uric acid in a given individual, which was in turn inferred as a

longitudinal probability density using Gaussian process regression

from discrete, episodic measurements contained in the record.

Under subjective evaluation the learned features displayed

considerable face validity; in an embedding analysis the features

suggested unknown sub-phenotypes of both conditions; and in a

supervised classification task they were highly discriminating

between the two source conditions. In the classification task, the

learned features performed as well as expert-engineered features,

despite the engineered features’ considerable advantage of having

been expressly created for the task.

To our knowledge, this is the first demonstration of deep

learning over longitudinal clinical data, the first to use unsuper-

vised feature learning for clinical phenotype discovery, and the

first to use Gaussian processes to couple irregular and sparse data

to a deep architecture. Our results add to a growing literature

demonstrating that features produced with deep learning over

large unlabeled datasets can perform as well as features engineered

by an expert benefitting from knowledge of the domain, the

specific learning task, and the class labels. They also add to a

growing literature demonstrating that EMR data collected for

clinical care can be adapted for secondary research use.

We also introduced the use of a differential time warping

function that brings nonstationary clinical data sufficiently close to

stationarity to allow modeling with a Gaussian process. Our choice

of warping function and parameters was based on subjective

expert judgment, designed to fit the particular type of nonstatio-

narity that often arises in clinical data. Development of an

objective method for optimizing the warping function is a focus of

future work.

Our choice of classification task reflected our goal of automat-

ically distinguishing populations using longitudinal characteristics

of recorded data. It established that our methods are capable of

capturing sufficient information to differentiate specific disease

signatures in a sequence of blood chemistry measurements. We

plan to attempt more demanding phenotype discovery tasks using

multivariate longitudinal data in future work.

Higher levels of a deep architecture tend to produce features

that are domain-recognizable sub-patterns [6], although we didn’t

train enough layers to observe this in our demonstration project.

With clinical data, we hypothesize that higher-level multivariate

features may resemble characteristic portions of disease profiles,

and may provide complex data-driven phenotypes representing

disease variants and subtypes.

Our methods can be extended beyond continuous variables, to

include binary or categorical variables such as billing codes,

medications, narrative clinical text, or perhaps even molecular

sequence information, as long as an appropriate probability

density can be formulated over the observations.

We believe that computational phenotype discovery powered by

unsupervised feature learning has enormous potential for advanc-

ing personalized medicine and other exciting applications. We

expect high-level learned features to act as powerful data-driven,

high-resolution phenotypes for applications such as syndromic

surveillance, medication effects monitoring and phenome-genome

association studies. Additionally, we expect that the composition of

the features themselves should give new insight into the structure

of biomedical data and the nature of disease and therapeutic

processes.

Methods

Ethics Statement
The Vanderbilt University Institutional Review Board approved

this research. Because the research was conducted entirely with

existing data that did not include identifiable private information,

the Board determined that the research does not qualify as human

subjects research, in accordance with provisions of Title 45 Code

of Federal Regulations part 46. Consequently, informed consent

was not required.

Data
We identified 4368 longitudinal records containing a sequence

of at least two serum uric acid measurements and meeting the

following criteria for either gout or leukemia (but not both).

Records containing more than three ICD-9 codes for gout {274.*}

and none for acute lymphoid, chronic lymphoid, acute myeloid, or

chronic myeloid leukemia {204.* | 205.*} were labeled as gout

records (2194 records). Records containing at least four codes for

acute lymphoid or acute myeloid leukemia {204.0* | 205.0*}

and none for gout were labeled as leukemia records (2174 records).

We extracted the full sequence of uric acid values and

measurement times from each record and associated it with the

appropriate disease label. All uric acid values were standardized to

zero global mean and unit standard deviation.

Measurement times were date-shifted so that the first measure-

ment in each sequence occurred on day 0, and all times were

converted to fractional days. (For example, a measurement time of

6:00 AM on day 10 was represented as 10.25).

A test set of 630 sequences from leukemia records and 634

sequences from gout records was set aside by uniform random

30% selection from the full dataset, and the remaining 3104

sequences formed the training set.

All data preprocessing was done using code we developed in R

[60].

Longitudinal Probability Density Inference
All sequences were time warped using the polynomial warping

function (5) with a~3 and b~0, chosen as described above, using

code we developed in MATLABH.

About 20 candidate Gaussian process covariance functions of

varying complexity were fit by tuning hyperparameters to the full

warped training set, ignoring the class labels, using conjugate

gradient optimization over the negative log marginal likelihood (4).

A rational quadratic function (3) provided the best fit and was used

for the rest of the work.

Posterior probability densities for each training and test

sequence were estimated using Gaussian process regression at

times ti chosen at the resolution of one point per day, with 15 days

of padding added before the first and after the last recorded

measurement of the sequence. The daily posterior means

mi~ŷy(ti) and standard deviations si~
ffiffiffiffiffiffiffiffiffiffiffi
ŝs2(ti)

p
of each sequence

were calculated for each day ti over this time range using (1). The

vectors m and s for each sequence were used as the input data for

feature learning.

All density fitting used the GPML toolbox for MATLAB [61],

with local additions and modifications as needed.

Computational Phenotype Discovery

PLOS ONE | www.plosone.org 11 June 2013 | Volume 8 | Issue 6 | e66341

Unsupervised Feature Learning
Autoencoder training instances were 30-day contiguous sub-

vectors or patches extracted uniformly at random from m with the

corresponding patch from s. Patch extraction density was 50

patches extracted per 365 days covered by the sequence. Each

patch was treated as an independent training instance, ignoring

the original sequence source of each patch. The autoencoder had

no access to the leukemia or gout labels.

Prior to training, each patch was standardized to give a zero

mean, unit standard deviation of the mean function values mi.

(This standardization is distinct from the global standardization

prior to Gaussian process training). Specifically, we transformed

the mi and si values for each patch into ~mmi~(mi{�mm)=d, and

~ssi~si=d , where �mm is the mean of all mi in the patch and d is the

standard deviation of all mi in the patch.

A two-layer stacked sparse autoencoder was trained on the set of

extracted training patches. Sigmoid encoders (6) and linear

decoders (7) were used for both layers. For the first layer, the

number of hidden layers H~100, sparsity target r~0:1, sparsity

weight b~104, regularization weight l~50 were chosen using

combined human-guided and grid search, optimizing the cost

function (10). Second-layer parameters H~100, r̂r~0:1, b~10,

l~1:0 were similarly chosen, with the exception of using the

squared error loss (8) instead of the normalized squared error loss

(9) in the cost function (10), because the second layer used only the

values hi as input. Weights and biases of each layer were learned

with these cost functions using the L-BFGS algorithm [51,52].

Feature learning was performed using MATLAB starter code

from Andrew Ng’s UFLDL Tutorial [50] that we substantially

augmented and modified.

Evaluation
For each model we prepared a single input instance per original

sequence. Learned features were aggregated over all patches in a

given sequence to produce one training or test instance per

sequence. The 100 learned feature values for each patch were

rescaled by multiplying by the value of d for that patch, and the

maximum value of each rescaled feature over the group of patches

was kept as the aggregate value for that feature. The values of �mm
for each patch were also aggregated, keeping the mean,

maximum, minimum, standard deviation, and range of the �mm

for all patches in the group. This produced 105 features for each

training and test instance. The expert-engineered features are

listed in Table 2. The baseline classifier used the mean of each

sequence as its only feature.

Illumination of population subtypes. We produced a 2-

dimensional embedding of each feature space (except the baseline)

using t-Distributed Stochastic Neighbor Embedding (t-SNE) [55]

as described in the results section. We used the MATLAB

implementation developed by the authors of that method. For the

visualization of both learned feature spaces, we used a perplexity

parameter of 20 (which defines the length scale of interest), and for

the manual feature space a perplexity parameter of 5, both chosen

by human-guided optimization of the final t-SNE model score.

Generalized discrimination performance. We trained

four models as described in the Results section, identical except

for the features used as input: 1) first-layer learned features, 2)

second-layer learned features, 3) expert-engineered features, and

4) the sequence mean alone.

The gout and leukemia labels were used as the class labels for all

models. For each set of features we trained a logistic regression

model with simultaneous feature selection via the Elastic Net

combination of L1 and L2 regularization [62,63]. A regularization

mixture value a~0:9 was used, weighting heavily toward L1, and

regularization weight value l was chosen using the regularization

path method [63] under 5x cross validation.

We compared the performance of each learned-features model

to the engineered-features model on training and test sets using the

area under the ROC curve, calculated with the nonparametric

empirical method, with 95% confidence intervals calculated using

30 iterations of the bias-corrected and accelerated bootstrap [59],

all using MATLAB stats toolbox implementations.

Acknowledgments

We thank Dr. Jeremy L. Warner for many helpful discussions.

Author Contributions

Conceived and designed the experiments: TAL JCD MAL. Performed the

experiments: TAL. Analyzed the data: TAL. Contributed reagents/

materials/analysis tools: TAL JCD. Wrote the paper: TAL JCD MAL.

Developed the software used in analysis: TAL.

References

1. Wenzel SE (2012) Asthma phenotypes: the evolution from clinical to molecular

approaches. Nat Med 18: 716–725.

2. De Keulenaer GW, Brutsaert DL (2009) The heart failure spectrum: time for a

phenotype-oriented approach. Circulation 119: 3044–3046.

3. De Keulenaer GW, Brutsaert DL (2011) Systolic and diastolic heart failure are

overlapping phenotypes within the heart failure spectrum. Circulation 123:

1996{2004; discussion 2005.

4. Matheny ME, Miller RA, Ikizler TA, Waitman LR, Denny JC, et al. (2010)

Development of inpatient risk stratification models of acute kidney injury for use

in electronic health records. Med Decis Making 30: 639–650.

5. Bengio Y (2012) Deep learning of representations for unsupervised and transfer

learning. JMLR Workshop and Conference Proceedings 27: 17–36.

6. Le QV, Ranzato M, Monga R, Devin M, Chen K, et al. (2012) Building high-

level features using large scale unsupervised learning. In: Proc Int Conf Mach

Learn.

7. Saria S, Rajani AK, Gould J, Koller D, Penn AA (2010) Integration of Early

Physiological Responses Predicts Later Illness Severity in Preterm Infants. Sci

Transl Med 2: 48ra65.

8. Syed Z, Guttag J (2011) Unsupervised similarity-based risk stratification for

cardiovascular events using long-term time-series data. J Mach Learn Res 12:

999–1024.

9. Wang F, Lee N, Hu J, Sun J, Ebadollahi S (2012) Towards heterogeneous

temporal clinical event pattern discovery: a convolutional approach. In: KDD.

doi:10.1145/2339530.2339605.

10. Norén GN, Hopstadius J, Bate A, Star K, Edwards IR (2010) Temporal pattern

discovery in longitudinal electronic patient records. Data Min Knowl Discov 20:

361–387.

11. Stacey M, McGregor C (2007) Temporal abstraction in intelligent clinical data

analysis: A survey. Artif Intell Med 39: 1–24.

12. Moskovitch R, Shahar Y (2009) Medical temporal-knowledge discovery via

temporal abstraction. AMIA Annu Symp Proc 2009: 452–456.

13. Batal I, Valizadegan H, Cooper GF, Hauskrecht M (2011) A pattern mining

approach for classifying multivariate temporal data. In: Proceedings (IEEE Int

Conf Bioinformatics Biomed). 358–365. doi:10.1109/BIBM.2011.39.

14. Roque FS, Jensen PB, Schmock H, Dalgaard M, Andreatta M, et al. (2011)

Using electronic patient records to discover disease correlations and stratify

patient cohorts. PLoS Comput Biol 7: e1002141.

15. Samuel AL (1959) Some studies in machine learning using the game of checkers.

IBM J Res Dev 3: 211–229.

16. Dietterich TG, Michalski RS (1981) Inductive learning of structural descriptions:

Evaluation criteria and comparative review of selected methods. Artif Intell J 16:

257–294.

17. Fawcett TE, Utgoff PE (1992) Automatic feature generation for problem solving

systems. In: Proc Int Conf Mach Learn. Morgan Kaufmann, 144–153.

18. Markovitch S, Rosenstein D (2002) Feature generation using general constructor

functions. In: Mach Learn. The MIT Press, 59–98.

19. Gnen M, Alpaydn E (2011) Multiple kernel learning algorithms. J Mach Learn

Res 12: 2211–2268.

20. Guyon I (2003) An introduction to variable and feature selection. J Mach Learn

Res 3: 1157–1182.

Computational Phenotype Discovery

PLOS ONE | www.plosone.org 12 June 2013 | Volume 8 | Issue 6 | e66341

21. Bengio Y (2009) Learning deep architectures for AI. Foundations and Trends in

Machine Learning 2: 1–127.
22. Arel I, Rose D, Karnowski T (2010) Deep machine learning - a new frontier in

artificial intelligence research [research frontier]. IEEE Comput Intell Mag 5:

13–18.
23. Lee H, Grosse R, Ranganath R, Ng AY (2011) Unsupervised learning of

hierarchical representations with convolutional deep belief networks. Commun
ACM 54: 95–103.

24. Lee H, Largman Y, Pham P, Ng AY (2009) Unsupervised feature learning for

audio classification using convolutional deep belief networks. In: NIPS 2009
Workshop on Deep Learning for Speech Recognition and Related Applications.

25. Denny JC, Spickard A, Johnson KB, Peterson NB, Peterson JF, et al. (2009)
Evaluation of a method to identify and categorize section headers in clinical

documents. J Am Med Inform Assoc 16: 806–815.
26. Dean BB, Lam J, Natoli JL, Butler Q, Aguilar D, et al. (2009) Use of electronic

medical records for health outcomes research: a literature review. Med Care Res

Rev 66: 611–638.
27. Klompas M, Haney G, Church D, Lazarus R, Hou X, et al. (2008) Automated

identi_cation of acute hepatitis b using electronic medical record data to
facilitate public health surveillance. PLoS One 3: e2626.

28. Kho AN, Pacheco JA, Peissig PL, Rasmussen L, Newton KM, et al. (2011)

Electronic medical records for genetic research: results of the emerge
consortium. Sci Transl Med 3: 79re1.

29. Kohane IS (2011) Using electronic health records to drive discovery in disease
genomics. Nat Rev Genet 12: 417–428.

30. Ritchie MD, Denny JC, Crawford DC, Ramirez AH, Weiner JB, et al. (2010)
Robust replication of genotype-phenotype associations across multiple diseases

in an electronic medical record. Am J Hum Genet 86: 560–572.

31. Conway M, Berg RL, Carrell D, Denny JC, Kho AN, et al. (2011) Analyzing the
heterogeneity and complexity of electronic health record oriented phenotyping

algorithms. AMIA Annu Symp Proc 2011: 274–283.
32. Liao KP, Cai T, Gainer V, Goryachev S, Zeng-treitler Q, et al. (2010) Electronic

medical records for discovery research in rheumatoid arthritis. Arthritis Care

Res (Hoboken) 62: 1120–1127.
33. Carroll RJ, Eyler AE, Denny JC (2011) Naive electronic health record

phenotype identification for rheumatoid arthritis. AMIA Annu Symp Proc
2011: 189–196.

34. Wilcox W (1996) Abnormal serum uric acid levels in children. J Pediatr 128:
731–741.

35. Alvarez-Lario B, Macarrn-Vicente J (2011) Is there anything good in uric acid?

QJM 104: 1015–1024.
36. Neogi T (2011) Gout. N Engl J Med 364: 443–452.

37. Howard SC, Jones DP, Pui CH (2011) The tumor lysis syndrome. N Engl J Med
364: 1844–1854.

38. Roden DM, Pulley JM, Basford MA, Bernard GR, Clayton EW, et al. (2008)

Development of a large-scale de-identified dna biobank to enable personalized
medicine. Clin Pharmacol Ther 84: 362–369.

39. Tikhonov A, Arsenin V (1977) Solutions of Ill Posed Problems. Winston.
40. O’Sullivan F (1986) A statistical perspective on ill-posed inverse problems. Stat

Sci 1: 502–518.
41. Poggio T, Smale S (2003) The mathematics of learning: Dealing with data.

Notices of the American Mathematical Society (AMS) 50: 537–544.

42. Rasmussen CE, Williams CKI (2006) Gaussian Processes for Machine Learning.

MIT.
43. MacKay DJC (2003) Information Theory, Inference, and Learning Algorithms.

Cambridge. Version 7.2.

44. Bishop CM (2006) Pattern Recognition and Machine Learning. Springer.
45. MacKay DJC (1998) Introduction to Gaussian processes. In: Bishop CM, editor,

Neural Networks and Machine Learning, Berlin: Springer, volume 168 of
NATO ASI Series. 133–165.

46. Paciorek CJ, Schervish MJ (2004) Nonstationary covariance functions for

gaussian process regression. In: Thrun S, Saul L, Schölkopf B, editors, Advances
in Neural Information Processing Systems. Cambridge, MA: MIT Press.

47. Schmidt AM, O’Hagan A (2003) Bayesian inference for non-stationary spatial
covariance structure via spatial deformations. J R Stat Soc Series B Stat

Methodol 65: 743–758.
48. Gramacy RB, Lee HKH (2008) Bayesian treed Gaussian process models with an

application to computer modeling. J Am Stat Assoc 103: 1119–1130.

49. Bengio Y, Lecun Y (2007) Scaling learning algorithms towards ai. In: Bottou L,
Chapelle O, Decoste D, Weston J, editors, Large-Scale Kernel Machines, MIT

Press.
50. Ng A, Ngiam J, Foo CY, Mai Y, Suen C (2011). UFLDL tutorial. Available:

http://deeplearning.stanford.edu/wiki/index.php/UFLDL Tutorial. Accessed

September 5, 2012.
51. Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale

optimization. Math Program 45: 503–528.
52. Le Q, Ngiam J, Coates A, Lahiri A, Prochnow B, et al. (2011) On optimization

methods for deep learning. In: Getoor L, Scheffer T, editors, Proc Int Conf
Mach Learn. 265–272.

53. Cover TM, Thomas JA (1991) Elements of Information Theory. New York, NY,

USA: Wiley-Interscience.
54. Lee H, Ekanadham C, Ng AY (2008) Sparse deep belief net model for visual

area V2. In: Advances in Neural Information Processing Systems.
55. van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn

Res 9: 2579–2605.

56. Raina R, Battle A, Lee H, Packer B, Ng AY (2007) Self-taught learning: transfer
learning from unlabeled data. In: Proc Int Conf Mach Learn. 759–766. doi:

http://doi.acm.org/10.1145/1273496.1273592.
57. Ngiam J, Khosla A, Kim M, Nam J, Lee H, et al. (2011) Multimodal deep

learning. In: Proc Int Conf Mach Learn.
58. Hosmer DW, Lemeshow S (2000) Applied Logistic Regression. New York:

Wiley.

59. Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L (2005) The use of receiver
operating characteristic curves in biomedical informatics. J Biomed Inform 38:

404–415.
60. R Core Team (2012) R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria.

Available: http://www.R-project.org/. ISBN 3–900051–07–0.
61. Rasmussen CE, Nickisch H (2011) The GPML toolbox version 3.1. Available:

www.gaussianprocess.org.
62. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net.

J R Stat Soc Series B Stat Methodol 67: 301–320.
63. Friedman JH, Hastie T, Tibshirani R (2010) Regularization paths for

generalized linear models via coordinate descent. J Stat Softw 33: 1–22.

Computational Phenotype Discovery

PLOS ONE | www.plosone.org 13 June 2013 | Volume 8 | Issue 6 | e66341

