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Preclinical and clinical antiangiogenic approaches, with multiple side effects such as
resistance, have not been proved to be very successful in treating tumor blood vessels
which are important targets for tumor therapy. Meanwhile, restoring aberrant tumor
blood vessels, known as tumor vascular normalization, has been shown not only capable
of reducing tumor invasion and metastasis but also of enhancing the effectiveness of
chemotherapy, radiation therapy, and immunotherapy. In addition to the introduction of
such methods of promoting tumor vascular normalization such as maintaining the balance
between proangiogenic and antiangiogenic factors and targeting endothelial cell
metabolism, microRNAs, and the extracellular matrix, the latest molecular mechanisms
and the potential connections between them were primarily explored. In particular, the
immunotherapy-induced normalization of blood vessels further promotes infiltration of
immune effector cells, which in turn improves immunotherapy, thus forming an enhanced
loop. Thus, immunotherapy in combination with antiangiogenic agents is recommended.
Finally, we introduce the imaging technologies and serum markers, which can be used to
determine the window for tumor vascular normalization.

Keywords: antiangiogenesis, tumor vessel normalization, immunotherapy, microRNA, endothelial cell metabolism,
extracellular matrix
INTRODUCTION

Since cancer ranks the top killer of human all over the world and approximately accounts for one
out of every six deaths, cancer treatment is certain to be at the epicenter of medical research (1).
Angiogenesis, which provides nutrients and oxygen for tumor proliferation, is a fundamental
requirement for tumor growth, showing targeting tumor angiogenesis would be a promising
method to inhibit tumor growth (2).

When exposed to excessive proangiogenic signaling and hypoxia, vascular endothelial cells
(ECs), called “phalanx” cells in established vessels, can quickly adapt and switch their phenotype
to the so-called “tip” and “stalk,” with tip cells acting as a guide to new blood vessels and extending
filopodia and stalk cells being responsible for elongating new blood vessels (3, 4). Besides, cancers
can initiate some underlying angiogenesis mechanisms. For example, cancer cells can induce
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the formation of new vessels or use preexisting vessels (vascular
co-option) to maintain growth. The former includes two new
vessels splitting from one when interstitial tissue pillars insert
into the lumen (intussusception) and new vessels forming from
bone marrow-derived endothelial progenitor cells (postnatal
vasculogenesis). Vasculogenic mimicry and mosaic vessel
formation refer to the transdifferentiation of tumor cells into
ECs and the incorporation of tumor cells into the blood vessel
wall, respectively (5–7). Although tumor vessels are abundant, the
structure and function of these vessels are abnormal, thus creating
a hypoxic tumor microenvironment (TME), impeding the
infiltration and function of immune cells, and promoting tumor
development and metastasis (2, 7). Conventional approaches
have focused primarily on inhibiting angiogenesis in tumors by
cutting off their blood supply (2, 8). Several antiangiogenic drugs
have been approved for the treatment of cancer. However, these
antiangiogenic drugs have limited efficacy and drug resistance.
Moreover, some antiangiogenic drugs reduce oxygen supply,
increase the production of proangiogenic factors, and promote
pathological angiogenesis, thus leading to the increased tumor
metastasis and relapse in some cancers (9, 10).

A good alternative therapy for antiangiogenic explored in this
study is remodeling tumor blood vessels to restore their structure
and function, known as vascular normalization, which can, by
restoring tumor perfusion and reducing hypoxia, not only
Frontiers in Oncology | www.frontiersin.org 2
prevent cancer cells from acquiring the aggressive phenotypes
under the hypoxic microenvironment but also be conducive to
other cancer therapies, such as chemotherapy, radiotherapy, and
immunotherapy (11) (Figure 1). In this review, the methods and
mechanisms of promoting tumor vascular normalization in
recent years are introduced, the relationship between tumor
vascular normalization and immunotherapy is discussed, and
the imaging technologies and serum markers used to determine
the window for tumor vascular normalization are summarized.
HIGHLY ABNORMAL TUMOR VESSELS

The Abnormal Vascular Structure
of the Tumor
Tumor vessels, aberrant in structure and function and
heterogeneous in lumen size and wall thickness, form a chaotic
network characterized by permeability and tortuousness (12–14),
with perivascular cells, comprised of pericytes and vascular
smooth muscle cells , not only displaying abnormal
morphology but also having low coverage rate on tumor
vessels compared with normal vessels, thus making the wall of
the vessel thin and disrupting cellular connections and signal
transduction between perivascular cells with ECs and basement
FIGURE 1 | Significant differences in structure and function between tumor vessels and normal vessels. tECs have an irregular shape and lack VE-cadherin, leading
to high permeability and disordered arrangement. Besides, tumor vessels have low pericyte coverage and are often separated from endothelial cells (ECs). The
basement membrane of tumor vessels is also incomplete and discontinuous, further increasing vascular permeability. These structural abnormalities stimulate the
formation of a hypoxic, acidic tumor microenvironment (TME); promote the proliferation and metastasis of tumor cells; and reduce the efficacy of tumor therapy.
Furthermore, the abnormal TME promotes the immunosuppression. The methods of tumor vascular normalization introduced in this paper can restore the normal
structure and function of blood vessels and enhance the efficacy of antitumor therapy.
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membrane (15, 16) (Figure 1). In normal tissues, pericytes, close
to ECs, communicate by intimating cell-to-cell contact and
mutually secreted factors, leading to an orderly arrangement of
ECs and forming an effective and organized mature blood vessel
network (17). While in the tumor vessels, they usually detach
from the vascular walls, resulting in decreased vascular structural
stability and increased vascular permeability (7, 18–
20) (Figure 1).

In addition, tumor endothelial cells (tECs) lining vessels have
weak junctions and are disorganized (7). Responsible for the
connection between vascular ECs thus maintaining the barrier
integrity is VE-cadherin, which can be broken down by
proteolytic enzymes (such as matrix metalloproteinases,
trypsin, or elastase) and inflammatory cytokines released by
tumor cells (21, 22) (Figure 1). For example, histamine not
only directly impairs human umbilical vein ECs but also
indirectly damages VE-cadherin, thereby increasing the
permeability of umbilical vein (23). Besides, excessive vascular
endothelial growth factor (VEGF), produced by TME, can also
increase vascular permeability by regulating several GTPases
such as RhoA (24), with ECs immigrating from their resident
site and leaving gaps in the absence of VE-cadherin (6, 12, 13).
Finally, Ang overexpressed in ECs can decrease endothelial
integrity and disrupt pericyte attachment to the endothelial
wall (11, 25).

Although tumor blood vessels, compared with normal blood
vessels, are almost covered by incomplete and discontinuous
basement membrane, confocal and electron microscopy can help
discover the vascular basement membrane in tumors with such
distinctive abnormalities such as unusual thickness, multiple
layers, and weak junction with tECs and pericytes (6, 26),
leading to the conclusion that the structure of tumor blood
vessels is loose and irregular with high permeability (Figure 1).

Abnormal Function of Tumor
Blood Vessels
Despite a rich blood supply, the network of tumor blood vessels
is chaotic and lacks the arteriole–capillary–venule hierarchical
organization, leading to poor tissue perfusion (12, 15, 27)
(Figure 1). Permeable tumor blood vessels facilitate plasma
and proteins into the surrounding interstitial space, which not
only enhances red blood concentration and blood viscosity but
also elevates the interstitial fluid pressure in the TME, further
hindering blood flow (27, 28). Moreover, the TME with high
quantity of fibers and cells restricts tumor progress and induces
the mechanical force which can compress or even collapse
intratumoral vessels and severely retard the blood flow into
and from tumors (7, 27, 29). The mechanical force also
damages lymphatic networks and blocks lymphatic drainage of
excessive interstitial fluid (15, 27). All these factors result in
increased interstitial fluid pressure, which, in collaboration with
poor perfusion, decreases oxygen and nutrient supply, leading to
a hypoxic and acidic microenvironment conducive to screening
out more aggressive tumor cells for survival, with their ability to
metastasize and invade increased by undergoing an “epithelial to
mesenchymal transition” (20, 30, 31) (Figure 1). However,
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abnormal blood vessels also disrupt the blood supply of the
tumor, leaving drugs and cytotoxic T lymphocytes (CTLs) from
the circulating blood unable to get into the tumors to play their
full antitumor role (11, 32).
METHODS OF TUMOR VASCULAR
NORMALIZATION

Blocking Angiogenic Factors
The imbalance of signaling mediated by proangiogenic versus
antiangiogenic molecules is one of the main mechanisms for
abnormal tumor vascular (11, 33), due to the fact that, when in
need of the nutrient and oxygen, tumor and stromal cells
start secreting proangiogenic factors, such as the VEGF,
angiopoietins, platelet-derived growth factors, and fibroblast
growth factor, promoting the formation of excessive abnormal
blood vessels (34, 35), indicating that targeting tumor blood
vessels has become an attractive anticancer therapy approach.
Antiangiogenic treatments are thought to have a good anticancer
effect by inhibiting blood vessel production, thus leaving cancer
cells in starvation with the supply of oxygen and nutrients
blocked (8, 20, 36). However, there is a fact that antiangiogenic
monotherapy is less effective in colorectal cancer, breast cancer,
and nonsmall cell lung cancer, while when combined with
chemotherapy drugs, anticancer effect increased significantly
(37, 38), which seems to be contradictory to the traditional
claim of antiangiogenesis reducing the blood perfusion and
further restricting the intratumoral delivery of coadministered
drugs. Besides, the hypoxic microenvironment caused by
antiangiogenic therapy also renders tumor cells relatively
resistant to chemoradiotherapy and even more aggressive (20,
39). By means of transiently normalizing tumor vessels with
antiangiogenic therapy, the hypothesis called “vascular
normalization” could explain this paradox (33).

Among all vascular angiogenic factors, VEGF, which was first
identified as vascular permeability factor by Napoleone Ferrara,
promotes EC proliferation and migration, sprouting via binding
VEGF receptor–tyrosine kinase-dependent receptor on ECs (38,
40–42). The evidence, from preclinical and clinical studies,
shows that blocking VEGF signaling can remodel abnormal
tumor vasculature (13, 20, 43). For example, the Willett CG
study showed that, after receiving a low dose of bevacizumab (5
mg/kg), patients with rectal cancer showed an increase in
pericyte coverage of blood vessels and drug delivery and a
decrease in permeability surface product after 12 days, while
after receiving a higher dose of bevacizumab (10 mg/kg), patients
showed no sign of such phenomenon, indicating that a low dose
of bevacizumab not only reduced the formation of pathological
blood vessels but also repaired defective blood vessels and
normalize them (38, 44). This idea is also supported by
bevacizumab combined with chemotherapy, with the overall
and progress-free survival improved by adding a low dose,
rather than a higher dose, of bevacizumab to chemotherapeutic
drug in patients with metastatic colorectal cancer (37, 45, 46),
indicating that an appropriate dosage of VEGF inhibitors can
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Vascular Normalization and Tumor Immunotherapy
rebalance angiogenic signals in tumors, resulting in the
formation of more mature blood vessels by actively recruiting
pericytes and strengthening cell–cell connections (47, 48).
Furthermore, anti-VEGF has been shown to increase platelet-
derived growth factor receptor-b signaling and promote pericyte
recruitment and decrease permeability (49). Regarding the
phenomenon that anti-VEGF therapy increased pericyte
coverage while causing vessel regression, Hanahan and Bergers
postulated that this is an unconventional mode of resistance that
the high coverage of pericytes can help tECs to survive and
function, so that tumors can still grow slowly in antiangiogenesis
treatments (50).

Despite that anti-VEGF therapy has the potential to restore
abnormal tumor vascular normality, there are still some
challenges, of which the major one is the time range and dose
of anti-VEGF administration to achieve vascular normalization
(15, 20), known as the “normalization window,” which was
observed to last for only several days after treatment began,
providing a narrow time window for the delivery of drugs (13, 20,
48, 51). However, tumors begin to grow again after adaptive
resistance, preexisting nonresponsiveness, and antiangiogenic
therapy drug withdrawal, leaving many patients failing to
produce enduring clinical responses (48, 50, 52, 53). The
transient effect of tumor vascular normalization might be
associated either with excessively high and continuous
administration of antiangiogenic drugs or the occurrence of
drug resistance by activating other proangiogenic factors, such
as angiopoietins, basic fibroblast growth factor, and transforming
growth factor-b (TGF-b) (2, 13, 50, 54). High doses of
antiangiogenic drugs degenerate blood vessels, increase tumor
hypoxia, and stimulate invasion, infiltration, and metastasis of
cancer cells (20, 55, 56), and the heterogeneity of the response of
different tumors to VEGF inhibitors further increases the
difficulty of achieving the normalization window. Moreover,
the discovery of VEGF receptors on nonendothelial cells,
specifically VEGFR2, further increases the complexity of VEGF
research. MET, the receptor of hepatocyte growth factor, is
correlated with increased tumor invasion and poor survival in
glioblastoma multiforme. The study found that VEGF blockade
restored and increased MET activity in a hypoxia-independent
manner while enhancing mesenchymal characteristics in
mouse models of glioblastoma multiforme (57, 58). It has been
revealed in clinical practices that antiangiogenic drugs have
caused some serious side effects, such as hypertension,
venous thromboembolism, spontaneous internal bleeding,
gastrointestinal perforation, cardiac toxicity, and endocrine
dysfunction (54, 59, 60).

Receptor tyrosine kinase inhibitor, another class of
antiangiogenic drugs such as sorafenib, was approved by the
U.S. Food and Drug Administration to inhibit VEGFR and
platelet-derived growth factor receptor-b, leading to the
enhanced VE-cadherin junctions between ECs and pericyte
recruitment (61–63). The mechanism of VEGFR2 blockade
leads to vascular normalization via angiopoietin-1 (Ang1)/Tie2
signaling (64); thus, recent studies aimed at its role involved in
the regulation of vascular normalization (13, 55, 65–67). Ang1,
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expressed primarily on perivascular cells, acts as a stabilizer for
the tumor vasculature through Tie2 activation (68–70).
However, Ang2, predominantly produced by ECs in hypoxic
TME, not only competes with Ang1 for the binding of Tie2 and
deactivates it, but also promotes tumor vessels sprouting in the
presence of angiogenic growth factors including VEGF (71–74).
Ang2 blockade promotes vessel normalization via reducing
pericyte dropout and strengthening endothelial junctions of the
tumor vasculature (71, 75, 76). Vascular endothelial protein
tyrosine phosphatase (VE-PTP) inactivates Tie2, so blocking
VE-PTP can promote tumor vascular maturation and
normalization (77). Since single blockade of Ang2 may be
insufficient to induce vessel normalization, dual blockade of
Ang2 and VEGF can reprogram tumor-associated macrophages
and promote the effector function of T cells, which can enhance
the efficacy of tumor vascular normalization and has been shown
to increase the efficacy of immune checkpoint blockade (ICB)
(78–80). Dual blockade of Ang2 and VEGF has been shown to
prolong survival in mouse models of glioblastoma, melanoma,
pancreatic neuroendocrine tumors (PNETs), and metastatic or
early stage (resected) breast cancer, except for rectal cancer (11,
81–83). These findings prove that the effect of dual blockade
of Ang2 and VEGF is closely related to tumor type, stage, and
TME. For the dosing and scheduling of VEGF and ANG2
blockers, further studies are needed (11). Besides, compared
with Ang2 blockade alone, the vascular stabilization and
perfusion were simultaneously increased by the combined
targeting of Tie2 and Ang2 (84). However, research studies
have shown that blocking both Ang1 and Ang2 might not be of
benefit to patients (85–87). The possible reason is that blocking
Ang1 might compromise the benefits of vascular normalization
conferred by the blockade of the antagonistic TIE2 ligand ANG2
(11). Notably, both single and double blocking strategies are still
posing the risks of increasing tumor hypoxia and promoting
TME degradation (20).

Inducing Angiostatic Factors
As mentioned above, inhibition of proangiogenic signals can
promote the normalization of tumor vessels, which can also be
achieved by increasing angiostatic factors such as tumor necrosis
factor a (TNFa), thrombospondin-1 (TSP-1), and endostatin.
Direct injection of low-dose TNF-a into tumors stabilizes tumor
vascular network, improves vascular perfusion, and substantially
enhances antitumor vaccination or adoptive T-cell therapy (88,
89). The tumor vasculature could be normalized and the effector
tumor infiltrating lymphocyte (TIL) infiltration could be
improved by a member of the tumor necrosis factor
superfamily, LIGHT, also known as herpesvirus entry mediator
ligand (90–92), which has been shown, when bound to a tumor
vascular targeting peptide (VTP), to be able to repair abnormal
tumor vasculature by increasing the expression of intercellular
adhesion molecule-1 (ICAM-1), vascular cell adhesion protein-1
(VCAM-1), smooth muscle actin, caldesmon, and calponin (90,
93, 94). All of these lymphotoxin b receptor (LTbR)-dependent
pericyte contractile markers can strengthen cell-to-cell
connections and reduce leakage of blood vessels. LIGHT also
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activates the intratumoral macrophages to secrete TGF-b, which
increases the synthesis of adhesion molecules in a Rho-kinase-
dependent manner and modulates pericyte differentiation.
LIGHT-driven tumor vascular normalization has been shown
to be achieved by improving the pericyte coverage rate of blood
vessels and enhancing the effect of cancer therapy (3, 90, 95, 96).
Furthermore, LIGHT–LTbR signaling induces the formation of
high endothelial venules, which are the primary sites where
leukocyte, especially TIL, extravasates from blood vessels into
target tissues (94, 97). Although some research studies have
shown that LIGHT could be used as a monotherapy, the most
effective way is to combine it with vaccinations or checkpoint
inhibitors to promote vascular normalization and enhance
cancer treatment (94, 98, 99). However, in clinical practices, a
LIGHT-based therapy should take into consideration the
interfering effect of the tumor necrosis factor receptor
superfamily member 6b, known as decoy receptor 3 (DcR3),
because LIGHT signaling could be attenuated by DcR3. Owing
to the fact that DcR3 expression was detected in neither mice
nor rats, further explorations need to be conducted for the
purpose of confirming whether LIGHT plays a role in
promoting vascular normalization in the presence of DcR3
(100–102).

TSP-1, produced by stromal cells and cancer cells, can induce
tumor vascular normalization. ABT-510, one of the mimics of
TSP-1, is able to promote the normalization of vascular structure
and function without reducing vascular density (103). In
addition to normalize tumor blood vessels by directly
increasing TSP-1 levels, metronomic chemotherapy, defined as
frequent administration at lower doses, also reprograms the
tumor immunosuppressive microenvironment into immune
stimulation, thus kills cancer cells and reduces the pressure on
tumor blood vessels, resulting in the promotion of the tumor
blood vessel normalization (20, 104–107).

Besides, studies have shown that TSP-1 related to the
normalization of tumor vessels is induced by moderate aerobic
exercise, which alone promoted melanoma growth but had no
effect on pancreatic ductal adenocarcinoma growth, possibly
owing to the specific effect of exercise on tumor growth.
However, on the basis of further research, antitumor efficacy in
both types of tumors was increased by combining exercise with
chemotherapy, as a result of exercise-induced shear stress
activating calcineurin–NFAT–TSP-1 signaling in ECs and
promoting tumor vascular normalization in mouse models
(108–111). Moreover, the level of TSP-1 had been found in
recent studies to be usually elevated around normal vessels
compared with abnormal vessels, suggesting that TSP-1 may
be a marker of vascular normalization (112).

EC proliferation and migration, as well as the expression of
VEGF, could be inhibited by an angiogenesis inhibitor,
recombinant human endostatin (endostar), which was shown,
with recent evidence, to possibly restore vascular homeostasis
and induce vascular normalization in some cancer (112, 113).
However, still unclear is the molecular mechanism, which, in
studies, was shown that the Src signaling pathway and matrix
metalloproteinase (MMP) might be the mechanism of its action
(114, 115). As mentioned above, inhibiting proangiogenic
Frontiers in Oncology | www.frontiersin.org 5
signaling or enhancing antiangiogenic signaling can prune
some abnormal vessels and fortify the remaining, resulting in a
normalized vasculature (20).

Targeting EC Metabolism
Endothelial cell metabolism has become a new way to promote
tumor vessel normalization. Although located next to the
bloodstream and has the capacity to obtain oxygen easily, ECs
surprisingly produce up to 85% of their total cellular adenosine-
triphosphate (ATP) content via aerobic glycolysis—a
phenomenon known as the Warburg effect (116–118).
Angiogenesis requires abundant ATP and biomass to
proliferate and migrate ECs, especially the active tip and stalk
cells (119). However, ECs select glycolysis to produce ATP,
which is less efficient than oxidative phosphorylation for the
following reasons (116, 120): first, regulation of glycolytic flux
occurs faster than oxidative phosphorylation, which ensures an
immediate supply of energy when the ECs proliferate and
migrate (121); second, ATP, only produced by glycolysis rather
than oxidative phosphorylation, provides energy for EC
migration, and the intermediates of glycolysis provide the
precursors of biomass synthesis for EC proliferation (122–124);
third, via aerobic glycolysis, metabolism reduces the release of
reactive oxygen species and protects ECs from oxidative stress
(116); and fourth, high glycolysis reduces oxygen consumption,
thus ensuring adequate oxygen supply to surrounding cells
(125, 126).

During the process of angiogenesis, stimulation by VEGF
leads to increased glycolysis in ECs and displays increased
expression of 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 3 (PFKFB3) (116, 127). Hyperglycolysis
accumulates excess lactic acid, which is utilized by ECs and
activates hypoxia-inducible factor 1a (HIF-1a), thus leading to
pathological angiogenesis (116). PFKFB3, an indirect component
of the glycolytic pathway, can synthesize fructose-2,6-
bisphosphate (F2,6BP), thus allosterically activating
phosphofructokinase 1 (PFK1), a rate-limiting enzyme of
glycolysis (116, 128, 129) (Figure 2). Compared with normal
proliferating ECs, tECs show an even higher reliance on PFKFB3,
of which the additional expression leads to a more immature and
dysfunctional vasculature, via activating tip cell behavior and
enhancing stalk cell proliferation (119, 130).

The glycolysis of ECs was partially reduced by the inhibition
of glycolytic activator, PFKFB3, either with low-dose
pharmacological PFKFB3 blockade with the small molecule 3-
(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) or by
endothelial PFKFB3 haplodeficiency, with the pathological
angiogenesis blocked without causing excessive vascular
pruning (7, 131) (Figure 2). Moreover, PFKFB3 inhibition also
downregulates the expression of adhesion molecules such as
VCAM-1 and ICAM-1 by inhibiting NF-kB activity, thereby
weakening the adhesive interaction between tumor cell and ECs,
leading to the reduced cancer cell invasion and metastasis (119,
129, 132). Mechanistically, PFKFB3 blockade reduces the
endocytosis of VE-cadherin and increases the expression of N-
cadherin expression in pericytes, leaving the adhesion to ECs
enhanced to keep more quiescent, thus promoting the barrier
August 2021 | Volume 11 | Article 719836
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function of tumor blood vessels (132, 133). However, deletion of
both PFKFB3 alleles in ECs or the excess of PFKFB3 inhibitor
3PO inhibited tumor growth due to reduced tumor perfusion
and induced systemic toxicity, which proved that the inhibition
degree of PFKFB3 determines its effect on the tumor vascular
system (119, 134, 135).

Crucial to angiogenesis is, apart from the glycolytic pathway,
fatty acid oxidation, on which stalk cells depend to promote
vessel sprout elongation through deoxynucleotide triphosphate
(dNTP) synthesis. Fatty acids (FAs) were imported into the
mitochondria by carnitine palmitoyltransferase 1a (CPT1a), a
rate-controlling enzyme of FA breakdown, then underwent b-
oxidation to produce acetyl-CoA, which, in conjunction with
anaplerotic substrate, sustains the tricarboxylic acid cycle (TCA)
for dNTPs and DNA synthesis in proliferating ECs (119),
resulting in the decrease in dNTP synthesis and blockade of
pathological angiogenesis caused by pharmacological blockade of
CPT1a with etomoxir as well as endothelial cell-selective genetic
deletion of CPT1a (116, 136, 137) (Figure 2). ECs can harness
glutamine metabolism to provide energy, and drugs that inhibit
glutaminase (GLS1) can normalize tumor blood vessels (7, 138,
139) (Figure 2). Forkhead box O 1 (FOXO1), a member of the
FOX transcription factors family, was found in recent
investigations to keep EC quiescence by impairing
mitochondrial function and reducing glycolysis, playing its role
Frontiers in Oncology | www.frontiersin.org 6
by inhibiting Myc protooncogene protein (c-Myc)—a key
transcriptional factor in growth and anabolic metabolism
(140–142), thus, due to the importance of FOXO1 in
angiogenesis and homeostasis of the vessel, raising the
question: whether FOXO1 is a good target of restoring tumor
vessel normalization (Figure 2).

MicroRNAs
Encoded by endogenous genes with approximately 22
nucleotides, microRNAs are single-stranded noncoding RNAs
that can regulate mRNA expression in the development and
progression of tumors, of which some can restore the integrity of
tumor vascular structure by regulating EC functions during
angiogenesis (143–146). Considered to play a major role in
controlling angiogenesis and vascular structural integrity, miR-
126 is widely expressed in venous and arterial ECs and promotes
tumor angiogenesis and maintains tumor vascular normalization
by regulating downstream growth factors such as VEGF, basic
fibroblast growth factor, and epidermal growth factor (147). For
example, a single dose of miR-126 injected in a urine ischemic
hindlimb model renders a significant reduction in capillary vessel
density (148–150). MiR-15b and miR-16 in cells lead to
decreased VEGFA expression affecting the blood vessel
formation during tumor growth (151, 152). MiR-20b acts as a
negative regulator of VEGF in breast cancer cells and
FIGURE 2 | Targeting EC metabolism promotes tumor vascular normalization. Glycolysis fuels the proliferating ECs. PFKFB3, overexpressed under hypoxia and
vascular endothelial growth factor (VEGF) stimulation, is a key regulator of the glycolytic activity in ECs. F2,6P2, produced from F6P by PFKFB3, is the main allosteric
activator of PFK1, which further increases glycolysis to produce ATP necessary for angiogenesis. PFKB3 inhibitor 3PO reduces pathological angiogenesis. CPT1a-
driven FAO and glutamine metabolism both regulate angiogenesis by replenishing the TCA cycle and producing aspartate for nucleotides and DNA synthesis. CPT1a
inhibition with etomoxir can promote tumor vessel normalization. FOXO1 keeps EC quiescence and vascular homeostasis via c-Myc regulation, ultimately resulting in
decreased glycolysis and impaired mitochondrial function.
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nasopharyngeal carcinoma epithelioid cells under hypoxic
conditions. The mechanism came into play as miR-20b
inhibited the nuclear aggregation of HIF-1a and signal
transducer and activation of transcription 3 (STAT3) (153,
154). The increase of HIF-1a and activated STAT3 has been
shown to be effective in promoting tumor pathologic
angiogenesis, while downregulation of HIF-1a and STAT3 did
the opposite (155–157). MiR-100 decreases EC proliferation,
migration, and invasion through the mammalian target of
rapamycin (mTOR)/HIF‐1a/VEGF pathway in mesenchymal
stem cells (158). MiR-107 regulates tumor suppressor gene by
p53 in human colon cancer specimens. Yamakuchi et al. found
that the overexpression of miR-107 in tumor cells reduced VEGF
expression and inhibited tumor angiogenesis in HCT116 cells,
and miR-107 could downregulate HIF-1b expression in human
colon cancer specimens, leading to the results that miR-107 can
mediate p53 regulation of hypoxic signaling and tumor
angiogenesis (159). MiR-192 inhibits tumor angiogenesis,
resulting in tumor regression and growth inhibition (160).
MiR-221/222 can reduce EC migration and proliferation via
targeting endothelial nitric oxide synthase (eNOS) and c-kit (161,
162), and miR-874 has been shown to be able to inhibit the
tumor angiogenesis of gastric cancer cells in vitro and in vivo by
targeting STAT3, and downregulation of miR-874 contributes to
tumor angiogenesis (163). On the basis of the above analysis, it
has a good prospect to promote vascular normalization through
regulation of microRNAs (miRNAs). In Table 1, some miRNAs
listed are shown to have great potential in promoting tumor
vascular normalization.

Targeting the Extracellular Matrix
Vascular normalization was also promoted by the normalization
of the extracellular matrix (ECM) which contains a large number
of fibers, including collagens, elastin, proteoglycans,
glycoprotein, and fibronectin in the TME (164–166), owing to
the fact that the dense ECM and hyperplasia of cancer cells create
mechanical forces that squeeze the blood vessels, thus destroying
the integrity of blood vessels and impairing perfusion (29, 164).
The mechanical therapy, which reduced perivascular pressure by
targeting ECM fibers or stromal cells, was proposed for the
purpose of restoring vascular normalization, since degradation
or depletion of ECM such as cancer-associated fibroblasts
(CAFs) and hyaluronan had been shown to increase tumor
perfusion and chemotherapy efficacy in preclinical studies
(167–169). Desmoplasia was promoted by angiotensin II (Ang
Frontiers in Oncology | www.frontiersin.org 7
II) bond to Ang II type 1 receptor (AT1R) via activating TGF-b
and upregulating the expression level of connective tissue growth
factor in CAFs. These mechanisms regulate the generation of
ECM. The angiotensin system inhibitor and direct TGF-b
inhibition not only inhibit CAF activation and ECM
production but also inhibit angiogenesis and enhance the effect
of immunotherapy on some cancers (167, 170). As shown in
studies, inhibiting CXCL12/CXCR4 could improve the
distribution of chemotherapy agents by effectively relieving
stress in tumors, while inducing stromal cell depletion does not
relieve tumor solid stress (171, 172). In conclusion, matrix
normalization is a good strategy to restore tumor vascular
structure and potentiate chemotherapy (173–175).

Other Methods
The vascular normalization can also be promoted by, in addition
to the above methods for tumor vascular normalization,
targeting other molecules in the TME. For example, transient
receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion
channel, is a mechanosensor of shear stress and cyclic strain
commonly expressed in vascular ECs, of which, compared with
normal ECs, the expression and function were decreased in tECs
(176–182). Regarding TRPV4 knockout mice, the vascular
density increased, the pericyte coverage decreased, and the
tumor growth increased. On the contrary, overexpression or
pharmacological activation of TRPV4 can normalize vasculature
and increase drug delivery (178, 183–186). Importantly, TRPV4
activator inhibited tumor growth in mice when used in
combination with the chemotherapeutic drug cisplatin (183,
184). The mechanism of TRPV4 inducing tumor vascular
normalization might be through regulation of Rho/Rho kinase
via modulating integrin activation, with TRPV4 overexpression
significantly inhibiting Rho/Rho kinase activity, which possibly
accounts for the recovery of mechanical sensitivity and the
normalization of angiogenesis in tECs (183, 184, 187–190). It
was found in further experiments that the deletion of TRPV4
significantly increased the basal Rho and promoted tEC
proliferation and migration, indicating that TRPV4 can be
used as a novel therapeutic target to promote tumor vascular
normalization by regulating the Rho/Rho kinase pathway
(185, 191).

With G-protein signaling 5 (Rgs5) mediating abnormal
tumor angiogenesis and targeting Rgs5 promoting tumor vessel
normalization, RGS5-deficient mice blood vessels showed
increased pericyte coverage and reduced vessel permeability,
TABLE 1 | Some miRNAs associated with vessel normalization.

MicroRNA Targets Roles References

miR-15b/miR-16 VEGFA Induce cell apoptosis (153)
miR-20b HiF-1a, STAT3 Downregulating VEGF and suppressing angiogenesis (154)
miR-100 mTOR Inhibits vascular cell sprouting and proliferation (158)
miR-107 HiF-1a Suppressing angiogenesis (159)
miR-126 VEGFA Tumorigenicity and angiogenesis (147, 149)
miR-192 EGR1, HOXB9 Globally downregulates angiogenic pathway (160)
miR-221/miR-222 c-kit, eNOS Inhibit EC migration and proliferation (161)
miR-874 STAT3 Tumor growth and angiogenesis (163)
August 2021 | Volume 11 | A
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which is conducive to reducing tumor hypoxia and promoting
blood perfusion to the tumor (31, 192). Able to upregulate the
expression of VEGFR2 and promote endothelial sprouting is a
member of the sex-determining region Y-box (SOX)
transcription factor family, transcription factor Sox17, of which
deletions in tECs inhibited pathological angiogenesis and
promoted tumor vascular normalization. Research found that
Sox17 mutant mice improved drug delivery and inhibited tumor
metastasis, suggesting that long-term tumor vascular
normalization is conducive to inhibiting the malignant
progression (193, 194).

Oxygen levels can be sensed by an oxygen sensor, endothelial
prolyl-hydroxylase 2 (PHD2), which regulates angiogenesis by
targeting HIF (195). Via tightening the endothelial layer, the
tumor vascular normalization was promoted by mice with
haploid-deficient PHD2 in the ECs that were able to restore
tumor vascular abnormalities by reducing CAF activation,
matrix production, and contraction by CAFs (196, 197). As
CAF-induced matrix deposition was a migration scaffold for
cancer cell dissemination, PHD inhibition reduced lung
metastasis. Moreover, PHD protein expression in lung
metastases inhibited T-cell effector function and increased the
recruitment of Treg cells, so its inhibition decreased Treg cell
recruitment and enhanced the immune response (198, 199). C-
Src, a member of the Src family kinases (SFKs), is a nonreceptor
tyrosine kinase located in cells and is well known for its role in
tumorigenesis. Recent findings indicated that the Src inhibitor
dasatinib could maintain the integrity of ECs, thus showing the
potential to restore tumor vascular normalization (200, 201).
Lysophosphatidic acid receptor 4 (LPA4) could tighten
endothelial cell–cell contact via promoting cortical actin fiber
formation of ECs and stabilizing VE-cadherin, which
strengthened the connections between ECs and reduced
leakage of blood vessels, and when used in combination with
chemotherapy drugs, LPA4 could enhance the antitumor effect
(202, 203). A neural adhesion protein with the effect of
promoting angiogenesis is, expressed in tumor ECs, endothelial
glycoprotein L1 (L1CAM), of which the blockade with anti-
L1CAM antibodies or lacking L1CAM resulted in reasonable
distribution, complete structure, and normal function of tumor
vessels (204). R-Ras is a GTPase that maintains EC survival and
promotes vascular maturation through activation or
overexpression of R-Ras in vascular smooth muscle cells or EC
cells (205). Mediated by proangiogenic factors in tumors is the
upregulation of MMPs, which damages vascular basement
membrane making the vessel dysfunctional, indicating that
inhibiting MMPs or targeting integrina6 can block the action
of MMPs and promote vascular basement membrane integrity
(183, 206, 207). On the basis of studies, the antimalarial drug
chloroquine had also shown promising results in normalizing
tumor blood vessels in that chloroquine increased intratumoral
oxygen, improved the efficacy of chemotherapy, and inhibited
cancer cell metastasis, which relied mainly on an autophagy-
independent, NOTCH1-reliant mechanism to promote tumor
vessel normalization (208–210). Another chemotherapy drug
with antiangiogenic effects, eribulin, could increase EC–
Frontiers in Oncology | www.frontiersin.org 8
pericyte interactions and form fortified vessels by modulating
the expression of angiogenesis molecules (211, 212).

Taken together, new targets for promoting tumor vascular
normalization might be provided by targeting the stroma, cancer
cells, and other cells in the tumor environment.
THE RELATIONSHIP BETWEEN TUMOR
BLOOD VESSELS AND IMMUNITY

A Vicious Circle Between Abnormal Tumor
Blood Vessels and Immunosuppressive
Microenvironment
Normal structure and function of blood vessels allow immune
cells to enter tissues and destroy cancer cells, while the
disorganized tumor vessels seem to form a selective immune
cell barrier to limit the extravasation of leukocytes—especially
cytotoxic T lymphocytes (CTLs)—into blood vessels (12, 20, 51,
213). Particularly, the process of immune cells adhering to the
ECs and then transmigrating across the vessel wall is also blocked
(214). For example, integrin ligands ICAM-1 and VCAM-1 were
both expressed on ECs and immune cells, thus reducing the
transport of immune effector cells and infiltration into the tumor
core (215, 216). tECs, expressing the immune checkpoint
protein-programmed cell death 1 ligand 1 (PD-L1), can bind
to PD-1 expressed on T cells and thus inhibit its anticancer
activity. The hypoxic TME leads to excessive lactic acid
accumulation, thus impairing cytotoxic T-cell function via
interfering with the production of interferon-g (IFNg) triggered
by the T-cell receptor (TCR) (217–219) (Figure 3).

The abnormal tumor vasculature not only directly affects the
infiltration of immune effector cells but also indirectly promotes
TME-mediated immune suppression through synthesis of
proangiogenic factors, such as VEGF and Ang2 (20, 220).
Excessive VEGF in TME promotes immunosuppression
through at least four mechanisms: first, VEGF inhibits CTL
trafficking and effector function by regulating the inhibitory
checkpoints of T cells (221); second, VEGF inhibits dendritic
cell (DC) maturation and antigen presentation, thus further
hampering T-cell activation (222); third, VEGF promotes the
recruitment and proliferation of immunosuppressive cells, such
as Treg cells, myeloid-derived suppressor cells, and protumor
M2-like tumor-associated macrophages (TAMs) (19, 223, 224);
and fourth, as described above, VEGF promotes aberrant
vasculature and causes hypoxia to locally and systemically
foster immunosuppression (19, 33, 225) (Figure 3). In addition
to VEGF, activated Ang2 signaling also plays a significant role in
promoting tumor immunosuppression: for one thing, Ang2
facilitates the recruitment of MDSCs (myeloid-derived
suppressor cells) (226), Treg cells (227), and TIE2-expressing
monocytes via upregulating adhesion molecules between
leukocytes and ECs (228); for another, Ang2 limits the
anticancer activity of monocytes by inhibiting the secretion of
TNF. These proangiogenic factors might cooperate to induce
tumor immunosuppression (Figure 3). Moreover, an optimum
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level of VEGF and Ang2 blockade not only promotes tumor
vascular normalization but also enhances the anticancer effect of
immune cells (82, 83).

Furthermore, increased activation and recruitment of
immunosuppressive cells can in turn induce more abnormal
angiogenesis, which form a vicious circle of disrupted immune
activation (229). MDSCs can not only secrete VEGF but also
induce MMP9 to act on the ECM, of which both can enhance the
proliferation and migration of ECs, thus promoting angiogenesis
(230). As shown in studies, angiogenesis will be promoted when
VEGFR1 and VEGFR2 expressed on DC cells bind to the VEGF-
A, and TAMs and monocytes can also synthesize and secrete
VEGF (231, 232) (Figure 3). Interestingly, recent studies have
shown that immunosuppression, in turn, leads to resistance to
antiangiogenic treatments (233–235).

A Virtuous Circle Between Immunotherapy
and Vascular Normalization
Immunotherapy has proven effective in treating cancers and has
become the standard for many cancers (236, 237), while recent
findings indicated that stimulation of immune cells, especially T
cells, plays an important role in the process of vascular
normalization in transplant mammary tumors (238–240).
Studies have shown that whether in CD4+ T-cell-deficient mice
Frontiers in Oncology | www.frontiersin.org 9
or CD8+ T-cell-deficient mice, the blood vessels were structurally
and functionally abnormal, with the CD4+ T-cell-deficient mice
particularly decreasing pericyte coverage and increasing
permeability of the blood vessels, whereas manual injection of
CD4+ T cells into tumor-bearing mice increased pericyte
coverage of the blood vessels and reduced hypoxia, indicating
the occurrence of tumor vascular normalization (238, 240).
Through activating of immune checkpoints, cancer cells are
able to block the initiation and activation of T cells. T cells,
which were thought to be primarily affected by ICB with anti-
PD1 and anti-cytotoxic T-lymphocyte-associated antigen 4
(CTLA4) antibodies, can promote abnormal tumor vessel
normalization (241–243). The main molecular mechanism of
this process is mediated by IFNg (244), which not only inhibited
tumor growth, but also acted on ECs to downregulate the
expression of delta-like protein 4, thus inhibiting Notch
signaling pathway, which is a key pathway of angiogenesis
(245). Besides, IFNg stimulation significantly reduced VEGF
secretion in tumor-associated fibroblasts, leaving the
angiogenesis further inhibited (246). Moreover, Tian et al.
found a positive correlation between IFNg secreted by Th1
cells and vascular normalization in various mouse models with
vessel normalization or T-lymphocyte deficiencies (238)
(Figure 3). ICB has been proved to be effective at improving
FIGURE 3 | Abnormal tumor blood vessels not only inhibit the infiltration of cytotoxic T lymphocytes (CTLs) but also promote the formation of hypoxic, acidic TME,
which affects the function of CTLs and increases the accumulation of VEGF and Ang2. VEGF, in addition to directly impairing the function of CTLs, also inhibits the
maturation and antigen presentation of DC, which are necessary for priming of CTLs. Ang2 restricts anticancer activity by modulating the function of monocytes.
Both VEGF and Ang2 promote the recruitment of immunosuppressive cells such as Treg cells, MDSCs, and TAMs. These immunosuppressive cells suppress the
activity of CTLs, which promote tumor vascular normalization through secreting IFNg. Immune cells, especially immunosuppressive cells, can produce excessive
VEGF and Ang2, further promoting pathological angiogenesis. Immunotherapy with ICB can stimulate CTLs to produce IFNg, further inducing tumor vascular
normalization. The normal tumor blood vessels can promote the infiltration of CTLs and enhance tumor immunotherapy, thus forming a virtuous cycle.
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overall survival in many cancers. However, in phase III clinical
trials, ICB failed to improve overall survival in glioblastoma
multiforme due in part to the immunosuppressive TME.
Immune suppression was mediated in part by microglia, bone-
marrow-derived myeloid cells, and granulocytes. These cells also
enhanced tumor growth and resistance toward antiangiogenic
therapy by expression of alternative proangiogenic factors such
as CXCL2, IL8, and CD13 (247–251). In addition to T cells, the
activation of eosinophils can also normalize tumor blood vessels,
but the exact mechanism is unclear, which may be that the TAMs
were polarized into an M1-like phenotype through eosinophil-
derived IFNg and TNF signaling, leading to a reduced low VEGF
production (252). However, it was shown in a study on
promoting IFNg expression in murine fibrosarcoma and
adenocarcinoma cells that that IFNg directly inhibited
angiogenesis and cut off blood flow to bring about
intratumoral ischemia, by binding to IFNg receptors on tECs.
It is markedly different from the evidence that IFNg promotes
vascular normalization, which might be because the IFNg
expressed in tumor cells produced a higher and more
persistent systemic concentration than the transient IFNg
elevation that can be stimulated by ICB (11, 89, 238).

Immunotherapy has the potential to promote vascular
normalization, which in turn further promotes the
improvement in immunotherapy effectiveness, thus forming a
positive feedback loop. Restoring blood vessel normalization
reduces interstitial fluid pressure and improves tumor
perfusion, a process that not only increases the infiltration of
immune cells within the tumor but also increases the supply of
oxygen and nutrients. Adequate oxygen and nutrients can
improve the overall anticancer immunotherapeutic response, as
high oxygen can enhance the function of cytotoxic T cells (31,
225, 253, 254).

The Combination of Immunotherapy and
Conventional Antiangiotherapy
In order to expand the advantages of immunotherapy, the
combination of immunotherapy and antiangiotherapy was
investigated to improve the effect of promoting vascular
normalization. Since the appropriate dose of antiangiogenic
drugs can induce vascular normalization and improve the
delivery of therapeutic agents to tumors, the dose of ICB can
be reduced, which was sometimes known to cause severe
immune-related adverse events. Recently, statistics showed that
anti-PD1/PDL1 combination trials has continued to increase
over the past decade, especially the combination of anti-PD1/
PDL1 with VEGF/VEGFR-targeted therapies has become the top
combination treatment modality (11, 255, 256). Some preclinical
studies demonstrated that the combination treatment of ICB and
antiangiotherapy was significantly more effective than
monotherapy (257), which is supported by the instance of the
findings of Lieu et al. that the combination of bevacizumab and
atezolizumab could normalize the TME and inhibit tumor
growth in a Cloudman melanoma mouse transplant tumor
model. Zhao et al. have proven that low-dose apatinib
combined with anti-PD-L1 antibody could inhibit tumor
Frontiers in Oncology | www.frontiersin.org 10
growth and prolong the survival time of a syngeneic lung
cancer mouse model (258). The findings of Allen et al.
suggested that the combination treatment of anti-PD-L1
therapy and antiangiogenic therapy could improve clinical
anticancer efficacy by creating positive feedback loops as well
(254, 259). The results of the phase I clinical trials showed that
bevacizumab combined with ipilimumab (anti-CTLA4) can
improve vessel morphology and increase infiltration of DCs
and cytotoxic T cells in melanoma tumors (260–262).
Moreover, dual VEGF–Ang2 blockade has been shown to
upregulate the expression of adhesion molecules during the
window of vascular normalization, thereby facilitating the
accumulation of anticancer T cells within multiple types of
tumors in mice. Further studies revealed that dual VEGF–
Ang2 blockade leads to the upregulation of PD-L1 on ECs and
tumor cells, which may be a possible mechanism of resistance to
dual VEGF–Ang2 blockade (11, 81). It further justifies the
combination of antiangiotherapy and ICB. However, anti-
VEGFR2 combined with anti-PD-L1 antibodies failed to
improve survival in a glioblastoma model (259), and this lack
of efficacy was attributed to a low incidence of high endothelial
venules (263). Moreover, neither ICB nor anti-VEGF therapy
was proved to be effective in highly desmoplastic tumors, such as
cholangiocarcinoma and pancreatic ductal adenocarcinoma (20,
264). These different results suggest that vascular effects depend
on tumor location and type, and more accurate measures of
vascular normalization are required to determine the synergistic
effect of immunotherapy and antiangiogenic therapy on tumor
vascular normalization.
MARKERS OF VASCULAR
NORMALIZATION

Given that there is no consensus on the types and the dosages of
drugs used to normalize blood vessels, and because dose and
duration of treatment may rely on the types and sizes of the
tumors, vascular densities, expression levels of proangiogenic
growth factors, and the conditions of the patients, it is critical to
find and identify quantifiable methods to “normalization” (265,
266). With regard to antiangiogenic therapy, higher than the
optimal dose of antiangiogenic drugs leads to excessive tumor
vessel regression, further aggravating tumor hypoxia, while lower
than the optimal dose cannot promote the normalization of
tumor vessels (64, 267). Thus, a better understanding of the time
window for vascular normalization will help determine
appropriate drugs and dosages. Presented here are several
imaging technologies or markers that can assess the window
for vascular normalization. The morphological changes of blood
vessels in tumor tissues can be observed by means of traditional
histochemistry and the use of intravital microscopy to track the
changes of vascular network over time, of which both are
invasive and yield no information on vascular function,
making it very difficult to apply them in clinical practice (265,
266). With the window of tumor vascular normalization
dynamically monitored, the changes of tumor vascular
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perfusion can be detected by the noninvasive imaging technology
that is also feasible in clinical practice. The perfusion and the
window for blood vessel normalization were detected by using
MRI (DCE-MRI and BOLD-MRI), dynamic contrast-enhanced
ultrasonography (DCE-US), endomicroscopy, computed
tomography, and positron emission tomography (PET), etc.
(268–273), with the functionality of tumor blood vessels and
the ideal regimen required to achieve normalization determined
with the dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) and the specific radiotracer 18F-MISO
developed for PET (13, 274, 275).

In addition to imaging techniques, serum-based biomarkers also
provide a possibility for monitoring tumor vascular normalization
windows. The serum level of soluble VEGFR (sFlt1), which is
produced by ECs to finalize angiogenesis for maturation of
neovasculature, was reported as a potential predictive marker to
detect vascular normalization (199, 276). Ang1/Ang2 ratio is
correlated with the degree of vascular normalization and may
predict the degree of vascular maturation (66, 277). Apelin, an
easily measured secreted protein whose expression is regulated by
hypoxia, is overexpressed in many human cancers, including colon
adenocarcinoma, nonsmall cell lung cancer, prostate cancer, and
hepatocellular carcinoma. Apelin mRNA expression and plasma
apelin levels were found in a preclinical study to reduce during the
vessel normalization window induced by bevacizumab, indicating
that apelin can be used as a potential indicator to identify the
window of vascular normalization (210, 278–280). Despite the fact
that the patients were reported to have higher levels of circulating
type IV collagen in their blood when antiangiogenic therapy was
efficient, and the intratumorale expression of P1GF was augmented
during the gradual restoration of normalization of blood vessels
Frontiers in Oncology | www.frontiersin.org 11
(276, 281), all of the biomarkers proposed in recent years to measure
the normalization of blood vessels have certain disadvantages,
showing that, currently, there is no universally accepted method
for identifying tumor window for vascular normalization. In
Table 2, we list some imaging methods and serum markers that
may monitor the normalization of tumor vessels and highlight their
advantages and disadvantages.
CONCLUSION

The U.S. Food and Drug Administration approved bevacizumab,
the first angiogenesis inhibitor, to treat metastatic colorectal
cancer. Targeting tumor vessels has aroused the interest of a
growing number of researchers because of its great potential in
tumor therapy. Although antiangiogenic therapy has increased
progression-free survival of patients in many types of cancers,
the overall results indicated that overall survival improvement
was very limited and can be considered worse as long-term
antiangiogenic therapy in cancer patients could lead to toxicity
and drug resistance, and discontinuation of antiangiogenic drugs
might lead to rebound effects that would further aggravate tumor
invasion and metastasis. Targeting tumor vascular normalization
can not only overcome the shortcomings of antiangiogenic
therapy but also enhance the anticancer effect when combined
with radiotherapy, chemotherapy, and immunotherapy.

Oneof thekeys tomaintaining tumorvascularnormalization is to
keep the balance between proangiogenic factors and antiangiogenic
factors: for one thing, although inhibiting proangiogenic factors such
as VEGF and Ang2 have been extensively studied to induce vascular
normalization, there is, owing to their dose dependence, the lack of
TABLE 2 | The pros and cons of some vascular normalization testing methods.

Methods Pros Cons References

Imaging
methods

Dynamic MRI Observes perfusion and permeability; assesses tumor hypoxia;
is extensively used

Is influenced by many factors, such as scanning
schedule and movement

(270, 282,
283)

Dynamic contrast-
enhanced
ultrasonography

Enables quantitative assessment of solid tumor perfusion; no
radiation

Cannot clearly show the structure of blood vessels;
poor sensitivity to changes in blood flow

(284–286)

CT perfusion
imaging

Measures the vascular structure and perfusion Is susceptible to movement during data acquisition;
radiation exposure; allergic reaction

(287–289)

PET Observes the vascular perfusion and permeability; assesses
tumor hypoxia; reveals supplementary information on tumor
growth and metabolism; sensitive

High rate of glucose metabolism in normal tissue and
increased glucose uptake in inflammatory cells can
affect image quality; nuclear radiation; expensive

(290, 291)

Serum
markers

sFlt1 Inhibits VEGF activity Is difficult to detect when the concentration in plasma is
at a low level

(199, 276)

Apelin Upregulates when VEGF is overexpressed Is influenced by body mass index and increases in
obese patients

(265, 292)

Ang Compensates for the inhibition of the VEGF/VEGFR2 pathway Production depends on the tumor heterogeneity, on the
type of tumor, and on the type of antiangiogenic drug

(7, 293,
294)

TSP-1 Increases in response to hypoxia, but decreases when hypoxia
is alleviated

Interacts with multiple signaling receptors and with
angiogenic and immune-modulatory factors in the
extracellular matrix

(112, 295)

Intravital microscopy Observes blood flow, blood vessel density, and permeability
directly; can be used in combination with fluorescent probes,
etc.

Cannot obtain fully quantifiable data on vascular
function; requires microendoscopy to detect deep-
seated tumors

(296, 297)

Histochemistry Observes morphological changes in vascularity directly Yields no information on vascular function; invasive (265, 266)
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advanced technologies or biomarkers to determine the window for
vascular normalization posing the major challenge; for another,
angiostatic factors such as TNF, TSP-1, and endostar have shown
the potential to promote vascular normalization. A particular
example is TSP-1, whose expression can be regulated by
nonpharmacological means of aerobic exercise, which is a good
adjuvant therapy in combination with other methods in the process
of promoting vascular normalization. Targeting miRNAs and
endothelial cell metabolism provides a novel and exciting but
challenging way to achieve vascular normalization, which has
become a research hot spot in recent years. Aside from the
methods of vascular normalization, the degrees of normalization
are also associated with the types of tumors, the duration of
treatments, and the types and dosages of the drugs. The current
possible methods are summarized in detail for judging vascular
normalization. For the purpose of enhancing the persistence of
vascular normalization and overcoming the toxicity and drug
resistance that may result from monotherapy, future research on
vascularnormalizationmightbe focusedmoreon thecombinationof
different approaches, indicating that the key to normalizing tumor
blood vessels is selecting an appropriate combination of these
methods or with anticancer strategies (including surgery,
chemotherapy, radiation therapy), as well as selecting reasonable
order and time and appropriate drug dosage in the combination
therapy. However, these therapies have complex biological effects,
and their combinationsmaypose a risk of increasing toxic side effects
to patients. Thus, it is necessary to find more evidence to confirm
whether the same effect can be achieved after the transition to clinical
application, despite the therapeutic benefits of tumor vascular
normalization demonstrated in many preclinical studies.
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In light of the importance of blood vessels to tumors,
targeting tumor blood vessels is certain to play a crucial role in
future tumor therapy. Hence, in this review, the methods
of vascular normalization and the main challenges are
described in detail, and the possible imaging techniques and
biomarkers for evaluating vascular normalization are also
introduced, which will provide references for further research
directions of researchers.
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