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Abstract: We performed targeted metabolomics with machine learning (ML)-based interpretation
to identify metabolites that distinguish the progression of nonalcoholic fatty liver disease (NAFLD)
in a cohort. Plasma metabolomics analysis was conducted in healthy control subjects (n = 25) and
patients with NAFL (n = 42) and nonalcoholic steatohepatitis (NASH, n = 19) by gas chromatography-
tandem mass spectrometry (MS/MS) and liquid chromatography-MS/MS as well as RNA sequencing
(RNA-seq) analyses on liver tissues from patients with varying stages of NAFLD (n = 12). The
resulting metabolomic data were subjected to routine statistical and ML-based analyses and multi-
omics interpretation with RNA-seq data. We found 6 metabolites that were significantly altered
in NAFLD among 79 detected metabolites. Random-forest and multinomial logistic regression
analyses showed that eight metabolites (glutamic acid, cis-aconitic acid, aspartic acid, isocitric acid, α-
ketoglutaric acid, oxaloacetic acid, myristoleic acid, and tyrosine) could distinguish the three groups.
Then, the recursive partitioning and regression tree algorithm selected three metabolites (glutamic
acid, isocitric acid, and aspartic acid) from these eight metabolites. With these three metabolites, we
formulated an equation, the MetaNASH score that distinguished NASH with excellent performance.
In addition, metabolic map construction and correlation assays integrating metabolomics data into
the transcriptome datasets of the liver showed correlations between the concentration of plasma
metabolites and the expression of enzymes governing metabolism and specific alterations of these
correlations in NASH. Therefore, these findings will be useful for evaluation of altered metabolism in
NASH and understanding of pathophysiologic implications from metabolite profiles in relation to
NAFLD progression.

Keywords: nonalcoholic steatohepatitis; nonalcoholic fatty liver disease; metabolomics; machine
learning; biomarkers
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is becoming a more burdensome disease
with a global prevalence of between 20–40% depending on the population and up to 90%
in obese people [1]. NAFLD is a multifactorial disease that includes it from mild steatosis
to nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), which may
progress to cirrhosis and finally to hepatocellular carcinoma [2]. Up to 25% of patients with
NAFL progress to NASH, with further progression to cirrhosis in 9–25% of patients with
NASH [3,4]. Early diagnosis and therapeutic intervention are primary unmet needs in the
management of NAFLD. Currently, a liver biopsy is required for the diagnosis of NASH
and the monitoring of its progression, which is not widely applicable in routine clinical
care for metabolic diseases and NAFLD [5]. Thus, methods for the noninvasive evaluation
of NAFLD progression have been intensively studied. Imaging markers, blood biomarkers,
and clinical scores have been introduced for these purposes, and some have been partially
validated [6,7].

Using magnetic resonance (MR)-based techniques, we have constructed our own algo-
rithm to predict the progression of NAFLD [6,8,9]. In our previous study [8] and an ongoing
study thereafter, we found that the combination of MR imaging–proton density fat fraction
(MRI-PDFF) and MR elastography-liver stiffness assessment (MRE-LSM) performed well
in the identification of NASH with an area under the receiver operating characteristic
(AUROC) curve value of 0.958 [95% confidence interval (CI) 0.909–1.000] at cutoff values
of 16.8% and 3.8 kPa, respectively. However, MR-based techniques are expensive and not
widely available to both patients and physicians. Current laboratory tests and clinical
scoring systems have suboptimal accuracy in the identification of NASH [6].

Omics technologies and timely applications of machine learning (ML) and artificial
intelligence techniques can rapidly process enormous amounts of data, providing an unbi-
ased approach for the identification of biomarkers and therapeutic targets of NAFLD [10].
Thus, blood biomarker searching using high-throughput technologies, such as genomics,
transcriptomics, proteomics, and metabolomics, has been an area of intensive research [11].
Metabolomics, which is the systematic study of small molecules in body fluids or tissues,
holds promise for obtaining new insights into pathophysiologic processes, especially in
metabolic diseases [12]. Therefore, to differentiate NASH from non-NASH, several reports
have shown increases in some lipid metabolites including 11(S)-hydroxyeicosatetraenoic
acid, which is a nonenzymatic oxidation product of arachidonic (20:4) acid [13], bile salt
metabolites (glycocholate, taurocholate, and glycochenodeoxycholate), [14,15] chondroitin
sulfate [16], amino acids (AAs) and their metabolites, [7,15] including γ-glutamyl pep-
tides [15], branched-chain AAs (BCAAs) [7,15,17], glutamic acid, 2-hydroxyglutarate, the
alanine/pyruvate ratio [7,15,17,18], and short-chain acylcarnitine metabolites including
propionylcarnitine and 2-methylbutyrylcarnitine [15]. Decreased circulating levels of glu-
tathione and related metabolites [15], serine and glycine [7,16], betaine [19], and lysophos-
phatidylcholines [7,15] in patients with NASH in comparison to non-NASH subjects were
also reported. Additionally, a study reported different metabolome signatures according to
subtypes of NASH [20]. However, these biomarkers have not been validated systematically
and many biomarkers overlap between NAFLD and other metabolic diseases and between
NAFLD stages [15,21]. Thus, in many metabolomics studies, NAFL and NASH could
not be separated confidently [15]. More comprehensive and multiparametric approaches
seem to be required to identify NASH and its progression accurately [11], considering that
metabolic data are high-throughput and very complex and cover a wide range of analyte
types and that the liver is a major regulator of whole body metabolism under various
conditions. ML approaches in the interpretation of metabolomic data will be helpful for
overcoming challenges in finding relevant metabolites for the accurate identification of
NASH [22]. Here, we performed targeted metabolomics analyses with ML approaches for
data interpretation to identify plasma biomarkers that differentiate NASH and non-NASH
groups in a cohort that included healthy control subjects and patients with NAFLD at
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varying stages of progression. We also aimed to develop a diagnostic index for NASH
based on metabolites that we found to be related to NAFLD progression.

2. Materials and Methods
2.1. Study Subjects

Metabolomic analyses were performed on a cohort of 86 subjects. The study subjects
were eligible from a pooled cohort of four parent studies: (1) a study involving healthy
control subjects without liver biopsy; (2) a study involving patients with NAFLD who
volunteered for an MR-based NAFLD study, with some having liver biopsy data; (3) a study
involving a bariatric surgery cohort with liver biopsy results; and (4) a study of living
liver transplant donors with liver biopsy results. Through our previous study [8] and
ongoing study thereafter, we established an algorithm combining MRI-PDFF and MRE-
LSM parameters for the discrimination of NASH. Based on this algorithm, in the present
study, the 86 study subjects were classified into healthy control (n = 25), NAFL (n = 42),
and NASH (n = 19) groups. The healthy controls were required to have an MRI-PDFF less
than 5% and normal results of liver function and other biochemical tests even without
liver biopsy, including AST < 40 U/L and ALT < 35 U/L in males and AST < 40 U/L
and ALT < 25 U/L in females. Study subjects were considered to have NASH if they had
(1) an NAFLD activity score (NAS) ≥ 4 upon liver biopsy or (2) MRI-PDFF ≥16.1% and
MRE-LSM ≥ 3.8 kPa in cases who did not receive liver biopsy. The other subjects with
steatosis based on MRI-PDFF (≥5%) were considered to have NAFL. These subjects were
determined eligible based on a study involving patients with NAFLD who volunteered
for an MR-based NAFLD study, with some having liver biopsy data based on clinical
indications. The ages of the study subjects were required to be between 19 and 70 years
of age. Excessive alcohol consumption (>20 g/day for women and >30 g/day for men),
evidence of another coexisting liver or biliary disease other than NAFLD, usage of drugs
known for causing secondary hepatic steatosis within one year, and any conditions that
could influence patient competence or participation as defined by the principal investigator
were all exclusion criteria. The four parent studies were conducted in accordance with the
Declaration of Helsinki and approved by the Institutional Review Board of the Gachon
University Medical Center. All participants signed a written informed permission form, and
all parent studies were logged on the website of the national center for medical information
and knowledge (NCMIK) (https://cris.nih.go.kr (accessed on 16 June 2020)) in accordance
with the International Clinical Trials Registry Platform.

2.2. Clinical and Laboratory Evaluation

Various clinical and laboratory data were collected in the studies, as detailed previ-
ously [8]. After an overnight fast, blood samples were collected on the same day or within
days of the imaging studies or several days before liver biopsy to examine multiple markers
and perform regular blood biochemical tests, which included liver function, a complete
blood count with a platelet count, albumin, glucose, insulin, hemoglobin A1c (HbA1c), lipid
panels, complement factors C3 and C4, and the enhanced liver fibrosis (ELF) test. Sample
processing and measurement details are available in the supplementary material. On the
same day as the imaging examinations, body fat and lean body mass were quantified using
the dual energy X-ray absorptiometry (DXA) technique (GE Healthcare, Wauwatosa, WI,
USA). Other clinical indices and scores were computed as discussed previously [8].

https://cris.nih.go.kr
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2.3. Imaging Biomarker Studies

The hepatic MRI-PDFF and MRE-LSM were measured with a 3-T scanner (MAG-
NETOM Skyra; Siemens Healthineers, Erlangen, Germany) using an 18-channel body
matrix coil and table-mounted 32-channel spine matrix coil, as detailed previously [8]. As
previously described, TE was conducted with FibroScan 502 (Echosens, Paris, France) by
a certified technician who was blinded to the clinical and histological data [8]. All imaging
studies were performed on the same day or within several days of blood sampling and just
before bariatric surgery or liver biopsy (on the same day or several days before).

2.4. Liver Tissue Sampling and Analyses

Liver biopsy and tissue sampling were performed on 12 study participants in the
cohort which included parent studies involving participants during bariatric surgery, donor
liver resection for liver transplantation, and percutaneous liver biopsy procedures due to
abnormal liver function. The liver tissues were analyzed as described previously [8]. The
Nonalcoholic Steatohepatitis Clinical Research Network histologic scoring method was
used to provide histological grading, which included NAS and fibrosis stages [23]. RNA
sequencing (RNA-seq) analyses were performed on 12 liver samples from study subjects
with a spectrum of NAFLD stages. Transcripts per million mapped reads were used for
mRNA expression.

2.5. Metabolomics Analysis

For the metabolomics study using plasma samples from study subjects, profiling anal-
yses of fatty acids (FAs), organic acids (OAs) and AAs were performed by GC-MS/MS as
tert-butyldimethylsilyl (TBDMS)-, methoxime (MO)-TBDMS-, and ethoxylcarbonyl (EOC)-
TBDMS derivatives, respectively, as previously described [24,25]. Profiling analyses of
kynurenine pathway metabolites, nucleosides, and AAs were performed by LC-MS/MS us-
ing our platforms as detailed previously [24]. Further detailed descriptions of each analysis,
sample preparation, and data processing are also available in the supplementary material.

2.6. Star Pattern Recognition Analysis

The levels of AAs, kynurenine pathway metabolites, nucleosides, OAs, and FAs were
calculated using calibration curves. Finally, the mean values of each metabolite in the
NAFL and NASH groups were adjusted to the corresponding mean values of the control
group to normalize them. Each normalized value was represented by a line emanating
from the same center point [26,27].

2.7. Identification of Potential Biomarkers and Related Metabolic Pathways

Partial least squares discriminant analysis (PLS-DA), a supervised machine learning
tool, was performed for multivariate statistical analysis to distinguish the three groups
and search biomarker candidates. The analysis was performed with log-transformed
and autoscaled data. To identify the top-ranked altered pathways and depict signifi-
cant biomarkers altered in NAFL and NASH, the metabolite set enrichment analysis and
pathway analysis were conducted using Metaboanalyst (https://www.metaboanalyst.ca
(accessed on 10 February 2021)).

2.8. Machine Learning and Multinomial Logistic Regression

Anonymized clinical data, including imaging and blood biomarker data, were col-
lected along with metabolomics data from 89 participants. For comparison with our novel
diagnostic index, we also calculated clinical scores such as Fibrosis-4 (FIB-4) and the NAFLD
fibrosis score (NFS). Plasma metabolomics data comprised 79 metabolites, which included
AAs, nucleosides, OAs, FAs, and others. To establish an ML model differentiating NASH,
NAFL, and healthy control statuses, we executed a random forest (RF) algorithm with
tuned optimal parameters through a 10-fold cross validation (CV) and Leave-One-Out
Cross-Validation (LOOCV) method using the R package caret as described previously [28].

https://www.metaboanalyst.ca
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We randomly split the dataset into training and test sets with proportions of 75% and
25%, respectively. Thus, the datasets for ML to distinguish healthy and NAFL subjects
were divided into 51 training sets and 16 test sets. The datasets of participants in the
healthy and NASH groups were split into 34 training sets and 10 test sets, and data sets
from the NAFL and NASH groups were divided into 47 training sets and 14 test sets. We
excluded one outlier sample from a patient with NASH in aspartic acid data analysis (out-
lier value = 382.4 µg/µL) and the mean and median values of aspartic acid in 60 patients
with NAFLD after the exclusion were 25.4 µg/µL and 16.9 µg/µL, respectively, before
performing ML.

To evaluate the performance of the ML model, we determined the accuracy, kappa, and
F1-score based on the AUROC curve and selected the top feature by comparing all values
generated from different numbers of selected features (i.e., f79, f64, f32, f16, f8, and f4). We
also assessed multinomial logistic regression (MLR) to build a best-fit model to predict the
probability of NASH from RF-featured plasma metabolites. Additionally, we determined
statistical significance using the computed coefficients and standard deviation (SD) with
a two-tailed z test. To identify ML-featured plasma metabolites and their concentrations,
we produced a decision tree using R.

To perform ML including data processing, MLR, and decision tree construction, we
used RStudio (v4.0.2) with R (v 1.3.1073) containing R packages including dplyr, stringr,
reshape2, naniar, skimr, caret, pROC, multipleROC, MLmetrics, Nnet, Rpart, and Rattle.

2.9. Multinomial Logistic Regression-Based Feature Selection

We also assessed multinomial logistic regression (MLR) to build a best-fit model to
predict the probability of NASH from RF-featured plasma metabolites [29]. Additionally, we
determined statistical significance using the computed coefficients and standard deviation
(SD) with a two-tailed z test. To indicate NASH diagnostic capacity, green windows are
displayed from the point where the probability of NAFL and NASH cross, as the probability
of healthy control converges to 0 in the MLR plots.

2.10. Decision Tree-Based Feature Selection

To identify ML-featured plasma metabolites and their concentrations, we produced
a decision tree (DT) using R package version 4.1–15. (https://CRAN.R-project.org/
package=rpart (accessed on 7 June 2021)). In the DT, the method was set to “class” to
compute the probability of each node forming a classification tree. The input data are then
8 RF-featured metabolites.

To perform ML including data processing, MLR, and DT construction, we used RStu-
dio (v4.0.2) with R (v 1.3.1073) containing R packages including dplyr, stringr, reshape2,
naniar, skimr, caret, pROC, multipleROC, MLmetrics, Nnet, Rpart, and Rattle.

2.11. Formulation of metaNASH Score

The score was calculated by assigning weights to the three important features obtained
through the decision tree. There are two approaches: strengthening importance by giving
high weight to features with high importance and balancing importance by giving high
weight to features with low importance. We chose to balance the importance of features by
reflecting the feature selection findings using ML and MLR.

Weight (w) = 2(i−1) (i = rank)
f = the concentration o f f eatured metabolites (mg/L)

Diagnostic index(score) =
n
∏
i=1

f w (n = the total number o f f eatures)

MetaNASH = log10

(
[Aspartic acid]1 × [Isocitric acid]2 × [Glutamic acid]4

)

https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=rpart


Biomedicines 2022, 10, 1669 6 of 25

2.12. Statistical Analysis

Continuous variables are represented by the mean and standard deviation, while
categorical variables are represented by the frequency (%). Statistical analyses of all datasets
were performed and visualized with R. First, using the Shapiro Wilk test we evaluated the
normality of all data to determine the appropriate statistical method. The Shapiro Wilk
test indicated variations from the Gaussian distribution in some variables. Therefore, we
chose to use nonparametric tests. Then, we applied either the Wilcoxon rank-sum test to
examine two groups or the Kruskal-Wallis test to examine three groups using the R package
ggpubr or Metaboanalyst. To overcome the multiple test problem, p values obtained from
the Kruskal-Wallis test were adjusted by the false discovery rate (FDR) test.

The first and third quartiles of the data are indicated by the upper and bottom edges
of the box, respectively, while the median is indicated by the center line. The whisker’s
top and bottom edges represent the data’s maximum and minimum values. Visualization
of metabolite and gene expression (heatmap), Spearman’s correlation (correlogram), and
the gene network were assessed with the R packages including ggpubr, ggplot2, igraph,
corrr, corrplot, dplyr, tidyverse, ggraph, egg, and reshape2 as indicated previously [30,31]. All
reported p values are two-sided and were considered statistically significant at <0.05.

3. Results
3.1. Characteristics of Participants

The demographics and clinical laboratory data obtained from the study cohort are
summarized in Table 1. As anticipated, subjects with NAFLD showed significant difference
compared to the control group in the majority of parameters.

Table 1. Demographic and clinical characteristics of the study subjects.

Characteristics Control
(n = 25)

NAFL
(n = 42)

NASH
(n = 19) p-Values

Age (years) 35.2 (15.3) 43.2 (15.7) † 41 (16.2) 0.11
Sex (male/female) 15/10 19/23 12/7 NA

Weight (kg) 65.9 (10.2) 84.4 (18.5) ††† 104.3 (29.4) ###, ** <0.001
BMI (kg/m2) 23.2 (2.9) 30.6 (5.9) ††† 35.5 (7) ###, ** <0.001

Waist circumference (cm) 79.9 (6.8) 100.6 (14.7) ††† 113.5 (15.8) ###, ** <0.001
SBP (mmHg) 128.7 (18.3) 128.6 (14.4) 130.2 (14.1) 0.93
DBP (mmHg) 82.8 (12) 85.2 (9.4) 87.2 (12.3) 0.3

AST (U/L) 20.4 (5.5) 42.8 (45.1) ††† 87.1 (58.1) ###, *** <0.001
ALT (U/L) 18.4 (7.4) 62.3 (78.3) ††† 118.8 (100.3) ###, * <0.001
GGT (U/L) 18.3 (8.2) 45.7 (32.1) ††† 96.7 (58.8) ###, *** <0.001

Total cholesterol (mg/dL) 189.3 (33.9) 194.5 (35.6) 180.9 (38.6) 0.4
HDL-C (mg/dL) 59.3 (14.2) 50.5 (11.2) †† 49.4 (27.2) ## <0.05

Triglycerides (mg/dL) 97.1 (46.6) 156.6 (110.1) †† 190.2 (110.9) ### <0.001
White blood cell (×109/L) 5.4 (1.6) 6.6 (2) †† 7.6 (2.2) ## <0.05

Platelet (×109/L) 244.1 (59.1) 267.6 (73.2) 242.2 (94.2) 0.28
Hemoglobin A1c (%) 8.7 (16.5) 6.4 (1.8) †† 7.6 (1.9) ###, ** <0.001

Glucose (mg/dL) 86.5 (18.3) 108.3 (31.9) †† 129.8 (57) ###, * <0.001
Insulin (µU/mL) 6.8 (3.8) 17.6 (16.1) ††† 27.9 (17.6) ###, ** <0.001

HOMA-IR 1.6 (1) 4.2 (3.9) ††† 7.9 (5.2) ###, ** <0.001
C3 (mg/dL) 94.9 (30.5) 125.9 (43.4) ††† 154.3 (26.1) ###, * <0.001
C4 (mg/dL) 24.7 (5.5) 28 (8.2) 29.5 (11.4) 0.24
ELF score 8.2 (0.8) 8.8 (0.9) † 9.7 (0.8) ###, *** <0.001

Liver MRI-PDFF (%) 3.4 (0.8) 12.6 (6.6) ††† 23.2 (10) ###, *** <0.001
MRE-LSM (kPa) 3.1 (0.6) 3.4 (0.7) 5.2 (1) ###, *** <0.001



Biomedicines 2022, 10, 1669 7 of 25

Table 1. Cont.

Characteristics Control
(n = 25)

NAFL
(n = 42)

NASH
(n = 19) p-Values

NFS −0.4 (0.8) 0.4 (1.6) † 1.4 (2.8) ## <0.05
FIB-4 0.7 (0.4) 1.0 (0.7) 2.4 (3.2) ## <0.05

Data are expressed as the mean (SD) or n (%), unless otherwise specified. Abbreviations: SBP, systolic blood
pressure; DBP, diastolic blood pressure; GGT, gamma-glutamyl transpeptidase; HDL-C, high-density lipoprotein
cholesterol; HOMA-IR, homoeostatic model assessment of insulin resistance; C3, complement component 3; C4,
complement component 4; ELF, enhanced liver fibrosis. p values from the Kruskal-Wallis test are presented in
the last column. The statistical significance of each variable of the NASH group compared to the control and
NAFL groups was evaluated by post hoc analysis. †, p < 0.05; ††, p < 0.01; and †††, p < 0.001 for NAFL vs. healthy
controls: ##, p < 0.01, and ###, p < 0.001 for NASH vs. healthy control: and *, p < 0.05; **, p < 0.01; and ***, p < 0.001
for NASH vs. NAFL. NA: Not Available.

3.2. Results of Metabolomics Analyses

A total of 79 metabolites (33 AAs, 4 kynurenine pathway metabolites, 4 nucleosides,
18 OAs, and 20 FAs) were detected by GC-MS/MS and LC-MS/MS in plasma samples from
the healthy control, NAFL, and NASH groups. The plasma levels of the 79 metabolites are
presented in Table S1.

3.3. Plasma Metabolite Profiling and Univariate Analyses

In the NAFL group, five AAs (alanine, valine, glutamic acid, tyrosine, and α-aminoadipic
acid), kynurenic acid, three OAs (2-hydroxybutyric acid, 3-hydroxypropionic acid, and
α-ketoglutaric acid), and four FAs (myristoleic acid, palmitoleic acid, α-linolenic acid,
and docosapentaenoic acid) were significantly increased compared to those in the healthy
control group. However, hexacosanoic acid and glycine were significantly decreased in the
NAFL group compared to the healthy control group (Table S1).

In the NASH group, six AAs (alanine, valine, aspartic acid, glutamic acid, tyrosine,
and 3-methylhistidine), kynurenic acid, 12 OAs (pyruvic acid, acetoacetic acid, glycolic
acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, 3-hydroxypropionic acid, oxaloacetic
acid, α-ketoglutaric acid, malic acid, 2-hydroxyglutaric acid, cis-aconitic acid, and isocitric
acid), and four FAs (myristoleic acid, palmitoleic acid, γ-linolenic acid, and α-linolenic acid)
were significantly increased compared to those in the healthy control group. However, 1-
methylhistidine and erucic acid were significantly decreased in the NASH group compared
to the healthy control group.

In the NASH group compared to the NAFL group, glutamic acid and three OAs
(oxaloacetic acid, α-ketoglutaric acid, and isocitric acid) were significantly increased, while
erucic acid was significantly decreased (Table S1).

Among the metabolites, six AAs (alanine, valine, aspartic acid, glutamic acid, ty-
rosine, and α-aminoadipic acid), kynurenic acid, seven OAs (2-hydroxybutyric acid, 3-
hydroxybutyric acid, 3-hydroxypropionic acid, oxaloacetic acid, α-ketoglutaric acid, malic
acid, and cis-aconitic acid), and three FAs (myristoleic acid, palmitoleic acid, and α-linolenic
acid) were significantly increased (p < 0.05), while glycine was significantly decreased
(p < 0.05) in the NAFL and NASH groups compared to those of the control group. With
an additional FDR test, we confirmed that six metabolites of two AAs (glutamic acid, and
tyrosine), kynurenic acid, α-ketoglutaric acid, and two FAs (myristoleic acid, and palmi-
toleic acid) among these 18 metabolites were significantly different in the NAFL and NASH
groups compared to those of the control group. These six metabolites are presented in
Table 2.
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Table 2. Plasma levels of six significantly different metabolites in the control, NAFL, and
NASH groups.

Plasma Metabolites
(ng/µL)

Control
(n = 25)

NAFL
(n = 42)

NASH
(n = 19)

Normalized
Values a Kruskal-Wallis Test

NAFL NASH p Values Q Values b

Glutamic acid 6.52 ± 2.47 12.74 ± 6.45 ††† 15.88 ± 6.36 ###, * 1.95 2.43 <0.001 <0.001
Tyrosine 20.15 ± 9.59 28.21 ± 18.65 †† 32.41 ± 19.79 ### 1.40 1.61 0.001 0.015

Kynurenic acid 0.005 ± 0.006 0.010 ± 0.009 ††† 0.009 ± 0.006 ## 1.88 1.70 0.001 0.015
α-Ketoglutaric acid 1.70 ± 0.56 2.63 ± 1.32 †† 3.71 ± 1.85 ###, * 1.54 2.18 <0.001 0.004

Myristoleic acid (C14:1) 0.13 ± 0.08 0.22 ± 0.15 †† 0.31 ± 0.19 ### 1.74 2.50 <0.001 0.004
Palmitoleic acid (C16:1) 3.26 ± 1.87 5.53 ± 3.97 †† 7.18 ± 5.16 ## 1.69 2.20 0.004 0.048

Data are expressed as the mean ± SD. The full list of plasma metabolites identified in the targeted metabolomics
analyses is presented in Table S1. a, normalized to the corresponding control mean values. b, p values adjusted by
the FDR. The statistical significance of each variable of the NASH group compared to the control and NAFL groups
was evaluated by post hoc analysis. ††, p < 0.01; and †††, p < 0.001 for NAFL vs. healthy controls: ##, p < 0.01, and
###, p < 0.001 for NASH vs. healthy control: and *, p < 0.05 for NASH vs. NAFL.

3.4. Identification of Potential Biomarkers and the Construction of Metabolic Pathways

The metabolite profiles are presented as a heatmap in Figure 1A and as an enlarged
heat map in Figure S1. In particular, six metabolites (glutamic acid, tyrosine, kynurenic
acid, α-ketoglutaric acid, myristoleic acid, and palmitoleic acid) were significantly different
between the three groups. Glutamic acid, tyrosine, α-ketoglutaric acid, myristoleic acid,
and palmitoleic acid gradually increased according to disease progression from NAFL
to NASH (Table 2 and Figure 1B). In supervised learning, PLS-DA was performed to
identify biomarker candidates, and cross validation indicated that five metabolites were the
most predictive of NAFLD progression. The PLS-DA score plot showed slight separation
between three groups with a correlation coefficient (R2), accuracy, and cross-validation
correlation coefficient (Q2) of 0.753, 0.533, and 0.341, respectively (Figure 1C). In the
PLS-DA, the variable importance point (VIP) score was used for discrimination between
the three groups (Figure 1D). Among the 79 metabolites, glutamic acid, myristoleic acid
(C14:1), α-ketoglutaric acid, 3-hydroxypropionic acid, tyrosine, palmitoleic acid (C16:1),
kynurenic acid, cis-aconitic acid, isocitric acid, malic acid, alanine, 3-hydroxybutyric acid,
2-hydroxybutyric acid, glycolic acid, acetoacetic acid, aspartic acid, docosanoic acid (C22:0),
α-linolenic acid (α-C18:3), pyruvic acid, 2-hydroxyglutaric acid, γ-linolenic acid (γ-C18:3),
valine, and oleic acid (C18:1) showed VIP scores >1.0, suggesting that they were major
contributing metabolites for discrimination of the three groups.

Plasma levels of the 79 metabolites were subjected to pathway and enrichment analyses
based on the library of Homo sapiens (Kyoto Encyclopedia of Genes and Genomes, KEGG),
and the relevant metabolic pathways are shown in Figure 1E. Pathways with a calculated
pathway impact value (>0.1) were considered potential target pathways. In the NAFL
group compared to the healthy control group, pathways involving glutamine/glutamate
metabolism, alanine/aspartate/glutamate metabolism, arginine/proline metabolism, argi-
nine biosynthesis, and phenylalanine/tyrosine/tryptophan biosynthesis were selected as
potential target pathways (Figure S2A). In the NASH group compared to the healthy group,
the glutamine/glutamate metabolism, alanine/aspartate/glutamate metabolism, arginine
biosynthesis, the tricarboxylic acid (TCA) cycle, and arginine/proline metabolism path-
ways were selected as potential target pathways (Figure S2B). In the NASH group against
the NAFL group, glutamine/glutamate metabolism, the TCA cycle, arginine biosynthesis,
alanine/aspartate/glutamate metabolism, and ketone body metabolism were selected as
potential target pathways (Figure 1E).
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Figure 1. Bioinformatics analyses on plasma metabolite data in the healthy, NAFL, and NASH groups.
(A) Hierarchical clustering heatmaps showing the normalized plasma metabolite levels (Z scores) of
all participants (left) and mean levels of Z scores in each study group (right). (B) Scatter plot of the
Kruskal-Wallis test. (C) PLS-DA score plot of the study groups. (D) Variable importance in projection
(VIP) plot. (E) Bubble plots of altered metabolic pathways related to changes in plasma metabolites
in the NASH group versus the NAFL group.
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3.5. Star Pattern Recognition Analysis

The levels of 79 metabolites in the NAFL and NASH groups were normalized to the
corresponding mean levels of the control group. The resulting data are more informative
when comparing the levels of altered metabolites (ranging from 0.62 to 2.84) to the control
group. Therefore, the different star graphic patterns of the metabolites were expected to
be useful for visual discrimination of the three groups. The normalized values of 33 AAs,
4 kynurenine pathway metabolites, 4 nucleosides, 18 OAs, and 20 FAs were used to draw
star graphs with their respective numbers of rays. The differences between the NAFL,
NASH, and control groups were shown as visual star patterns. In the tritriacontagon-
shaped star pattern for AAs (Figure 2A), among 33 plasma AAs of the 79 metabolites,
glutamic acid was the metabolite that was most increased in the NAFL and NASH groups—
by 95% and 143%, respectively—compared to the control group. The 4-hydroxyproline
level showed the most prominent decrease in plasma of the NAFL and NASH groups,
decreasing by 33% and 38%, respectively, compared to the control group (Figure 2A). In
the star pattern of octagonal shape for kynurenine pathway metabolites and nucleosides
(Figure 2B), kynurenic acid was the metabolite that showed the most prominent increase
in plasma of the NAFL and NASH groups, by 88% and 70%, respectively, compared to
the control group. In the star pattern of octadecagonal shape for OAs (Figure 2C), among
the 18 OAs, 16 OAs, excluding malonic acid and citric acid, were increased in the NAFL
and NASH groups compared with the control group. In the star pattern of eicosagonal
shape for the 20 FAs (Figure 2D), the myristoleic acid level was the most increased in the
NAFL and NASH groups, increasing by 74% and 150%, respectively, compared to the
control group.

Figure 2. Star symbol plots of the study groups. The plots were drawn using the mean values of
the study groups for 33 AAs (A), 4 kynurenine pathway metabolites and 4 nucleosides (B), 18 OAs
(C), and 20 FAs (D) after normalization to the corresponding mean value of each metabolite in the
control group.
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3.6. Random Forest Algorithm-Based Modeling Predicts Metabolites That Distinguish the
Progression of NAFLD

In addition to initial metabolomics data processing by routine statistical methods, we
implemented ML methods to find metabolite-based biomarkers that distinguish patients
with NASH, patients with NAFL and/or healthy subjects. First, we used the RF algorithm,
which is an ensemble learning method that randomly generates multiple decision trees dur-
ing training and is one of the most widely used algorithms for biomarker discovery [22,32].
We conducted RF modeling with a ten-fold cross validation method to establish several
classifiers between NAFL vs. healthy controls, NASH vs. healthy controls, and NASH
vs. NAFL. As detailed in the methods section, all datasets used for ML modeling were
split randomly into 75% training and 25% test sets. To obtain the optimized classifier, we
sequentially computed from the maximum of 79 combinations to the minimal combinations
comprising four features (metabolites) (Figure 3A–C). The classifier of NAFL vs. healthy
controls by combining eight features (f8) generated an AUROC curve of 0.900 (95% CI: 0.854,
0.947) (Figure 3A). In the discrimination of patients with NASH from healthy control sub-
jects, the AUROC curve values of all computed classifiers were higher than 0.960, and the
classifier containing four features provided the highest AUROC curve (0.990) (Figure 3B).
However, the AUROC curve values of the NASH vs. NAFL classifier were relatively lower
than those of other between-group classifiers, with the highest AUROC curve of 0.849
with features comprising four metabolites (Figure 3C). To predict optimal classifiers and
assess the performance of the RF models in healthy control-NAFL-NASH discrimination,
we also computed the accuracy (blue curve), F1-score (green curve), AUROC curve value,
and kappa value (purple curve in the separated plots) of each classifier (Figure 3D). The
overall accuracies and F1 scores displayed similar trends to the AUROC curve values.
However, in distinguishing NASH and NAFL, the accuracy and F1-score decreased slightly
while the AUROC curve value increased as the number of features in the model increased.
After considering accuracies, F1-scores, AUROC curve values, and kappa values, eight
metabolites (f8) for NAFL vs. healthy controls, four metabolites (f4) for NASH vs. healthy
controls, and eight metabolites (f8) for NASH vs. NAFL discrimination were selected as
the representative classifiers. The metabolites in each classifier are presented as boxplots in
Figure 3E–G. Only glutamic acid was a common classifier in the three comparative analy-
ses. Among the NAFL versus healthy control classifier metabolites (f8), four metabolites
(α-aminoadipic acid, glutamic acid, glycine, and myristoleic acid) were significantly differ-
ent between the NAFL group and the control group, but the other four metabolites were
comparable between the two groups, although ML modeling selected all eight metabolites
(Figure 3E). Among the featured metabolites, glutamic acid, α-ketoglutaric acid, myristoleic
acid, and tyrosine were increased significantly in the NASH group compared to the healthy
control group (Figure 3F). Glutamic acid, isocitric acid, α-ketoglutaric acid, and oxaloacetic
acid were higher in the NASH group than in the NAFL group, while plasma levels of
cis-aconitic acid, aspartic acid, 2-hyroxyota decanoic acid, and 4-hydroxphynyl lactic acid
were comparable between the two groups (Figure 3G). Collectively, the RF models for
each binary group format featured fourteen metabolites, among which only six metabolites
(i.e., glutamic acid, isocitric acid, α-ketoglutaric acid, oxaloacetic acid, myristoleic acid, and
tyrosine) were significantly elevated in the NASH group compared to either the healthy
control or NAFL group. We further performed modeling with the LOOCV method to
distinguish between patients with NASH and NAFL (Figure S3). It consistently proposed
the same features that the ten-fold CV selected.
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Figure 3. Predictive power of RF classification models and the comparison of metabolite abundances
of RF-featured metabolites between groups. (A–C) AUROC curves of RF classification models for
distinguishing the study groups: (A) NAFL vs. control; (B) NASH vs. control; and (C) NASH
vs. control. (D) The predictive power of the classification models evaluated by AUROC curves,
accuracies, F1-scores, and kappa values. (E–G) Boxplots showing the abundance of RF-featured
classifier metabolites: (E) NAFL vs. control classifiers; (F) NASH vs. control classifiers; and (G) NASH
vs. NAFL classifiers. Each scatter dot in the boxplots represents the concentration of each subject. The
Wilcoxon rank sum test was used to determine significant differences between two groups. *, p < 0.05;
**, p < 0.01; and ***, p < 0.001 between groups.
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3.7. Multinomial Logistic Regression Analysis Identified Eight Plasma Metabolites

To further optimize the fourteen RF-featured metabolites, we conducted multinomial
logistic regression (MLR). First, we calculated the probability of eight metabolites from
RF modeling predicting the three conditions according to their plasma concentrations
and clinical parameters (MRI-PDFF, C3, NFS, and FIB-4) (Figure 4A,B). The probabilities
of the prediction of NAFL and NASH versus healthy controls, respectively, were also
estimated (Figure S4). The probability of the MLR models was visualized with each line-
plot showing three curves for the healthy control (gray), NAFL (red), and NASH (blue)
groups. The green window in each line plot presents the range with accurate NASH
diagnostic capability. The green windows of the MLR plots indicate the variable diagnostic
performance (the width of the green window) in discriminating NASH from NAFL or
healthy control states. Six metabolites, cis-aconitic acid, aspartic acid, glutamic acid,
isocitric acid, α-ketoglutaric acid, and oxaloacetic acid, corresponded to green windows
among the eight RF-predicted metabolites for discriminating NASH and NAFL states,
which was similar to other diagnostic indices. Only glutamic acid and myristoleic acid
generated green windows with acceptable widths among the eight RF-predicted metabolites
separating NAFL from the healthy control state (Figure S4A), while four RF-predicted
metabolites (glutamic acid, α-ketoglutaric acid, myristoleic acid, and tyrosine) performed
well in distinguishing NASH from the healthy control state in MLR modeling (Figure S4B).
Notably, increased plasma levels of 2-hydroxybutyric acid and 4-hydroxyphenyl lactic acid
were associated with a higher probability of NAFL (red curve) than NASH (blue curve)
across the detectable ranges (Figure 4A). Together, the eight metabolites (cis-aconitic acid,
aspartic acid, glutamic acid, isocitric acid, α-ketoglutaric acid, oxaloacetic acid, myristoleic
acid, and tyrosine) generated acceptable green windows, in which the MLR probability
of NASH was higher than that of both healthy individuals and patients with NAFL,
revealing the diagnostic power of the fourteen RF-featured metabolites. The NASH group
presented higher concentrations of all eight metabolites than the healthy control group,
while the subjects with NASH had significantly higher plasma concentrations of four
metabolites (glutamic acid, isocitric acid, α-ketoglutaric acid, and oxaloacetic acid) than
patients with NAFL (Figure 4C). Only two metabolites (glutamic acid and α-ketoglutaric
acid) showed consistent and gradual increases in plasma according to NAFLD progression.
In a parallel MLR analysis, we also calculated the probability of four clinical parameters
predicting NASH versus NAFL (Figure 4B). We have used the four parameters applied in
the assessment of NAFLD to reflect the progression of steatosis (MRI-PDFF), inflammation
(C3), and fibrosis (NFS and FIB-4) [6,33].
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Figure 4. Multinomial logistic regression (MLR) estimating the performance of RF-featured metabo-
lites and clinical parameters, including MRD-PDFF, C3, NFS, and FIB-4 in the discrimination of the
three groups. MLR curves showing the probability of eight RF-featured metabolites (A) and of clinical
parameters (B) discriminating NASH vs. NAFL. Green windows indicate the zone distinguishing
NASH from non-NASH. (C) Boxplots showing the abundance of eight MRL-selected metabolites
in the control, NAFL, and NASH groups. Significance was evaluated by the Kruskal-Wallis test.
***, p < 0.001; **, p < 0.01; *, p < 0.05.
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3.8. Decision Tree Algorithm Defined the Three Most Critical Plasma Metabolites, Distinguishing
Patients with NAFL from Those with NASH

In terms of good diagnostic indices, not only their sensitivity and specificity but also
their economy and simplicity are critical. To achieve this goal, we further optimized the
eight MLR-selected metabolites, which are presented in Figure 4C, by recursive parti-
tioning and regression tree (RPRT) methods to predict NASH. The input data were eight
RF-featured metabolites (cis-aconitic acid, aspartic acid, glutamic acid, 2-hydroxybutyric
acid, 4-hydroxyphenyllactic acid, isocitric acid, α-ketoglutaric acid, and oxaloacetic acid)
(Figures 3G and 4A). The optimized decision tree distinguishing NASH from NAFL in-
dicated that three metabolites (aspartic acid, isocitric acid, and glutamic acid) were suf-
ficient to discriminate patients with NASH from control subjects or patients with NAFL
(Figure 5A).

Figure 5. Development of the MetaNASH score as a diagnostic index for NASH. (A) Decision trees
summarizing the process of ML-based selection of three essential features identifying patients with
NASH. (B) AUROC curve highlighting the performance of the MetaNASH score. (C,D) Comparison
of the predictive power of the MetaNASH score and other clinically applicable parameters. Scatter (C)
and bar (D) plots comparing the predictive power of each diagnostic factor.
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3.9. MetaNASH Score: A Metabolite-Based NASH Diagnostic Tool with Acceptable Performance

We generated the following formula by assigning weights from the bottom of the
optimized decision tree and including the three metabolites as we described in the method
Section 2.11 and named it the “MetaNASH score” (Figure 5B). Among the approaches
presented in the method Section 2.11, the AUROC obtained by giving high weight to
features with high importance was 0.719, and the AUROC obtained by giving high weight
to features with low importance was 0.821. Aspartic acid was, in fact, the feature with the
highest importance obtained through the decision tree. The boxplot analysis revealed no
significant difference in the concentration of aspartic acid between the NAFL and NASH
groups (Figure 3G). Thus, we believe that the formula for computing the diagnostic index
using the approach of balancing importance is quite reasonable.

MetaNASH = log10

(
[Aspartic acid]1 × [Isocitric acid]2 × [Glutamic acid]4

)
In our cohort, MetaNASH scores ranged from 1.78 to 7.79. The mean (SD) values in the

three experimental groups were 3.20 (0.84) in the healthy group, 4.44 (1.10) in the NAFL
group, and 5.25 (0.72) in the NASH group. Since the optimal value proposed by AUROC
analysis for models including multiple predictors should be applicable in clinical practice,
our strategy was to minimize the chance of false negatives. For this purpose, the point
with the highest specificity was selected as the optimal value among cases with the highest
sensitivity in multiple modeling, which was the same point obtained by Youden’s J index
method [34]. Thus, the optimal cutoff value of 4.543 (AUROC = 0.821, F1 score = 0.746 and
kappa = 0.478) for the MetaNASH score achieved 72% accuracy. At least in our cohort, the
MetaNASH score with this cutoff level did not miss any NASH cases (Figure 5B).

We compared the MetaNASH score system to other parameters (i.e., C3, NFS, and
FIB-4). The green dotted line of each scatter plot displays the cutoff value of each diagnostic
index for NASH in our own algorithm: 4.543 for the MetaNASH score, 175 for the serum C3
level, and −1.46 for the NFS (Figure 5C) [6]. The MetaNASH score, C3, and FIB-4 classified
2, 0, and 1 healthy participants as patients with NASH, while the NFS classified 22 healthy
control subjects as patients with NASH. Among 19 patients with NASH, the MetaNASH
score successfully identified all cases, whereas C3, NFS, and FIB-4 correctly identified 5,
16, and 7 cases, respectively. Next, we compared the AUROC curve, accuracy, F1-score,
and kappa values of all diagnostic indices. The MetaNASH score had better or comparable
performance and reliability compared to the other parameters (Figure 5D).

Since BMI, insulin, and glucose levels were significantly altered in patients with NASH
compared to patients with NAFL (Table 1), we investigated whether BMI, glucose, and
insulin levels impact the MetaNASH score (Table 3). After resampling NAFL and NASH
patients with similar BMI, insulin, and glucose levels, the performance of the MetaNASH
score was tested. With a MetaNASH score of 4.543, it was possible to distinguish patients
with NASH from patients with NAFL.

Table 3. The predicting accuracy of the MetaNASH score in NAFL and NASH patients with similar
BMI, insulin, and glucose levels.

Group Mean ± SD Mean of
MetaNASH Score Accuracy F1 Score

BMI

NAFL
(n = 23) 31.73 ± 2.64 4.326

0.6765 0.6857NASH
(n = 11) 32.26 ± 2.54 5.275

Insulin

NAFL
(n = 19) 14.52 ± 2.15 4.328

0.7083 0.7742NASH
(n = 5) 13.87 ± 2.21 5.799
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Table 3. Cont.

Group Mean ± SD Mean of
MetaNASH Score Accuracy F1 Score

Glucose

NAFL
(n = 33) 95.46 ±8.45 4.305

0.7273 0.7778NASH
(n = 11) 101.0 ± 9.91 5.150

3.10. The MetaNASH Score Performed Better Than the GSG Index and Glutamic Acid/Glutamine
Ratio in the Discrimination of NASH

The glutamate–serine–glycine (GSG) index (glutamate/(serine + glycine)) [35] and
glutamate/glutamine ratio [36] were reported to distinguish NASH from non-NASH. Thus,
we compared the MetaNASH score with the GSG index and glutamic acid/glutamine ratio
in our whole cohort without separation into training and test sets. As shown in Figure 6,
both the GSG score and the glutamic acid/glutamine ratio were comparable between the
NAFL and NASH groups, and their performances in the discrimination of NASH were
also lower than that of the MetaNASH. However, the MetaNASH score was higher in the
NASH group than in the control and NAFL groups. When we reassess the performance
of the MetaNASH score in the whole cohort without splitting into training and test sets,
the AUROC curve of the MetaNASH score for the discrimination of NASH was 0.877, with
a cutoff value of 4.55.

Figure 6. Comparisons of the MetaNASH score, the GSG index, and the glutamic acid/glutamine
ratio between the study groups and their performance in the discrimination of NASH. (A) MetaNASH
scores, GSG index values, and glutamic acid/glutamine ratios in the study groups. Data are expressed
as the mean ± SD. The statistical significance of each variable of the NASH group compared to the
control and NAFL groups was evaluated by post hoc analysis. †, p < 0.05; and ††, p < 0.01 for NAFL
vs. control: #, p < 0.05; and ##, p < 0.01 for NASH vs. control: *, p < 0.05 for NASH vs. NAFL.
(B) Performance of the MetaNASH score, the GSG index, and the glutamic acid/glutamine ratio in
distinguishing NASH in the whole cohort.
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3.11. Metabolic Remodeling in NASH Was Associated with Altered Gene Expression Profiles in
the Liver

To expand our understanding of the association between NASH and eight ML-featured
plasma metabolites, we performed multi-omics analysis using metabolomics and transcrip-
tome datasets. First, we summarized the plasma metabolomics using eight ML-selected
features. As expected, the plasma levels of the eight ML-featured metabolites increased
gradually from the healthy to NAFL to NASH states (Figure 7A). Then, we analyzed a pub-
licly available dataset from RNA-seq analysis of 10 healthy control subjects, 51 patients
with NAFL, and 155 patients with NASH, which was generated by Govaere et al. (NCBI
GEO GSE135251) [37]. After obtaining the whole expression profiles from the RNA-seq
data, we selected and summarized the expression profiles of genes that directly govern the
biochemical pathways of the eight ML-featured metabolites (i.e., ML-featured metabolite-
associated genes, MAGs). The expression of all MAGs, which encode enzymes directly
catalyzing reactions involving the eight metabolites, was altered in NASH livers. Eleven
genes (i.e., DLD, IDH2, CS, DLST, MDH2, ACO2, IDH3G, OGDH, PCK2, ACO1 and PC)
were increased, while nine genes (i.e., IDH3A, MDH1, MDH1B, GOT2, PCK1, GLUD1,
GOT1, IDH1 and TAT) were reduced in the NASH state (Figure 7B). In particular, the
expression of genes involved in de novo lipogenesis (DNL) was significantly increased
in NAFL and NASH except for ACACA (Figure 7C). However, the trend of hepatic gene
expression in relation to fatty acid β-oxidation (FAO) was not homogenous. The expression
of only 6 genes (ACAA2, ACADL, ACADM, CPT1A, ACAT1, and HADHB) among 16 genes
that we selected was reduced in the NASH state, while the remaining 10 genes showed
increasing patterns in NAFL and NASH. We constructed an integrated metabolic map of
NAFLD based on the metabolomics results from the present study (Figure 7D). Although
this metabolic map summarized metabolic remodeling during NAFLD progression into
the same dimension using information from the circulation (metabolome) and liver (tran-
scriptome), the abundances of plasma metabolites and their related hepatic transcripts
were significantly correlated and reflected disease progression in the liver. As shown
in the metabolic map, the majority of the featured genes and metabolites were elevated
in both NAFL and NASH. Interestingly, in the NASH liver, most genes governing mito-
chondrial metabolism were generally upregulated, whereas genes regulating metabolism
in the cytoplasm were downregulated. To identify genes specifically altered in NASH,
we also performed RNA-seq on liver tissues from patients with NAFLD (n = 12). Then,
we classified the patients into two groups based on the NAS (NAS < 4 or ≥ 4). Among
20 genes belonging to MAGs, 16 genes were elevated in patients with NAS ≥ 4 (Figure 7E,
top). In patients with NAS ≥ 4 compared to the patients with NAS < 4, three DNL genes
were upregulated, while nine FAO genes were downregulated (Figure 7E, bottom). To
further identify NASH-specific altered genes, we assessed commonly altered genes related
to the NASH state between our RNA-seq data and the dataset of Govaere et al. (NCBI
GEO GSE135251) [37]. A total of 7 genes among the 20 MAGs, 3 DNL genes, and 9 FAO
genes were altered by the same patterns in both datasets (Figure 7F), implying that these
genes are closely associated with NASH. In addition, two network analyses visualizing
coexpression (based on Spearman’s Rho) in the non-NASH (NAS < 4) and NASH (NAS ≥ 4)
states showed their own remarkable association patterns (Figure 7G,H). In the non-NASH
state, the MAGs, DNL and FAO genes were tightly associated and expressed together
with positive (blue edges) or negative (red edges) correlations. However, the total number
of edges reflecting coexpression was reduced in the livers of patients with NASH. New
patterns of strong positive or negative associations were generated, which implied that
dysregulation of these metabolic genes in and around mitochondria could be a dominant
driver of specifically altered metabolism in patients with NASH.
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Figure 7. Multi-omics analyses presenting NASH-specific associations between ML-featured metabo-
lites and their metabolic pathway-related genes. (A) Heatmap presenting the relative abundance
of 8 ML-featured metabolites. (B) Heatmaps visualizing the relative expression of genes encoding
enzymes governing metabolic pathways of ML-featured metabolites (MAGs). (C) Heatmaps visualiz-
ing the relative expression of genes involved in hepatic DNL and FAO. The gene expression profiles
presented in (B,C) are from the RNA-seq dataset (GSE135251) described in the “Results” section.
(D) Integrative metabolic map summarizing the associations of ML-featured metabolites and their
associated genes with NAFLD progression. (E) Heatmaps displaying the expression levels of hepatic
transcripts of MAGs, DNL, and FAO in our own RNA-seq data according to NAFLD progression
(NAS < 4 (n = 7) versus NAS ≥ 4 (n = 5). (F) Venn diagram summarizing commonly altered genes
between the two datasets (our dataset and the public dataset). Red and blue arrows indicate up-
and down-regulated gene expression in subjects with NASH compared to subjects without NASH,
respectively. (G) Coexpression analysis in subjects with NAS < 4 (non-NASH) and (H) NAS ≥ 4
(NASH) based on Spearman’s correlation. Correlations with an absolute Rho above 0.8 or more are
only visualized as edges. A blue edge indicates Rho ≥ 0.8, and a red edge indicates Rho ≤ −0.8 with
statistical significance.
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4. Discussion

Noninvasive accurate biomarkers for the diagnosis of NASH/fibrosis and the iden-
tification of NAFLD progression are urgently needed, and these biomarkers should also
be measurable in serial assessments of the same patients with NAFLD with or without
comorbidities. ML has been introduced to analyze metabolomics data and has provided im-
pressive predictive competencies [22]. These ML tools apply distinct strategies for statistical
analyses to yield the best performance in the identification of NASH from non-NASH.

In the present study, we performed plasma metabolomics analysis in healthy control
subjects and patients with NAFLD to obtain a metabolic signature that reflects the pro-
gression of NAFLD and distinguishes NASH from non-NASH. We determined 79 plasma
metabolites, including AAs, kynurenine pathway metabolites, nucleosides, OAs, and FAs,
in the study subjects using GC-MS/MS and LC-MS/MS. Six metabolites (glutamic acid,
tyrosine, kynurenic acid, α-ketoglutaric acid, myristoleic acid, and palmitoleic acid) were
significantly different between the three groups, with five metabolites, except for kynurenic
acid, increasing gradually according to progression from control to NAFL to NASH. How-
ever, these five plasma metabolites were suboptimal for the discrimination of NASH from
NAFL or controls. Thus, by applying multiple ML methods to the interpretation of plasma
metabolomics data, we tried to define a set of metabolite biomarkers that better distin-
guished NASH from NAFL and healthy controls. RF and MLR analyses showed that eight
metabolites (glutamic acid, cis-aconitic acid, aspartic acid, isocitric acid, α-ketoglutaric acid,
oxaloacetic acid, myristoleic acid, and tyrosine) could distinguish the three groups. The
RPRT algorithm led to the final set of three metabolites (glutamic acid, isocitric acid, and
aspartic acid). With the three selected metabolites, we developed an excellent metabolomics
index for the discrimination of NASH, the MetaNASH score, which gave glutamic acid
a weight corresponding to the fourth power of the plasma concentration and assigned
a weight corresponding to the second power of the plasma level to isocitric acid. The
MetaNASH score had an AUROC curve value of 0.877 at a cutoff value of 4.55 in the whole
cohort analysis. In addition, we integrated our metabolome data into RNA-seq datasets and
constructed a map of metabolism in relation to NASH, which showed specific and altered
patterns of associations between the concentration of plasma metabolites and hepatic gene
expression of enzymes governing energy metabolism including the TCA cycle, DNL, and
mitochondrial metabolism.

Although metabolic stimulation of hepatocytes can increase the expression of AST and
ALT genes, the mitochondrial isotype protein expression and intracellular activities of the
two enzymes were reported to be decreased, whereas extracellular release increased with
stimulation [18]. Circulating levels of AST, ALT, and gamma glutamyl transferase (GGT) do
not accurately reflect the presence and progression of steatosis or NASH [18,35,38]. Thus,
it would be reasonable to determine whether there are any measurable metabolites that
better reflect hepatic responses according to NAFLD progression.

NAFLD, diabetes, insulin resistance (IR), and obesity usually share common patho-
physiology. Thus, circulating levels of BCAAs, aromatic AAs, and other AAs, such as
glutamate, alanine, and aspartate, have been shown to be increased under these condi-
tions [18,35,36,39,40], while glycine and serine were found to be decreased [35,39]. In
the present study, glutamic acid and α-ketoglutaric acid showed consistent and gradual
increases in plasma according to NAFLD progression in both statistical analysis and ML-
based modeling analyses. The mean plasma concentrations (±SDs) of glutamine acid in
the control, NAFL, and NASH groups were 6.52 (2.47) µg/mL, 12.74 (6.45) µg/mL, and
15.88 (6.36) µg/mL, respectively, while those of α-ketoglutaric acid were 1.70 (0.56) µg/mL,
2.63 (1.32) µg/mL, and 3.71 (1.85) µg/mL, respectively. The increase in glutamic acid along-
side other AAs suggested a higher rate of whole-body protein turnover, increased transam-
ination of AAs, and increased oxidative stress with the progression of NAFLD [15]. Plasma
α-ketoglutarate has been shown to be increased in obesity and NAFLD [21]. Metabolic
imbalance with mitochondrial dysfunction in these conditions can cause an increase in
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plasma α-ketoglutarate levels from the early stage of disease, probably representing a com-
pensatory mechanism [21,41].

Glutamate is involved in many transaminase reactions, including ALT, AST, and
GGT, in the synthesis of glutathione, and in the urea cycle and related metabolite flow
pathways [18,36,42,43]. In the study of a genome-wide metabolic model for hepatocytes,
glutamate was the most connected node in the appearance of NASH [16]. In addition,
glutaminolysis is a critical pathway of metabolic reprogramming for actively remodeling
tissues in that glutamine via glutamate and α-ketoglutarate conversion contributes to TCA
cycle activity to power cells [36,44]. Gaggini et al. [35] analyzed AA profiles in addition to
the measurement of euglycemic insulin clamp IR indices in subjects with NAFLD without
diabetes and healthy control subjects and developed a new glutamate–serine–glycine (GSG)
index (glutamate/(serine + glycine)). In their report, the GSG index correlated with hepatic
IR, mildly with HOMA-IR, but not with peripheral IR and was associated with ballooning
and/or inflammation in liver biopsy and was able to discriminate fibrosis F3-4 from F0-2 in
the examined cohort [35]. These three AAs were also reported to be altered with NASH
progression in the study involving genome-scale metabolic model for hepatocytes [16].
However, this index was not validated in a recent study, in which the glutamate/glutamine
ratio correlated with NASH [36]. The study performed by Du K et al. [36] showed that
hepatic stellated cell (HSC) glutamine metabolism is also important for NASH and fibrosis
progression in NAFLD. They showed a decrease in glutamine and an increase in the
glutamate/glutamine ratio in serum from animal models of CCl4-induced fibrosis and diet-
induced NASH and from patients with NASH [36]. Furthermore, a recent study showed
that glutamate also directly acted on HSCs via metabotropic glutamate receptor 5, which
led to increased production of 2-arachidonoylglycerol (2AG) [45]. Additionally, 2AG can
stimulate lipogenesis and fibrosis via cannabinoid receptor 1 [45,46]. A metabolic flux
study integrated with transcriptomic data, in which metabolites were measured across the
human splanchnic vascular bed in patients with NAFLD, showed net uptake of cysteine,
glutamine, serine, proline, threonine, tyrosine, alanine, glycine, ornithine, and others into
the liver and net export of palmitate, triglyceride, cholesterol, and glutamate from the liver
in both basal and euglycemic hyperinsulinemic states [39]. Thus, the abovementioned
studies and our results indicate that glutamate is a concrete metabolite biomarker that
reflects a decreased metabolic adaptability in NAFLD.

When we calculated the GSG index and glutamic acid/glutamine ratio in our cohort,
their performance in differentiating NASH from non-NASH was suboptimal, in contrast
to previous reports [35,36]. Our MetaNASH score showed excellent performance in the
discrimination of NASH in the present study. These findings suggest that the study design
and study subjects might also affect metabolite profiles. Our MetaNASH formula also
included weighted isocitrate and non-weighted aspartic acid. Isocitrate is an intermediate
metabolite involved in the glutaminolytic reaction, citrate export, transformation to α-
ketoglutarate, and NADPH shuttling during metabolic stress and cell proliferation [47]. In
addition, isocitrate dehydrogenase (IDH) is a key rate-limiting enzyme in the TCA cycle,
which seems to be in line with the changes in hepatic IDH gene expression and the increase
in plasma isocitrate in patients with NASH in the present study. Citrate/isocitrate may
be an important player in NAFLD in that citrate promotes oxidative stress, acting as the
strongest stimulator in the presence of iron via the Fenton reaction [48]. Thus, in our dataset
and public transcriptome datasets, genes governing citrate/isocitrate/α-ketoglutarate
pathways showed common changing patterns in NASH, supporting the feasibility of
isocitrate as a biomarker. Aspartic acid is closely related to AA metabolism, which is
initiated by aminotransferases with glutamate and α-ketoglutarate as reaction partners.
AST transfers the glutamate amino group to oxaloacetate to produce aspartate [42], which
suggests that aspartate is also a large node.

In the present study, metabolite profiles from the ML algorithms included metabolites
that fuel the TCA cycle or are exported from the TCA cycle for lipogenesis and other path-
ways. However, in contrast to the literature [35,49,50], our results showed that circulating
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BCAAs were not associated with NAFLD progression in the present study, indicating
that elevated BCAAs are rather metabolic features related to peripheral IR, particularly
in muscle [35]. Decreased BCAA catabolism in muscle and adipose tissue can increase
circulating BCAA levels, and the increased BCAAs can be used as substrates for lipogenesis
in zone 3 hepatocytes [51]. In line with this view, it was reported in a splanchnic metabolic
flux study that insulin increased the net uptake of BCAAs in the liver [39]. We observed
that tyrosine is increased with the progression of NAFLD. Increased tyrosine was relatively
consistently reported and shown to be correlated with systemic and hepatic IR [35]. These
findings suggest that extrahepatic factors, such as sarcopenia, adiposity, and IR, also need
to be considered when evaluating metabolomics data in NAFLD. In our cohort, the study
subjects were relatively young and many patients with NAFLD were planning to receive
bariatric surgery.

In multiomics analyses, we observed that ML-featured MAGs were altered in NASH
livers, with a significantly increased expression of genes involved in DNL. The patterns
of the expression of FAO-related genes were not homogenous, but with an increase in
plasma isocitrate and changes in other gene expression patterns, suggested decreased FAO
in the mitochondria in NASH. Interestingly, the abundances of plasma metabolites and
their related hepatic transcripts were significantly correlated, and the genes of MAGs,
DNL and FAO were tightly associated and positively or negatively correlated with each
other. We observed that these correlation patterns were altered characteristically in NASH,
implying dysregulation of these metabolic genes in and around mitochondria. Taken
together, circulating metabolite profiles could reflect specific information originating from
the liver harboring the altered gene expression profiles observed in this study.

One of the strengths of the present study is that we measured a broad spectrum of
metabolites and analyzed the metabolomics results with multiple ML-based algorithms.
Thus, we could profile eight metabolites with discriminative features for NASH. Second,
we developed an innovative metabolomics index to distinguish NASH with excellent
performance. The study limitations also need to be addressed. First, the majority of study
subjects were not classified according to the biopsy results, but were classified according
to our algorithm based on the combination of clinical data and imaging biomarkers in the
majority of cases. However, the NASH definition in the present study definitely indicates
a progressive form of NAFLD, considering the MRE cutoff value of 3.8 kPa [8], suggesting
that the MetaNASH score can at least identify a progressive form of NAFLD. Second, we
focused on the metabolites selected in ML-based algorithms and constructed a metabolic
map based on the selected metabolites. Other metabolites might be selected upon variations
in the study design, study population, and sample size [16,35,36].

In conclusion, our ML-based algorithm might capture the metabolic features of NAFLD
progression well, and our MetaNASH score optimally distinguished the progression of
NAFLD. Further study on the metabolites and their associated pathways in relation to
NASH progression and validation of the MetaNASH score through independent cohort
studies are warranted.
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