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A B S T R A C T   

The degree of protonation of contact lens materials is affected by the surrounding pH environ-
ment, due to the different pKa values. The swelling of ionic contact lenses is generally controlled 
by these factors which determines physical properties of contact lenses. The purpose of this study 
was to evaluate the pH dependence of the physical properties of contact lenses. The ionic etafilcon 
A and non-ionic hilafilcon B contact lenses were used in this study. The diameter, refractive 
power, equilibrium water content (EWC), and the amounts of freezable-free water (Wff), 
freezable-bound water (Wfb) and non-freezable water (Wnf) in the contact lens at each pH con-
dition were measured. The diameter, refractive power and EWC of etafilcon A decreased with 
decreasing pH below 7.0 or 7.4, whereas hilafilcon B showed relatively constant values. The 
quantity of Wfb tended to increase with increasing pH, showing a relatively constant value above 
7.0, whereas Wnf decreased. Hilafilcon B did not show changes in EWC and specific trends in Wfb 
and Wnf. The significant change of etafilcon A at more acidic condition is derived from the 
presence of methacrylic acid (MA) which makes it vulnerable to pH. Additionally, though the 
EWC is composed of various states of water, (i) various states of water could response to sur-
rounding environment in different way with EWC and (ii) Wfb could be the crucial factor that 
determines physical properties of contact lens.   

1. Introduction 

The absorption of water by hydrogels depends on the hydrophilicity and ionicity of their constituent polymers. Specifically, the 
hydrophilicity of hydrogels with ionic pendant groups is largely controlled by the properties of the polymer and the swelling medium 
[1]. The common properties of polymer include the ionic charge, pKa value of the pendant group, and cross-linking density, which are 
important, especially for ionic polymers. The pKa value of pendant groups and the pH of the medium are crucial for regulating the 
swelling behavior of ionic polymers. In the case of the anionic polymer, when the pKa of the acidic pendant groups is lower than the pH 
of the medium, ionization of the acidic pendant groups occurs, generating negative charges on the polymer chains, which attracts 
positive charges in the medium [1,2]. Consequently, there is an increase in negative charges on the polymer chains, and the elec-
trostatic repulsion between the chains leads to swelling of the polymer network [1,2]. 

The nature of water in polymers is significant not only in comprehending swelling behavior, but also in investigating solute 
transport and other diffusive properties of polymers [3,4,5]. The irregular behavior of water in polymers can be attributed to two 
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factors: (i) the trapping of water molecules by the polymer network, capillary condensation, or (ii) the strong interactions between 
water molecules and the ionic groups of the polymer chain, either directly or via other water molecules [6,7,8]. 

The hydrated water in a polymer can be categorized into three types depending on the binding strength with the polymer chain: 
freezable-free water (Wff), freezable-bound water (intermediate water, Wfb), and non-freezable water (non-freezable-bound water, 
Wnf) [6,7]. The Wff is frozen at 0 ◦C and freely exchanged with bulk water whereas the Wfb molecules are frozen below 0 ◦C because of 
the weak interaction with the polymer chain and/or non-freezable water. On the other hand, the Wnf molecules interact strongly with 
the polymer chain, which is not frozen even at − 100 ◦C. 

In the case of contact lenses, the swelling media are the tear film, contact lens care solutions, and eye drops. Tear film is a thin layer 
of water that protects the ocular surface from the external environment and is somewhat vulnerable to it [9]. For example, the normal 
physiological pH is 7.4, while the pH of the tear film ranges from 5.9 to 7.9, which is affected by various factors such as diseases, 
contact lens wear, and air pollution [10,11,12,13]. The pH of contact lens care solutions or eye drops vary from 6.69 to 7.98 and from 
6.36 to 7.99 respectively where the contact lenses are immersed in [14]. The fluctuation of the pH of swelling media could affect the 
physical properties of contact lenses, especially ionic contact lenses and the state of water. 

The purpose of this study was to evaluate the effect of pH on the physical properties of contact lenses. Two types of contact lens 
materials, etafilcon A and hilafilcon B, were used. These contact lenses have the same polymer chain, poly (2-hydroxyethyl meth-
acrylate) (pHEMA), while etafilcon A contains methacrylic acid (MA) and polyvinylpyrrolidone (PVP), and hilafilcon B contains N- 
vinyl pyrrolidone (NVP) (Table 1). At physiological pH, the methacrylate carboxylic acid groups are fully ionized, whereas PVP and 
NVP are not ionizable [15]. We hypothesized that due to the presence of MA, the state of water in the etafilcon A contact lens would be 
affected by pH due to the degree of ionization and hydration which result in the change of physical properties of contact lens. 

2. Materials and methods 

2.1. Materials 

The 1-Day ACUVUE MOIST (Johnson & Johnson Inc.) and SofLens daily disposable (Bausch + Lomb Inc.) were used (Table 2). PBS 
buffer solutions with pH from 6.2 to 8.2 (0.4 step) were used throughout the study. All lenses were soaked in each buffer solution for 
48 h to remove the residual blister solution and reach an equilibrium state. The EWC, diameter, and DSC (Differential scanning 
calorimetry) of the contact lenses under each pH condition were measured. 

2.2. Measurements of equilibrium water contents of contact lenses 

In order to measure the equilibrium water content (EWC) of the contact lenses at each pH condition, a gravimetric determination 
method was used [16]. The weights of the contact lenses in the dry (Wdry) and hydrated (Whydrated) states were measured after they had 
reached equilibrium in PBS solutions with a pH of 6.2–8.2. The EWC was calculated using equation (1). 

EWC(%)=

(
Whydrated − Wdry

)

Whydrated
× 100 (1)  

2.3. Measurements of state of water in the contact lens 

The melting endotherms of water in the contact lenses were measured using DSC (DSC-250, TA Instruments, United States). The 
residual water was removed by blotting the contact lenses with tissue. The contact lenses were sealed in a DSC cell with a lid, and 
promptly placed in the instrument to minimize the evaporation of water in the contact lens. 

Subsequently, the pan was cooled to − 70 ◦C from room temperature at a rate of 5 ◦C/min under nitrogen gas, and the sample was 

Table 1 
Additive compounds in contact lens material.  

Chemical Name Abbreviation Chemical Structure 

Poly (2-hydroxyethyl methacrylate) pHEMA 

Methacrylic acid MA 

Polyvinylpyrrolidone PVP 

N-Vinyl-2-pyrrolidone NVP 
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then heated at the same rate up to 30 ◦C. When the contact lens sample is cooled to − 70 ◦C, the freezable water freezes, but the non- 
freezable water remains unfrozen. On the other hand, when the contact lens sample is heated in a DSC cell, the frozen water in the 
contact lens starts to melt, and the energy required to melt the frozen water is measured (Fig. 1). 

The amount of Wff, Wfb, and Wfb was calculated by direct integration of the melting endotherm and cold crystallization, assuming 
that the melting enthalpies for both Wff and Wfb are the same as those of bulk water (ΔH0 = 334J/g). The amount of Wff and Wfb was 
calculated using the following equations (2) and (3) [17–19]. 

Wff +Wfb =
ΔHm

ΔH0
(2)  

Wfb =
ΔHcc

ΔH0
(3) 

The ΔHm and ΔHcc are the enthalpy of melting freezable water and cold crystallization in the contact lens measured from the DSC 
experiment, and ΔH0 is the enthalpy of melting pure water. The EWC is the sum of Wff, Wfb, and Wfb. Therefore, the amount of Wnf was 
determined by subtracting the sum of Wff and Wfb from the EWC using the following equation (4) [17–19]. 

Wnf =EWC −
(
Wff +Wfb

)
(4)  

2.4. Measurements of diameters of the contact lenses 

The diameters of the hydrated contact lenses were measured while they were soaked in PBS solutions at pH of 6.2–8.2 using an 
Optimec Soft Contact Lens Analyzer (Optimec JCF, Optimec Ltd., United Kingdom). The measurement was performed using − 3.00D 
contact lens. 

2.5. Measurements of refractive power of contact lenses 

The refractive power of contact lenses was measured using automated lensmeter (HLM-90000, Huvitz, South Korea) with a contact 
lens holder to hydrate them in PBS solutions at pH of 6.2–8.2. In order to compare the change of refractive power of contact lenses, the 
measurement was performed using − 3.00D contact lens. 

Table 2 
Contact lens material types and classification.  

Proprietary name 1-Day ACUVUE® MOIST SofLens daily disposable 

Manufacturer Johnson & Johnson Vision Care Bausch + Lomb Inc. 
FDA Group IV II 
USAN* etafilcon A hilafilcon B 
Principal monomers pHEMA–methacrylic acid + polyvinylpyrrolidone pHEMA + N-Vinyl-2-pyrrolidone 
Water content (%) 58 59 
Diameter (mm) 14.2 14.2 

* United States Adopted Name. 

Fig. 1. DSC heating curve of the contact lens.  
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2.6. Statistical analysis 

The IBM SPSS Statistics (for Windows, Version 29.0.0., SPSS Inc) was used as analytical tool. The raw data from each experimental 
groups did not show a normal distribution (Kolmogorov-Smirnov test). Further statistical analysis was performed with Kruskal-Wallis 
test. The level of significance was set at P < 0.05. 

3. Results 

3.1. Equilibrium water contents of the contact lenses 

The EWC (mean ± standard deviation) of etafilcon A and hilafilcon B is shown in Fig. 2 and Table 3 as a function of pH. The EWC of 
etafilcon A decreased with decreasing pH below 7.0, whereas hilafilcon B showed a relatively constant value. 

3.2. State of water in the contact lenses 

The values of Wff, Wfb, and Wnf are shown in Fig. 3(A-C) and Table 4. For etafilcon A, the quantity of Wfb tended to increase with pH, 
showing a relatively constant value above 7.0, whereas Wnf decreased. Hilafilcon B did not show changes in water content or specific 
trends in Wff, Wfb, and Wnf. 

3.3. Diameters of the contact lenses 

The diameter (mean ± standard deviation) of etafilcon A and hilafilcon B are shown in Fig. 4, Fig. 5(A and B) and Table 5 as a 
function of pH. Etafilcon A showed a decreased value with decreasing pH below 7.4, whereas hilafilcon B showed a relatively constant 
value. 

3.4. Refractive powers of the contact lenses 

The refractive power (mean ± standard deviation) of etafilcon A and hilafilcon B are shown in Fig. 6 and Table 6. Etafilcon A 
showed a more negative refractive power with decreasing pH below 7.0. Hilafilcon B showed a relatively constant refractive power. 

4. Discussion 

The pH-dependent physical properties of two types of contact lens materials, etafilcon A and hilafilcon B, were analyzed in this 
study. The etafilcon A and hilafilcon B are involved in an FDA group IV and II, respectively. Though both etafilcon A and hilafilcon B 
have high water content, they are distinguished by surface ionicity; etafilcon A has ionic surface whereas hilafilcon B has non-ionic 
surface. The presence of methacrylic acid (MA) in etafilcon A contributes the ionicity of it since the acid group of MA became fully 
ionized at physiological pH and less ionized at lower pH condition. The NVP in hilafilcon B are less ionizable which result in the non- 
ionic surface of hilafilcon B. 

The dehydration of etafilcon A at low pH is attributed to the presence of MA, a hydrophilic monomer that has a pKa of 4.65, which 
makes it ionized in a range of pH values investigated in this study [20]. In a physiological environment, MA became fully ionized 
reaching the maximum EWC of etafilcon A. At higher pH, higher than the physiological environment, around 7.0 or 7.4, the EWC of 
etafilcon A contact lens became constant due to the fully ionized MA [14,20]. However, under the physical pH, the MA is hardly fully 
ionized resulting in the reduced EWC where they showed significantly reduced EWC. The fact that the constant physical properties of 

Fig. 2. Equilibrium water contents of etafilcon A ( ) and hilafilcon B ( ) in the series of pH ranges. Repeated measures Kruskal-Wallis test was used 
for statistical analysis; *p < 0.05; **p < 0.01. 
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contact lens, EWC, diameter, and refractive power, in the pH higher than the 7.0 or 7.4 and that the statistically significant difference 
of those properties between acidic and basic conditions support that the presence of MA in etafilcon A makes it vulnerable to pH while 
hilafilcon B rarely responsive to pH change. 

The EWC is composed of various states of water which could response to surrounding environment in different way with EWC. The 
physiological environment surrounding the contact lens effects the ionization state of the polymer or additives contained in the contact 
lens which regulates the state of water in contact lens. The state of water of etafilcon A had distinct trend differ from that of the EWC; 
the EWC increased as the pH increased, but Wnf was slightly reduced while Wfb was increased with statistically significant difference 
between most acidic and basic conditions. There has been debate about the formation of Wnf whether it is attributed from (i) a 
‘nanocavity’ of polymer network or (ii) a hydrogen bond with polymer or additives. According to the previous study, the amount of Wnf 

Table 3 
Kruskal-Wallis H test results of association between equilibrium water content and pH.  

Contact lens material pH n mean rank χ2 p value 

etafilcon A 6.2 3 2.00 13.386 0.020* 
6.6 3 5.00 
7.0 3 9.83 
7.4 3 13.83 
7.8 3 14.67 
8.2 3 11.67 

hilafilcon B 6.2 3 15.83 9.521 0.090 
6.6 3 12.33 
7.0 3 4.33 
7.4 3 10.67 
7.8 3 6.50 
8.2 3 7.33 

*p < 0.05. 

Fig. 3. Contents of the (A) non-freezable (Wnf), (B) freezable-bound (Wfb) and (C) freezable-free (Wff) water content of etafilcon A ( ) and hilafilcon 
B ( ) in the series of pH ranges. Repeated measures Kruskal-Wallis test was used for statistical analysis; *p < 0.05; **p < 0.01. 
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and Wfb is increased with the EWC until it reaches its maximum value. After a network exceeds its critical EWC, the amount of Wnf is 
decreased and that of Wfb is increased. This phenomenon is derived from the reduced ‘nanocavity’ of network. Liu et al. (2001) re-
ported that under the critical EWC, the amount of Wnf and Wfb is increased with the EWC [6]. But after exceeding the critical EWC, 
some of the neighboring ‘nanocavities’ are linked together reducing the cavity of polymeric network. We hypothesized that the 
etafilcon A material already exceeded its critical EWC even at lower pH condition. Therefore, the amount of Wnf got decreased with 
increasing pH and EWC replaced by Wfb. Unlike etafilcon A, hilafilcon B showed relatively constant value of EWC and state of water. 
This is derived from the temperature sensitive property of NVP [21]. In this study, the temperature was kept at room temperature. 

Table 4 
Kruskal-Wallis H test results of association between state of water and pH.   

Contact lens material pH n mean rank χ2 p value 

Wnf etafilcon A 6.2 3 10.67 4.415 0.491 
6.6 3 9.67 
7.0 3 12.00 
7.4 3 12.00 
7.8 3 8.33 
8.2 3 4.33 

hilafilcon B 6.2 3 16.00 7.971 0.158 
6.6 3 5.33 
7.0 3 7.67 
7.4 3 6.67 
7.8 3 9.67 
8.2 3 11.67 

Wfb etafilcon A 6.2 3 4.33 8.485 0.131 
6.6 3 9.00 
7.0 3 6.67 
7.4 3 8.67 
7.8 3 13.33 
8.2 3 15.00 

hilafilcon B 6.2 3 3.67 8.228 0.144 
6.6 3 14.33 
7.0 3 10.33 
7.4 3 12.67 
7.8 3 9.67 
8.2 3 6.33 

Wff etafilcon A 6.2 3 14.33 8.289 0.141 
6.6 3 6.67 
7.0 3 11.33 
7.4 3 11.33 
7.8 3 3.17 
8.2 3 10.17 

hilafilcon B 6.2 3 15.00 8.219 0.145 
6.6 3 7.00 
7.0 3 7.00 
7.4 3 7.17 
7.8 3 6.67 
8.2 3 14.17  

Fig. 4. Diameters of etafilcon A ( ) and hilafilcon B ( ) in the series of pH ranges. Repeated measures Kruskal-Wallis test was used for statistical 
analysis; *p < 0.05; **p < 0.01. 
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Therefore, hilafilcon B containing NVP rarely changed its physical properties. 
The diameter of etafilcon A was decreased with pH, whereas the refractive power of it became more negative. The reduced diameter 

of the contact lens implies a contraction that results from the dehydration of the contact lens [22,23]. This also attributes the change of 
refractive power since the shape and refractive index are affected by hydration state of material [24,25]. In previous literatures, there 
has been suggested that the total EWC is largely associated with general physical properties of contact lens including diameter, 
refractive power [22,23,24,25]. In this study, more specifically, the dehydration of Wfb could contribute these phenomenon. As shown 
in Fig. 3(A), the amount of Wfb in etafilcon A got largely reduced with pH which showed similar pattern with diameter, refractive 
power, and total EWC. This similar pattern of change supports that they are closely related to each other. 

The EWC has traditionally been regarded as one of the important properties of contact lenses, and several previous studies have 
shown that it affects diameter, shape, and refractive index of contact lens [22,23,24,25]. However, the results of this study showed that 
the trends of EWC and state of water could be different; though the EWC increases, various state of water of contact lens could decrease 
and/or increase. Regarding this inconsistency, there should be a specific type of state of water that determines the physical properties 

Fig. 5. The image of swollen (A) etafilcon A and (B) hilafilcon B in the series of pH ranges.  

Table 5 
Kruskal-Wallis H test results of association between diameter and pH.  

Contact lens material pH n mean rank χ2 p value 

etafilcon A 6.2 3 2.00 11.699 0.039* 
6.6 3 7.00 
7.0 3 8.50 
7.4 3 14.50 
7.8 3 13.50 
8.2 3 11.50 

hilafilcon B 6.2 3 8.00 8.04 0.154 
6.6 3 9.17 
7.0 3 10.50 
7.4 3 5.50 
7.8 3 8.00 
8.2 3 15.83 

*p < 0.05. 

Fig. 6. Refractive powers of etafilcon A ( ) and hilafilcon B ( ) in the series of pH ranges. Repeated measures Kruskal-Wallis test was used for 
statistical analysis; *p < 0.05; **p < 0.01. 
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of contact lens. Therefore, we should study which water in contact lens, Wnf, Wfb, or Wff, affects the physical properties of contact lens. 
For example, EWC also affects the oxygen permeability of contact lens materials [26,27]. Although the relationship between EWC and 
oxygen permeability of contact lenses has been investigated, the type of water in the contact lens that affects oxygen permeability has 
yet to be studied. Previous studies mainly studied the state of water that varies depending on the type and/or ratio of polymer and 
additive [26,28,29]. When the developed materials are applied to ocular surface or immersed in contact lens care solutions or eye 
drops, the content of state of water could be changed and affect various physical properties including not only diameter, refractive 
power that examined in this study but also oxygen permissibility [30,31,32]. In addition, this study only includes conventional 
hydrogel contact lenses while the most prescribed or used are silicon hydrogel contact lenses [33]. Therefore, more advanced research 
is needed to investigate the state of water in various types of contact lens materials and how it affects the physical properties of contact 
lens. 

5. Conclusion 

In this study, we investigated effect of pH on the physical properties of ionic (etafilcon A) and non-ionic (hilafilcon B) contact lens. 
The degree of ionization of MA affects the state of water in etafilcon A contact lens which leads to the change of their physical 
properties. At acidic pH condition, the MA in etafilcon A became less ionized affecting the EWC, state of water, diameter, and refractive 
power of contact lens. At physiological pH and above it, the MA in etafilcon A became fully ionized resulting in the constant those of 
contact lens. The hilafilcon B which contains NVP, temperature-sensitive additive, rarely responded to the pH condition. In addition, it 
was found (i) that the state of water in the contact lens could show different compositions apart from its EWC and (ii) that the Wfb could 
contribute the change of physical properties of contact lens. 
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