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ABSTRACT
The fact that many cancer types display transcriptional addiction driven by dysregulation of
oncogenic enhancers and transcription factors has led to increased interest in a group of protein
kinases, known as transcriptional cyclin dependent kinases (tCDKs), as potential therapeutic
targets. Despite early reservations about targeting a process that is essential to healthy cell
types, there is now evidence that targeting tCDKs could provide enough therapeutic window to
be effective in the clinic. Here, we discuss recent developments in this field, with an emphasis on
highly-selective inhibitors and the challenges to be addressed before these inhibitors could be
used for therapeutic purposes.
Abbreviations: CAK: CDK-activating kinase;CDK: cyclin-dependent kinase;CMGC group: CDK-,
MAPK-, GSK3-, and CLK-like;CTD: C-terminal repeat domain of the RPB1 subunit of RNA polymer-
ase II;DRB: 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole;mCRPC: metastatic castration-resistant
prostate cancer;NSCLC: non-small cell lung cancer;P-TEFb: positive elongation factor b;RNAPII:
RNA polymerase II;S2: serine-2 of CTD repeats;S5: serine-5 of CTD repeats;S7: serine-7 of CTD
repeats;SEC: super elongation complex;tCDK: transcriptional cyclin-dependent kinase;TNBC: triple-
negative breast cancer
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Introduction

The cyclin-dependent kinases (CDKs) form an evolu-
tionarily distinct branch of the CMGC (CDK,MAPK,
GSK3 and CLK) group and possess several common
regulatory features including the requirement of cyclin
binding for activity, phosphorylation of the activating
T-loop by a CDK-activating kinase (CAK), and con-
trol by subcellular localization and/or allosteric bind-
ing partners [1,2]. Although originally discovered in
yeast based on their critical roles in regulating the cell
cycle, mammalian CDKs are comprised of subfamilies
with specialized functions related to the cell cycle
(CDK1, −2, −4, −6) or transcription regulation
(CDK7,−8,−9,−12,−13,−19) [2–4]. These important
roles in cell proliferation and gene expression, and the
deregulation ofmanyCDKs in cancer, havemotivated
considerable efforts aimed at therapeutic targeting of
the CDKs. With the exception of CDK7, which also
serves as a CAK, the roles of the transcriptional CDKs
(tCDKs) are largely distinct from those of the cell
cycle-relatedCDKs, and their functions and substrates
aremuch lesswell-understood. The recent recognition

of transcriptional addiction as a potential vulnerability
in many cancer types has led to increased interest in
this group of CDKs, despite earlier reservations about
targeting a process essential to all cells. Here, we dis-
cuss recent developments in this field, with an empha-
sis on highly-selective inhibitors and the challenges to
be addressed before these inhibitors could be used for
therapeutic purposes.

The RNAPII transcription cycle and tCDKs

Transcription of protein-coding genes by RNA poly-
merase II (RNAPII) proceeds via a “transcription
cycle” with distinct phases – initiation, pausing,
elongation, and termination – each of which is asso-
ciated with changes in the composition and activity
of the transcription machinery and associated regu-
latory factors. Genomic studies have helped to reveal
that promoter-proximal transcriptional pausing is
prevalent at metazoan genes and represents a key
regulatory event [5]. Importantly, dysregulation of
transcription is a hallmark of many cancer types [6].
The tCDKs are central to orchestration of the
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transcription cycle and its coordination with cotran-
scriptional processes such as RNA capping, splicing,
3ʹ end formation, export, and regulation of the chro-
matin landscape [7] (Figure 1). One of the best-
characterized tCDK substrates is the C-terminal
domain (CTD) of RPB1, the largest RNAPII subunit,
which is subject to sequential and dynamic phos-
phorylation of multiple residues within its 52 heptad
repeats (consensus YSPTSPS) as the transcription
cycle proceeds (reviewed in [8–11]).

In contrast to cell cycle CDKs, tCDKs associate
with their cyclin partners constitutively, and are
often recruited to chromatin as components of
much larger complexes, with defined patterns of
recruitment and T-loop phosphorylation [3].
Historically, only three CDKs were thought to be
involved in regulation of the transcription cycle in
humans. CDK7 (as part of the TFIIH general tran-
scription factor complex) was thought to primarily
control initiation and serve as the major kinase for
Serine-5 (S5) in the CTD repeats [12]. CDK9 (as part
of P-TEFb, the Positive Transcription Elongation
Factor b) was thought to primarily control elongation
and serve as the major CTD Serine-2 (S2) kinase [13];
and CDK8 was thought to repress transcription by
preventing association of the Mediator coactivator
complex with RNAPII and by phosphorylating
TFIIH [14,15]. This early view has evolved consider-
ably due to recent research, and it is now clear that
there is significant crosstalk among tCDKs, and that
each kinase impacts multiple phases of the transcrip-
tion cycle in a context-dependent fashion as discussed

below [7,16,17]. The identification of three additional
tCDKs adds further complexity to this evolving pic-
ture: CDK19 is a paralog of CDK8 with non-redun-
dant functions that also associates with the Mediator
complex [14,18]; and CDK12 and CDK13 can phos-
phorylate the CTD at S2, S5, and Serine-7 (S7), with
differing effects on the transcriptome [19–21]. While
our understanding of the tCDKs continues to evolve,
the field has been hampered by various limitations of
the experimental approaches employed. For example,
knockdown or knockout studies are subject to the
effects of losing scaffold functions and/or compensa-
tion by related proteins, and small molecule CDK
inhibitors which were once thought to be specific
have later been revealed to affect multiple CDKs
[21–23]. These issues have led to contradictory
reports about the contributions of the tCDKs to
RNAPII CTD phosphorylation, and whether each
tCDK regulates RNAPII activity globally [21,24].
Although the focus of this review is on recent devel-
opments in therapeutic targeting of the tCDKs, the
development and adoption of well-characterized che-
mical probes and drug-like compounds with
improved selectivity will provide essential tools for
resolving the specialized functions of the tCDKs.

Early therapeutic efforts

Unrestrained cell proliferation is a hallmark of can-
cer and, due to their central role in cell cycle control,
many cancers deregulate the activity of one or more
CDKs, commonly through cyclin overexpression or
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Figure 1. Summary of the major known roles of the transcriptional CDKs during the RNAPII transcription cycle. Black circles denote
positive roles, grey circles denote indirect roles of CDK7 (via phosphorylation of CDK9), and the open circle denotes the kinase-
independent inhibitory effect of CDK8 on Mediator-RNAPII interaction and preinitiation complex formation. Not depicted are CDK19
or the phosphorylation of transcription-related targets such as transcription factors.
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silencing of CDK inhibitors [25]. In the last
~ 20 years numerous small molecule CDK inhibitors
have been developed as potential therapeutics and
tested inmultiple cancer types and clinical trials [26].
Early efforts to develop CDK inhibitors were focused
on targeting cell cycle CDKs, which we will briefly
discuss, but we refer readers to [26] for in-depth
discussion. First-generation pan-CDK inhibitors
such as flavopiridol (alvocidib, active against
CDK1, −2, −4, −6, −7, −9) and R-roscovitine (selici-
clib, active against CDK1, −2, −5, −7, −9), and even
second-generation inhibitors such as dinaciclib
(active against CDK1, −2, −5, −9) showed promising
results in in vitro models but have displayed largely
disappointing results in clinical trials, with the excep-
tion of certain hematological malignancies [26–28].
Several inter-related factors have likely contributed
to the lack of effectiveness of pan-CDK inhibitors
[26,27]: 1) a poor understanding of mechanisms of
action -including which CDK(s) are inhibited in vivo
and a consequent inability to accurately measure
target engagement; 2) a lack of biomarkers of sensi-
tivity and thus no selection of patients by cancer type
or genetic features; 3) limited therapeutic windows
-due to pan-CDK inhibition and/or low potency.
These factors make a strong case for development
and thorough characterization of CDK inhibitors
with greater potency and selectivity. Indeed, results
with inhibitors of CDK4/6 have been more encoura-
ging and three such compounds (palbociclib, riboci-
clib, abemaciclib) are now FDA-approved for
treatment of certain types of breast cancer, with
further clinical trials ongoing in other cancer types
[26,29]. In the following sections, we will focus on
rationales for targeting the tCDKs and on recent
efforts to develop selective tCDK inhibitors as cancer
therapeutics.

CDK7

Among the tCDKs, CDK7 has perhaps the most
diverse functions. The minimal complex comprised
of CDK7, CCNH,MAT1 complex serves as the CAK
for essentially all cell cycle CDKs, as well as CDK9
and CDK11, and as a critical component of the 10-
subunit TFIIH complex that plays an essential role in
transcription by RNAPI/II and nucleotide excision
repair (reviewed in [30]).

During transcription by RNAPII, CDK7/TFIIH is
the last of the general transcription factors to be
recruited to the preinitiation complex where it phos-
phorylates the CTD, at S5 and S7, and TFIIE
[22,30,31]. For some time, it has been generally
accepted that CDK7 activity is required for initiation,
wherein CTD phosphorylation is thought to desta-
bilize the interaction between RNAPII andMediator,
thus facilitating promoter escape [32–34]. However,
recent evidence suggests that this is not the only
function of CDK7, as inhibition with the covalent
inhibitor THZ1 (see below) has little effect on initia-
tion in vitro but rather results in decreased DSIF and
NELF recruitment [35], consistent with other reports
[22,36]. CDK7 inhibition also affects capping, paus-
ing, elongation, and termination, largely through
phosphorylation of both the CTD and the CDK9
activation T-loop [22,24,35,37]. Finally, CDK7 activ-
ity affects chromatin modification during transcrip-
tion by facilitating recruitment of histone
methyltransferases SETD1A/B and SETD2 through
CTD phosphorylation and/or by activation of
CDK9/P-TEFb [24]. In addition to SPT5, TFIIE,
and the CTD, CDK7 phosphorylates several tran-
scription factors including p53 and multiple nuclear
hormone receptors (RAR, RAR, AR, ER) to promote
their full activation and subsequent degradation [38].
Despite this relative paucity of known substrates, it is
likely that additional phosphorylation targets contri-
bute to the functions of CDK7 in transcription and
other processes.

Validity of CDK7 as a therapeutic target

Regulation of the cell cycle, transcription, and
DNA repair are all critical for rapidly proliferating
cells. Interestingly, deletion of Cdk7 in mouse
embryonic fibroblasts causes cell cycle arrest with-
out an accompanying reduction in bulk CTD S5
phosphorylation, suggesting the existence of
redundant/compensatory kinase activity [39]. In
vivo, Cdk7 loss causes early embryonic lethality
and in adult mice leads to depletion of stem cell
pools in proliferative tissues but has little effect on
non-proliferating tissues [39]. In keeping with a
role in maintaining high rates of proliferation,
elevated CDK7 expression has been observed in
gastric, breast, and hepatocellular cancers [40–43].
Many cancer types rely on high-levels of
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transcription, commonly driven by oncogenic
transcription factors and/or so-called super-
enhancers that are especially sensitive to perturba-
tion [6,44,45], and promising results have now
been reported for CDK7 inhibitors in various can-
cer types. Finally, several pathogenic viruses pro-
duce proteins that modulate TFIIH activity [30].
For example, the HIV Tat protein can recruit and
activate CDK7 to help drive transcription of the
viral genome [46,47]. Accordingly, inhibition of
CDK7 appears to have broad-spectrum antiviral
activity [48]. Thus, despite the important role of
CDK7 in processes essential to all cells, a thera-
peutic window may exist for targeting CDK7 in
cancer, and potentially other pathologies.

Available CDK7 inhibitors

In addition to the early-generation pan-CDK inhi-
bitors with activity against CDK7, several classes of
small molecule compounds with improved selec-
tivity towards CDK7 have been described
(Table 1). Here we give a brief overview of the
development and selectivity of some of these com-
pounds, and a summary of their therapeutic
potential as determined by preclinical and/or clin-
ical testing.

BS-181 and ICEC0942
BS-181 is a pyrazolopyrimidine derivative with
side chains based on the pan-CDK inhibitor ros-
covitine [49]. In vitro testing against various
kinases indicates excellent selectivity for CDK7
over other CDKs and additional kinases and
growth inhibitory activity was demonstrated
against multiple cancer cell lines (breast, lung,
prostate, and colorectal) [49]. BS-181 treatment
inhibited phosphorylation of CTD S5, as well as
CTD S2 and RB (retinoblastoma protein), cell
cycle analysis indicated G1 accumulation, and
apoptosis was apparent at higher concentrations
(≥ 25µM). In a mouse MCF7 xenograft model,
intraperitoneal injection resulted in dose depen-
dent growth inhibition of 25–50% over 14 days
with no apparent toxicity. However, BS-181 was
rapidly cleared and bioavailability was low, indi-
cating the need for further refinement of pharma-
cological properties [49].

Recently, in silico modeling of BS-181 and
related compounds with the crystal structure of
CDK7 led to the development of ICEC0942, an
analog of BS-181 with improved cell permeability
and oral bioavailability [50,51]. ICEC0942 inhib-
ited growth of all NCI-60 cancer cell lines, with a
median GI50 of 0.25 µM [51]. ICEC0942 treatment
produced dose-dependent inhibition of CTD (S2/
5/7) and RB phosphorylation in MCF7 cells and in
the colorectal carcinoma line HCT116, which was
especially sensitive to growth inhibition, and
reduced xenograft tumors of these cell lines by
~ 60% over 14 days. Treatment led to cell cycle
delay at G2M in both cell lines, with apoptotic
markers apparent by 24 hrs. The drug appeared
to be well tolerated in mice, however reduced
lymphocyte counts were observed. In December
2017, a phase I/II clinical trial of ICEC0942 as a
single agent was initiated by Carrick Therapeutics
(NCT03363893), with an estimated completion
date of December 2018.

LDC3140 and LDC4297
Kelso et al. [36] used the CDK7/Cyclin H/Mat1
complex to screen a compound library based on
BS-181 and other ATP-competitive kinase inhibi-
tor scaffolds to identify candidates that were then
subjected to medicinal chemistry optimization.
This led to the identification of the lead com-
pounds LDC3140 and LDC4297 with potent activ-
ity against CDK7 and selectivity against other
CDKs and kinases [36]. LDC3140 was shown to
inhibit CTD S5/S7 phosphorylation and transcrip-
tion in vitro, and steady-state mRNA expression in
A549 cells. Further analysis using ChIP- and qRT-
PCR confirmed effects on RNAPII distribution
across candidate genes and inhibition of nascent
transcript production in vivo [36]. Treatment of
A549, HeLa, and HCT116 cells with either com-
pound elicited an apoptotic response, and was
associated with cell type-specific G1/G2M delay
[36]. In addition to activity against cancer cell
lines, LDC4297 has also been demonstrated to
have activity against a range of pathogenic viruses
[48]. In this context, although LDC4297 displayed
varying levels of antiproliferative and cytotoxic
activity in primary human fibroblasts, these effects
were at higher concentrations than required for
antiviral activity [48].
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THZ1/THZ2
THZ1 is a phenylaminopyrimidine that acts as a
covalent inhibitor of CDK7 by modification of
cysteine-312 [52], and has been extensively validated
both in vitro and in cell-basedmodels. Although none
of the other CDKs possess a cysteine residue at the
equivalent position, CDK12 and CDK13 do have
cysteines within four amino acids, and THZ1 was
confirmed to inhibit CDK12 at slightly higher con-
centrations [52]. Treatment of T-ALL Jurkat cells with
250 nM THZ1, but not a non-reactive analog THZ1-
R, was shown to inhibit phosphorylation of CTD S5,
S7, and S2, as well as reducing T-loop phosphoryla-
tion of CDK1, −2, and −9 [52]. Expression of a CDK7
C312Smutant partially rescued these effects, confirm-
ing C312 as a critical target of THZ1. THZ1 was
subsequently screened against 1,000 cancer cell lines,
with over half showing IC50 values < 200 nM, and
sensitivity was associated with deregulation of onco-
genic transcription factors. Consistent with a core
gene expression network driven by misregulation of

transcription factors, THZ1 treatment of Jurkat cells
(250 nM) led to a global reduction in steady-state
mRNA levels and RNAPII occupancy at promoters
and gene bodies, with specific genes such as RUNX1
sensitive at lower concentrations (50 nM). RUNX1
expression is part of an auto regulatory loop that
drives its own expression and, in Jurkat cells, is asso-
ciated with a super-enhancer. Importantly, super-
enhancers are commonly acquired at oncogenic tran-
scription factor genes in cancer cells to drive high-
level expression [44] and are more sensitive to pertur-
bation of the transcriptional machinery than typical
enhancers or promoters [45].

In further support of the therapeutic potential
of targeting cancers driven by aberrant transcrip-
tion via CDK7, THZ1 has also proven to be effec-
tive in selectively targeting several other aggressive
cancer types in preclinical cell and mouse tumor
models, including MYCN-amplified neuroblas-
toma [53], small-cell lung cancer [54] and triple-
negative breast cancer (TNBC) [55,56].

Table 1. CDK inhibitors discussed in this review. * = where reported; note that different standards to define off-target binding and/
or effects may have been used by each study; 1 = In vitro kinase activity assay; 2 = Binding assay; 3 = In vivo kinase activity assay.
Target Name of Inhibitor Pubchem CID Other kinases* References (PMID)

Pan Flavopiridol/Alvocidib 5287969 multiple 24241210; 26521988; 15217973
Roscovitine/Seliciclib 160355 multiple 17179992; 20822897; 25747275
Voruciclib 67409219 multiple 29269,870
Dinaciclib/SCH-727965 46926350 multiple 27378523; 25578475; 24362465
Palbociclib 5330286 multiple 26030518; 25524798; 26324355

CDK7 BS-181 49867929 CK1 and DYRK1A2 19638587; 27042010
ICEC0942 (CT7001) 91844733 1 29545334
LDC3140 71731769 1 25047832
LDC4297 78161839 1 25624324; 25047832
THZ1 73602827 CDK12; CDK132 25043025
THZ2 78357763 2 26406377
YKL-1–116 - SRC; PRKCQ; CHEK2; FGR2,3 29020632
SY-1365 - -

CDK9 LDC000067/LDC067 25104564 GSK3A; MAP4K4; ABL2/ARG1,2 24102143; 28930680
i-CDK9 - DYRK1A; DYRK1B; PCTK1; PCTK2; PCTK32 26083714
BAY1143752/Atuveciclib 121488167 GSK3A; GSK3B1 28961375
BAY1251152 - -
NVP-2 66937006 DYRK1B2 29251720
THAL-SNS-032 - CDK103 29251720

CDK8/19 Cortistatin A 11561907 2 17765550; 19844931; 26416749
Senexin A 56927063 2 22869755
Senexin B 71661259 2 28147342
Compound 32 (COT series) - 1,2 26985305
Compound 20 and 21 - FLT31,2 27326333
CCT251921 74222277 PAR1BA2 26796641
CCT251545 77050682 GSK3A; GSKB1 25680029; 26502155
compound 42 (MSC series) - 26796641
MSC2530818 118879529 GSK3A2 27490956; 27935476
JH-VII-49 - NEK1; PIKFYVE2 29937979
JH-XI-10–02 133081965 29937979
SEL120-34A - 1 28422713

CDK12/13 THZ531 118025540 27571479
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Importantly, these studies demonstrated differen-
tial sensitivity to THZ1 over non-MYCN-ampli-
fied, non-small cell lung cancer (NSCLC), and
hormone receptor-positive breast cancer cell
lines, respectively, as well as non-transformed
human and mouse cell lines [45,53,54,56].

Several additional preclinical studies further high-
light the therapeutic potential of CDK7 inhibitors,
alone or in combination with other targeted agents.
High CDK7 mRNA and protein levels were found to
be correlated with poor prognosis in TNBC, and a
comparison of THZ1 and BS-181 demonstrated sen-
sitivity to CDK7 inhibition, with THZ1 having amore
potent effect on cell proliferation, apoptosis, and CTD
phosphorylation compared to BS-181 [43].
Interestingly, BH3 profiling indicated that CDK7
inhibition induced an increased dependency on the
anti-apoptotic proteins BCL-2 and BCL-XL.
Combination treatment with THZ1 and the BH3
mimetic ABT-263 gave synergistic inhibition of pro-
liferation and induction of apoptosis in multiple
TNBC cell lines [43]. Combinatorial treatment with
THZ1 and BH3 mimetics has also been reported to
produce synergistic growth inhibition in peripheral
T-cell lymphoma cell lines andmouse xenograftmod-
els [57]. Fisher and colleagues recently demonstrated
that inhibition of CDK7 in HCT116 cells synergizes
with non-genotoxic activation of p53 using MDM2
inhibitors to promote apoptosis [58]. Importantly,
combination treatment did not trigger apoptosis in a
non-transformed colon epithelial cell line [58].

In addition to THZ1, several additional covalent
CDK7 inhibitors have been developed with
improved pharmacodynamic properties (THZ2
[56]) and/or selectivity (YKL-1–116 [58] and SY-
1365). Both THZ1 and THZ2 are licensed to Syros
Pharmaceuticals which is currently running a
phase I clinical trial of SY-1365 (NCT03134638),
although few details are available.

CDK9

CDK9, first described as PITALRE based on its con-
served cyclin-binding peptide motif, is the human
ortholog of the budding yeast Bur1 and associates
with cyclins T1, T2a, T2b and K to form P-TEFb
[38]. Two CDK9 isoforms, CDK942 and CDK955, are
expressed from the CDK9 locus, thus giving rise to as
many as eight distinct P-TEFb heterodimers, the

functional significance of which have yet to be elu-
cidated [59]. The Price lab was the first to demon-
strate the role of P-TEFb in transcription and CTD
phosphorylation, using studies in Drosophila, and
early on P-TEFb was known to interact with the
HIV Tat protein to activate viral transcription [60–
62]. In addition to binding with its partner cyclins,
CDK9 requires phosphorylation at threonine-186
within its T-loop for activity, carried out by CDK7/
CAK in the context of transcription complexes, and
is subject to additional regulatory phosphorylations
and modifications [38]. CDK9 activity is further
regulated by association with various factors and
multi-subunit complexes. The 7SK snRNP complex
sequesters and inhibits a large fraction of P-TEFb
[63], that can then be released upon gene activation
by the action of factors such as KAP1 or BRD4 [64–
66]. The most transcriptionally active P-TEFb-con-
taining complexes are the super elongation complex
(SEC) and the BRD4-P-TEFb complex [5].
Furthermore, P-TEFb can also be recruited by tran-
scription factors, including MYC, MYOD, PPAR,
CIITA, and HIV Tat protein, to stimulate transcrip-
tion of their respective target genes [38]. These mul-
tiple modes of recruitment underscore the
importance of P-TEFb in transcription and the pre-
vailing model, established by Price et al., is that
CDK9 phosphorylates the NELF-E subunit of
NELF and the SPT5 subunit of DSIF, allowing the
release of promoter-proximal paused RNAPII into
the productive elongation phase [5]. Although this
model has largely held true, many details remain to
be elucidated, including the degree to which CDK9/
P-TEFb has global versus gene-specific effects on
transcription, and its preference for phosphorylating
S2 versus S5 in vivo [5,38].

Recently, a chemical genetics approach was used
to identify numerous additional putative substrates
of CDK9, which are enriched for factors involved
in transcription and RNA processing, including
the exoribonuclease XRN2 which was validated as
a bona fide target of CDK9 [67]. XRN2 is involved
in RNAPII transcription termination and phos-
phorylation by CDK9 enhances its enzymatic
activity. Inhibition or depletion of CDK9 leads to
decreased chromatin localization of XRN2 and
increased read-through transcription, clearly
implicating CDK9 in efficient transcription
termination.
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Validity of CDK9 as a therapeutic target

Initial interest in CDK9 as a therapeutic target in
cancer was based on: 1) data suggesting that inhibi-
tion of CDK9, rather than cell-cycle CDKs, was
required for cell death caused by pan-CDK inhibi-
tors such as flavopiridol and roscovitine [68,69]; 2)
its role in maintaining expression of short-lived anti-
apoptotic transcripts such as MCL1 and XIAP in
leukemias and other cancer types [68,69]; and 3)
the dysregulation of CDK9 during other diseases
and pathologies, including viral infection and car-
diac hypertrophy [68,70]. More recently, the concept
of transcriptional addiction in cancer has led to
renewed interest in CDK9/P-TEFb as a therapeutic
target that may offer selectivity over normal/
untransformed cells.

Dysregulation of CDK9/P-TEFb function is espe-
cially common in several hematological malignan-
cies driven by oncogenic fusions of theMLL gene on
chromosome 11. Many of the most frequent translo-
cation partners of MLL are components of the SEC,
resulting in aberrant recruitment of active CDK9 to
MLL target genes [71,72]. The transcription factor
c-MYC plays a key role in cellular proliferation and
MYC is one of the most frequently amplified onco-
genes in human tumors [73]. Importantly, c-MYC
can recruit CDK9/P-TEFb to facilitate transcrip-
tional pause-release, and overexpression of c-MYC
drives transcriptional amplification in tumor cells
[74,75]. In addition to copy number amplification,
high MYC expression is often driven by cancer spe-
cific super-enhancers, requiring both BRD4 and
CDK9/P-TEFb [76–78]. CDK9/P-TEFb can also be
directly recruited by additional transcription factors,
including androgen receptor in prostate cancer, and
NFKB or STAT3 during inflammation [68].

Available CDK9 inhibitors

Although both flavopiridol and the adenosine analog
5,6-dichloro-1-β-D-ribofuranosylbenzimidazole
(DRB) have historically been used to inhibit CDK9
activity for the study of transcriptional mechanisms,
these compounds suffer from a lack of specificity and
potency, which renders them unsuitable for thera-
peutic purposes and of limited use as chemical
probes. A large number of scaffolds/core structures
have been explored for the development of CDK9

inhibitors [79] and numerous compounds with
activity against CDK9 have been described
(Table 1). Unfortunately, for many of these com-
pounds there is a lack of data concerning their selec-
tivity over other tCDKs and their pharmacological
properties. We highlight here several compound
classes for which the available data appears promis-
ing and/or that are currently in clinical trials.

LDC067
One of the first compounds with improved CDK9
selectivity to be described, LDC067, is based on a 2,4-
aminopyrimidine scaffold and has 55–230-fold
selectivity over other CDKs [80]. LDC067 was
shown to inhibit transcription in vitro and treatment
of mouse ESCs and HeLa cells reduced CTD S2
phosphorylation levels. Treatment with LDC067
induced apoptosis in several cancer cell lines and
primary AML blasts, which was assumed to be due
to loss of short-lived apoptotic transcripts. Further
analysis confirmed dose-dependent depletion of pri-
mary transcripts and steady-state mRNA levels for
select genes, as well as increased RNAPII levels at the
5ʹ end of MYC, consistent with increased transcrip-
tional pausing. Unfortunately, LDC067 is ~ 20-fold
less potent against CDK9 than flavopiridol, indicat-
ing that further optimization is required.

i-CDK9
i-CDK9 is a more potent inhibitor of CDK9 and
was shown to be selective for CDK9 over several
other CDKs, by either in vitro kinase assay
(AlphaScreen, Perkin Elmer) (≥ 600-fold vs.
CDK1, −2, −4, −7, −8) or Kinomescan competition
assay (CDK3, −5, −11, −13) [77]. Although some
activity was observed against several non-CDK
kinases, the next-best targets, DYRK1A and 1B,
had in vitro IC50 values at least 100-fold higher.
i-CDK9 inhibits CDK9 CTD S2 phosphorylation
activity in vitro, although S5 and S7 phosphoryla-
tion levels were not tested, and dose-dependent
inhibition of CTD S2 and SPT5 phosphorylation
was demonstrated in HeLa cells, along with down-
regulation of expression of MCL1 and induction of
apoptosis. ChIP-seq with an antibody against
RNAPII showed increased pausing at > 50% of
genes in HeLa cells. Interestingly, a small group of
genes, including MYC, displayed increased expres-
sion upon i-CDK9 treatment, albeit at lower
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concentrations and earlier times than required for
full inhibition of S2 phosphorylation. Experimental
evidence indicated that this could be attributed to
release of CDK9 from the inhibitory 7SK complex
and recruitment toMYC by BRD4. Importantly, the
increase in MYC expression was blocked by the
BET/BRD4 inhibitor JQ1 and combination treat-
ment of HeLa and H1792 non-small cell lung can-
cer cells synergistically inhibited growth and
induced apoptosis. Unfortunately, there are not
yet any reports of the effect of i-CDK9 as a single
agent, or in combination with JQ1, on untrans-
formed cells, nor have its pharmacological proper-
ties been reported.

BAY1143752/atuveciclib
Starting with a triazine lead compound, BAY-958,
which is potent and selective against CDK9 but
has poor pharmacological properties, a group from
Bayer AG recently developed the benzyl sulfoxi-
mine BAY1143752 as a clinical candidate [81].
BAY1143752 displays impressive potency against
CDK9 and selectivity against the tested CDKs,
with sub-micromolar activity against only two
non-CDK kinases, and with improved pharmaco-
logical properties. Antiproliferative activity was
demonstrated against HeLa and MOLM-12 AML
cells in vitro, BAY1143752 significantly reduced
the growth of MOLM-13 and MV4-11 tumor
xenografts in nude mice and rats, respectively,
and was well-tolerated in both models. Based on
these results, two Phase I clinical trials in patients
with advanced cancer (NCT01938638) and leuke-
mia (NCT02345382) were recently completed,
with results yet to be reported. Two additional
Phase I trials (NCT02745743 and NCT02635672)
of a related compound, BAY1251152, are currently
underway, although details of this compound have
not yet been published.

THAL-SNS-032 and NVP-2
NVP-2 is an aminopyrimidine-based inhibitor
developed by Novartis and was recently shown to
have sub-nanomolar potency towards CDK9/CycT
and good selectivity against a panel of 468 kinases
(Kinomescan), with ≥ 700-fold lower activity against
DYRK1B and CDK7 [82]. NVP-2 displays anti-pro-
liferative activity against multiple leukemia cell lines
and induces MCL-1 loss and apoptosis within

four hours in MOLT4 ALL cells. As an alternative
to traditional kinase inhibitors, this group also
explored the potential of NVP-2 and the multi-
CDK inhibitor SNS-032 to serve as targeting moi-
eties for thalidomide-induced recruitment of the E3
ligase CRBN, a strategy that has been used for selec-
tive degradation of other targets, including BRD4
and CDK8 [83,84]. Interestingly, while thalido-
mide-NVP-2 conjugates had no effect on CDK9
levels, THAL-SNS-032 selectively induced CDK9
degradation with little effect on the protein levels of
other CDKs, despite retaining its ability to block
their kinase activity. THAL-SNS-032 displayed
more potent anti-proliferative and apoptotic activity
than the parent compound SNS-032 against multiple
leukemia cell lines. BothNVP-2 and THAL-SNS-032
were shown to significantly downregulate steady-
state mRNA levels in MOLT4 cells, to increase levels
of promoter-proximal RNAPII, and to decrease
RNAPII and SPT5 levels across gene bodies, consis-
tent with inhibition of pause-release and elongation.

CDK8 and CDK19

The conservedMediator complex is a global regulator
of RNA polymerase II (RNAPII) activity and is
required for transcription of most protein-coding
genes [18]. Mediator interacts directly with transcrip-
tion factors, the core transcriptional machinery, and
chromatin architectural proteins, thus integrating
multiple regulatory inputs to ensure appropriate con-
trol of RNAPII activity. In humans, the 26-subunit
core Mediator is reversibly associated with a four-
subunit “CDK module” that plays an important role
in conveying positive and negative regulatory signals
to core Mediator and the transcription machinery
[14]. The CDK module contains the only known
catalytic activity within Mediator, in the form of
CDK8 or its close paralog CDK19 [85,86]. Genetic
and biochemical evidence indicates that these CDKs
are functionally specialized and assemble with
Mediator in a mutually-exclusive fashion [87].
However, the precise mechanism(s) by which CDK8
and CDK19 regulate transcription remain unclear, as
do their relative contributions to cellular signaling,
proliferation, and survival. While originally reported
as a negative regulator of transcription, multiple stu-
dies have demonstrated that the Mediator CDKmod-
ule also positively regulates transcription [14,88]. As a
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negative regulator of transcription, CDK8 is thought
to block transcription initiation by phosphorylation of
the Cyclin H subunit of TFIIH [15] or by preventing
association of Mediator with RNAPII in a kinase
activity-independent manner [89], and has been
implicated in limiting high levels of transcription
driven by super-enhancer-controlled genes [90]. As
a positive regulator of transcription, CDK8 promotes
the recruitment of the SEC to facilitate release of
transcriptionally-paused RNAPII, particularly at sig-
nal-responsive genes such as those regulated by
growth factor stimulation and HIF1A [91,92], but
the role of kinase activity in this process remains
undefined. Little is known about the functions of
CDK19 and it remains unclear to what extent the
two Mediator kinases have shared versus specialized
roles in transcription regulation. Given their associa-
tion with Mediator and the transcription machinery,
it is likely that CDK8 and CDK19 also influence
multiple phases of the transcription cycle via phos-
phorylation of proteins within the transcription and
RNA processing machineries.

Validity of mediator-associated CDKs as
therapeutic targets

The context-dependent effects of the CDK module
on transcription are highlighted by the implication
of various CDK module subunits as promotors or
suppressors of tumor development [93]. CDK8 in
particular has been shown to be capable of activating
expression of tumor-promoting gene networks
[91,92,94,95], but appears to have a tumor-suppres-
sive role in endometrial and bladder cancers, and
esophageal squamous cell carcinoma [93,96]. CDK8
has also been implicated in regulation of the immune
response, where it has been shown to phosphorylate
both STAT1 and STAT3, potentiate NFKB tran-
scriptional activity, influence natural killer cell activ-
ity, and suppress production of IL-10 [97,98]. In
contrast, few functions of CDK19 have been
described: CDK19 is likely to have both redundant
and unique functions, and we recently discovered a
kinase-independent role for CDK19 in the response
to activation of the tumor suppressor p53 [99].
Furthermore, although numerous dual CDK8/19
kinase inhibitors have shown promise, there is evi-
dence that simultaneous inhibition of the Mediator
kinases may cause toxicity (see below). These

observations underscore the importance of develop-
ing a detailed understanding of the roles of CDK8
and CDK19 kinase activity in transcription regula-
tion and cancer biology for developing effective
CDK8/19-based therapeutic strategies.

Available CDK8/19 inhibitors

The interest in CDK8 as a therapeutic target, espe-
cially in melanoma, colon, and breast cancer, has
led to the development of numerous small mole-
cule Type I and Type II kinase inhibitors (that
bind to active and inactive conformations, respec-
tively) as potential therapeutics for CDK8-driven
malignancies (Table 1) [100,101].

Cortistatin A
The first inhibitor with selectivity for CDK8/19 to be
described was the marine natural product Cortistatin
A, isolated on the basis of anti-angiogenic activity
[102]. Cortistatin A was subsequently shown to bind
with high affinity to CDK8 and CDK19 [103]. More
extensive studies by the Shair and Taatjes groups
confirmed the potency and selectivity of Cortistatin
A for CDK8/19, demonstrated inhibition of phos-
phorylation of known CDK8 targets, such as the
CTD, STAT1, and SMAD2/3, in vivo, and have used
Cortistatin A to identify additional putative targets of
CDK8/19 [90,104,105]. Cortistatin A has been shown
to have anti-proliferative activity against multiple leu-
kemia cell lines of different origin in vitro and in two
mouse models of acute myeloid leukemia.
Interestingly, this anti-leukemic activity appears to
be due to de-repression of super-enhancer-regulated
genes involved in differentiation, indicating that in
this context CDK8/19 activity promotes oncogenesis
via negative regulation of transcription [90].

Senexin A and B
SNX2-class compounds are 4-aminoquinazolines
that were identified in a high-throughput screen for
inhibitors of p21-activated transcription and sub-
jected to chemical optimization. The screen led to
the generation of CDK8/19-selective compounds,
including Senexin A, which inhibits CDK8 with an
IC50 of 0.28 µM, although activity against other
CDKs was not reported [106]. Senexin A was
demonstrated to inhibit β-catenin transcriptional
activity and induction of EGR1 by serum
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stimulation, consistent with known roles of CDK8,
and subsequently to abrogate CDK8-dependent
tumor promoting paracrine activity in an A549
xenograft model of NSCLC. Senexin A and an opti-
mized derivative, Senexin B, have been shown to
suppress estrogen-dependent transcription in ER-
positive breast cancer cell lines in vitro and suppress
growth of ER-positive breast cancer xenografts in
mice [107]. However, few details have been pub-
lished regarding Senexin B and it is therefore difficult
to predict its therapeutic potential.

Azabenzothiophene- and sorafenib-based
compounds
A Genentech-led group has reported the develop-
ment of two structurally different CDK8/19 inhibitor
series: Type I inhibitors based on a 6-azabenzothio-
phene scaffold and Type II inhibitors based on the
multi-kinase inhibitor sorafenib [108,109]. Both
classes demonstrated potency and selectivity and
were confirmed to reduce phosphorylation of
STAT1. However, these compounds had weak anti-
proliferative activity when tested on HCT116 color-
ectal cancer cells, highlighting the complexity of
establishing the therapeutic potential of the
Mediator-associated kinases [108,109].

Pyridine-based compounds
Several additional classes of CDK8/19 inhibitors have
been developed by investigators at Cancer Research
UK and Merck KGaA in Germany and have under-
gone thorough validation [110–115]. Two of these
classes, the CCT series based on a 3,4,5-trisubstituted
pyridine scaffold and the MSC series based on a 3-
methyl-1H-pyrazolo[3,4-b]pyridine scaffold, are
among the most extensively characterized of the
dual CDK8/19 inhibitors. Both classes have potent
and selective activity against CDK8 and CDK19, inhi-
bit phosphorylation of known CDK8 targets, and
exhibit effects on gene expression consistent with
inhibition of the Mediator kinases. However, only
modest effects against human cancer cell lines and
patient-derived xenograft and mouse models were
observed. Of greater concern, despite apparently
being well-tolerated in mice, both compound classes
exhibited multiple toxicities in rats and dogs at doses
required for therapeutic effects [110]. Because these
compounds are structurally distinct, this was inter-
preted as on-target toxicity, suggesting that the

therapeutic window for dual CDK8/19 inhibition
could be limited. However, given the relative chemical
simplicity of these compounds, off-target effects
beyond CDK8/19 cannot be discounted.
Development of small molecule inhibitors selective
for either of the Mediator kinases is likely to be
challenging due to their high homology and it
remains to be established if targeting of either kinase
has improved results. Furthermore, the fact that these
compounds all inhibit CDK8 andCDK19with similar
potency prevents the assignment of putative sub-
strates, or biological effects, such as efficacy against
cancer cells, to either kinase.

With these problems in mind, we recently engi-
neered HCT116 cells to express ATP analog-sensi-
tive CDK8 (AS-CDK8) [116]. Selective inhibition of
CDK8 led to significant changes in steady-state
mRNA levels in HCT116 cells; downregulated
genes were enriched for the glycolysis pathway and
CDK8 inhibition, alone or in combination with
CDK19, sensitized these cells to the glycolysis inhi-
bitor 2-deoxyglucose [116]. Thus, combination
treatment strategies may allow for use of CDK8/19
inhibitors at lower concentrations that do not cause
toxicity [117]. Interestingly, a phenotypic screen for
small molecules that enhance IL-10 secretion led to
the identification of BRD6989 which displays some
selectivity for CDK8 over CDK19 [98] and may
therefore be useful in further establishing the ther-
apeutic potential of targeting CDK8 alone.

A number of other inhibitors of CDK8/19 have
recently been described or reported (Table 1) includ-
ing JH-VII-49 and JH-XI-10–02 [84], SEL120-34A
from Selvita, and patented compounds from
Hoffman La Roche and Nimbus Therapeutics [101].

CDK12 and CDK13

CDK12 (also known as CRKRS) and CDK13 are
the human orthologs of the budding yeast CTD S2
kinase Ctk1 and associate with Cyclin K to form
active kinase complexes [118,119]. CDK12/13
share nearly identical kinase domains but largely
differ outside this region, especially their unstruc-
tured C-terminal tails. While both kinases are
known to phosphorylate the CTD and are likely
to share some functions, CDK12 is the best-stu-
died, while the function(s) of CDK13 are less clear.
In vitro, CDK12 can phosphorylate the CTD on
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both S2 and S5, with the highest activity towards
S5 on S7 pre-phosphorylated CTD [20]. In con-
trast, there is evidence that CDK12, rather than
CDK9, is the major CTD S5 kinase during tran-
scription elongation in vivo [118,120], and its
recruitment to transcription units is mediated by
the PAF1 complex [121]. CDK12 has also been
implicated in recruitment of the transcription ter-
mination factors CSTF64 and CSTF77 [122].
Interestingly, depletion of CDK12 (or CDK13)
appears to have effects on the transcriptome with-
out alterations in bulk CTD phosphorylation levels
[21,118,120], and it remains unclear the extent to
which CDK12 (or CDK13) serve as global versus
gene-specific regulators of transcription elonga-
tion. Moreover, both CDK12 and CDK13 possess
N-terminal arginine-serine (RS)-rich domains
characteristic of RNA binding and splicing factors
and have been shown to interact with splicing
factors and regulate splicing and/or 3ʹ-end proces-
sing [21,122].

Validity of CDK12 and CDK13 as therapeutic
targets

CDK12 is subject to both gain- and loss-of-function
alterations in human cancers, suggesting that it has
oncogenic or tumor-suppressive functions, depend-
ing on context [122–124]. Of particular relevance in
cancer, depletion of CDK12 appears to preferentially
affect the expression of genes involved in DNA
damage response and homologous recombination
repair [21,120], and CDK12 is required for mainte-
nance of genomic integrity during embryonic devel-
opment [125]. Accordingly, CDK12 loss-of-function
mutations found in high-grade serous ovarian can-
cer are associated with genomic instability [126,127].
Potential loss-of-function mutations in CDK12 also
occur at ~ 1.5% in invasive breast cancer where they
may contribute to characteristic genomic instability
of this cancer type [122,128]. Interestingly, loss or
depletion of CDK12 is synthetic lethal with inhibi-
tors of PARP1, an enzyme involved in the DDR
[129,130]. Along similar lines, inactivating CDK12
mutations found in a subset of metastatic castration-
resistant prostate cancer (mCRPC) samples were
associated with genomic instability, higher levels of
neoantigens, and increased T-cell infiltration; two of
fourmCRPC patients withCDK12mutations treated

with anti-PD-1 immunotherapy displayed strong
decreases in prostate-specific antigen levels
[131,132]. These results indicate that CDK12 loss of
function can expose cancer vulnerabilities and sug-
gest that targeting CDK12 activity in CDK12 wild-
type cells might also confer sensitivity to these tar-
geted therapies.

In contrast, CDK12 is frequently co-amplified
with ERBB2 in HER2-positive breast cancer where
it has been shown to regulate alternative last exon
splicing and CDK12 expression is correlated with
increased migration and invasiveness of breast
cancer cell lines [133,134]. Finally, CDK13 ampli-
fication and overexpression has been observed in
primary hepatocellular carcinoma and colon
tumor samples and confers oncogenic properties
when expressed in NIH-3T3 cells [135].

Available CDK12 and CDK13 inhibitors

There is a distinct lack of selective small molecule
chemical probes and drug-like compounds targeting
CDK12/13, which hampers mechanistic studies and
investigation of their potential as therapeutic targets.
HeLa cells expressing ATP analog-sensitive CDK12
have been generated to facilitate dissection of CDK12-
specific functions [136], however this approach is not
useful therapeutically. The covalent CDK7 inhibitor
THZ1 also has activity against CDK12/13 at higher
doses and was used as a starting point to develop a
covalent inhibitor selective for CDK12/13, THZ531
[137]. Treatment of Jurkat T-ALL cells with THZ531
led to a reduction in CTD S2 phosphorylation, both
globally and specifically at THZ531-affected genes. In
keeping with previous studies, low doses of THZ531
downregulated expression of DDR-related genes,
while higher doses of THZ531 suppressed super-
enhancer-regulated transcription factors and induced
apoptosis [137]. More recently, two new classes of
noncovalent CDK12/13 inhibitors with good potency
and selectivity for other CDKs and additional kinases
have been described [138,139]. These compounds
were reported to inhibit CTD S2 phosphorylation
and inhibit the growth of ovarian or breast cancer
cells and could serve as useful chemical probes and/or
lead compounds for further validation of CDK12 and
−13 as therapeutic targets.

Similar toCDK7, inhibitors ofCDK12/13may offer
an advantage by targeting two processes important to
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many cancer cells, aberrant transcription and genomic
instability. This may be an effective single-agent ther-
apeutic strategy for select cancer types, while synergiz-
ing with other targeted therapies in other cancers. As
described above, CDK12/13 inhibition may be effec-
tive in combination with drugs targeting the DNA
damage response or immune checkpoint blockade.
Indeed, THZ531 synergizes with PARP inhibitors in
both in vitro and in vivo models of Ewing sar-
coma [140].

Emerging themes

The transcriptional CDKs play important roles in
regulating every stage of the RNAPII transcription
cycle, from initiation and pause-release, to elongation
and termination, as well as coordinating co-transcrip-
tional events including chromatin modification and
RNA processing. Aberrant transcription is a hallmark
of many tumor types and is often driven by oncogenic
alterations of transcription factors or cofactors (e.g.
MYC, AR, ER, CDK8) [6,74] and the establishment of
cancer-specific super-enhancers [44]. In cancer types,
such as TNBC, for which no clear drivers have been
identified, consistent patterns of gene expression are
nonetheless established and maintained [55]. Recent
studies have demonstrated that this transcriptional
addiction creates vulnerabilities thatmight be targeted
therapeutically and tCDKs thus represent logical tar-
gets [55]. These studies have established that, despite
transcription being an essential process common to
all cells, highly proliferative cells may be especially
susceptible to transcriptional inhibitors [55], similar
to DNA damaging agents. Interestingly, hemizygous
deletion of POLR2A (by virtue of its proximity to
TP53) occurs relatively frequently in human cancers
and sensitizes to transcription inhibition [141], sug-
gesting that many tumors with p53 genomic loss may
also be targeted in this way. Moreover, targeting the
general transcription machinery may help prevent
adaptive responses and emergence of resistance to
existing targeted agents [142].

In surveying the recent and historical literature
on inhibitors of the tCDKs, several themes emerge:

● Caution in interpretation of results should be
exercised when employing compounds that
inhibit multiple kinases as either potential ther-
apeutics or as chemical probes, as there may be a

narrow therapeutic window between target
engagement and toxicity, and there is likely to
be difficulty in confirming mechanism of action
and thus predicting response. Even where the
affected kinases are close paralogs, such as dual
inhibitors of CDK8/19 or MED12/13, the use of
these compounds without validation of effects
due to individual paralogous kinases can obscure
their true functions.

● Covalent kinase inhibitors show great potential
for selective targeting of tCDKs. Although these
small molecules may still bind to kinase active
sites and retain their ability to inhibit kinase
activity, they possess electrophilic moieties cap-
able of forming covalent bonds with nucleo-
philes such as unique cysteines lying outside
the kinase active site. These compounds are
likely to be effective at lower doses than tradi-
tional inhibitors.

● Another strategy that shows promise is the use
of proteolysis-targeting chimeras, or
PROTACs), such as thalidomide-conjugated
compounds that recruit E3 ligases to tag the
target protein for proteasomal degradation
[143]. Potential advantages of these compounds
include the ability to simultaneously inhibit and
degrade kinases; targeting of non-kinase/scaf-
folding functions and lowering of effective
doses. These compounds may also offer greater
selectivity over their parent compounds, as in
the case of THAL-SNS-032 [82].

● Many of the latest generation of selective
kinase inhibitors only display potent single-
agent efficacy against specific cancer types
such as hematopoietic lineages. Rational com-
bination therapies are likely to greatly extend
the therapeutic applications of selective inhi-
bitors of tCDKs. Mechanistic studies and syn-
thetic lethality screens have already numerous
revealed pathways, other targeted agents, or
conventional chemotherapeutics that can
synergize with tCDK inhibitors
[58,116,140,144–147], and additional exam-
ples are likely to exist.

A number of challenges continue to limit pro-
gress in developing therapeutic inhibitors of
tCDKs, not least of which is the difficulty
imposed by the high degree of homology within
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the ATP binding pockets of CDKs and other
kinases. Thorough biochemical, structural and
biological validation of new compounds is essen-
tial to identify their true in vivo targets, to fore-
stall emergence of resistance, and to identify
biomarkers of sensitivity and response.
Nonetheless, progress continues to be made and
the recent development of novel targeting strate-
gies shows great promise.
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