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(–)-Epigallocatechin gallate (EGCG), the predominant catechin (≥50%) in green tea

(Camellia sinensis), displays several bioactive properties but its stability and bioavailability

are low. In this work, the properties of two α-glucosyl derivatives of EGCG (3′- and

7-O-α-D-glucopyranoside), obtained by enzymatic synthesis, were assessed. The

α-glucosylation enhanced the pH and thermal stability of EGCG. The analysis of

scavenging activity toward ABTS·+ radicals showed that the α-glucosylation at C-7 of

A-ring caused a higher loss of antioxidant activity compared with the sugar conjugation

at C-3′ of B-ring. The 3′-glucoside also showed higher potential to alleviate intracellular

reactive oxygen species (ROS) levels and to boost REDOX activity. The toxicity of

EGCG and its monoglucosides was tested in human SH-S5Y5 neurons, RAW 264.7

macrophages, MRC5 fibroblasts, and HT-29 colon cancer cells. Interestingly, the

3′-O-α-D-glucoside increased the viability of neural cells in vitro (2.75-fold at 100µM)

in the presence of H2O2, whilst EGCG gave rise only to a 1.7-fold enhancement. In

conclusion, the α-glucoside of EGCG at C-3′ has a great potential for nutraceutical,

cosmetic and biomedical applications.

Keywords: glycosylation, tea polyphenols, antioxidants, catechins, neuroprotective properties

INTRODUCTION

Plant polyphenols are gaining relevance due to their capacity to delay the appearance of certain
degenerative diseases and pathological processes such as Alzheimer’s and Parkinson’s diseases,
schizophrenia, cancer, chronic inflammatory disease, atherosclerosis or myocardial infarction
(1–3). Their action is based on the enhancement of the antioxidant system due to their ability to
reduce the level of reactive oxygen species (ROS) (4). Many polyphenols are lipophilic scaffolds
with rapidly conjugated phenolic OHs that exhibit poor absorption in vivo, giving rise to a very low
concentration in the circulatory streams (5).

Several polyphenols appear glycosylated in nature (4, 6) and the sugar moiety seems to play a
major role in their solubility (7), partition coefficient (8), protection from oxygen, pH, temperature
and/or light (9), absorption (10, 11), bioavailability (12), and bioactivity (13). Several studies
demonstrated that glycosylation facilitates the diffusion of polyphenols into intestinal enterocytes
(12, 14). Other investigations have shown that deconjugation of the glycosyl moiety of glycosylated
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flavonoids favors cellular uptake by enterocytes (15, 16). Despite
this controversy in the role of glycosylation on bioavailability,
there is some consensus that glycosylation increases the stability
of polyphenols during gastrointestinal transit after ingestion (17)
and also during storage (18). In fact, glycosylation is being
exploited as a tool to improve the properties of polyphenols
(7, 19–22). Enzymatic synthesis is gaining importance due
to its selectivity and the environmentally friendly reaction
conditions (23–25).

(–)-Epigallocatechin gallate (EGCG) is the predominant
catechin (≥50%) in green tea (Camellia sinensis). It possesses
antioxidant (26), antihypertensive (27), antitumoral (28, 29),
bactericidal (30), and anti-inflammatory (31) bioactivity, among
others. However, EGCG undergoes rapid degradation in aqueous
solutions (32) resulting in a low bioavailability (33). The
two main processes involved in the instability of EGCG
are epimerization and oxidative coupling (34). In order to
increase its stability and bioavailability (35), and to reduce its
astringency for food applications (36), the glycosylation of EGCG
has been explored by several groups, mostly by the use of
enzymatic catalysis (37–39). Recently, our group reported the
enzymatic synthesis of various α-glucosyl derivatives of EGCG
by a transglycosylation reaction catalyzed by a cyclodextrin
glucanotransferase (CGTase, EC 2.4.1.19) (40). Two main α-D-
glucosides of EGCG were isolated and chemically characterized:
EGCG 3′-O-α-D-glucopyranoside (1) and EGCG 7-O-α-D-
glucopyranoside (2).

In the present work, we have analyzed the effect of α-
glucosylation on several properties of EGCG, in particular the pH
and thermal stability, the antioxidant and REDOX activities, the
toxicity toward several cell lines and the neuroprotective activity.
Consequently, the influence of the position of glycosylation on
such properties was assessed.

MATERIALS AND METHODS

Enzyme and Reagents
(-)-Epigallocatequin gallate (EGCG) was acquired from Zhejiang
Yixin Pharmaceutical Co. (Zhejiang, China). Toruzyme 3.0L,
a commercial preparation of cyclodextrin glucanotransferase
(CGTase) from Thermoanaerobacter sp., was kindly provided
by Novozymes. Partially hydrolyzed starch from potato
(Passelli SA2) was from Avebe (Foxhol, The Netherlands).
ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)]
and (R)-Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylic acid) were purchased from Sigma Aldrich. All other
reagents and solvents were of the highest available purity and
used as purchased.

Stability Assays
EGCG and its glucosylated derivatives were dissolved at 4 mg/mL
in 20mM sodium phosphate buffer (pH 6.7) and incubated
at 60◦C. At intervals, aliquots of 150 µL were withdrawn,
diluted 2-fold with water and passed through nylon filters
(13mm, 0.45µm). The remaining concentrations of EGCG or its
glucoside were analyzed by HPLC.

Trolox Equivalent Antioxidant Capacity
(TEAC) Assay
The ABTS·+ was generated from ABTS solution (7mM) with
potassium persulfate (2.45mM) for 15 h. The radical cation
absorbed at 734 nm and was stable for 2 days. ABTS·+ was
diluted in ethanol to 0.7 ± 0.02 absorbance units at 734 nm.
Addition of antioxidants to the pre-formed radical cation reduces
it to ABTS thus decreasing the absorbance. Twenty microliter
of antioxidant solution (between 20 and 210µ M) was added to
230 µL of adjusted ABTS·+ solution. The decrease of absorbance
of the ABTS·+ solution was monitored at 734 nm during 6min
using a microplate reader (model Versamax, Molecular Devices).
The decrease of absorbance was determined measuring the area
under the curve. (R)-Trolox was used as a reference antioxidant.
The TEAC value was expressed as the concentration (µM)
at which the compound decreases the same absorbance as
1 µM (R)-Trolox.

Cell Cultures
SH-S5Y5 neurons were cultured in collagen-pretreated
petri-dishes with DMEM-F12 medium supplemented with
penicillin/streptomycin and 10% inactivated fetal bovine serum
(iFBS). RAW 264.7 macrophages and HT-29 colon cancer cells
were cultured in DMEM high glucose medium supplemented
with penicillin/streptomycin and 10% iFBS. MRC5 were cultured
in DMEM low glucose medium supplemented with glutamine,
penicillin/streptomycin and 10% iFBS.

Cell Viability Assays
Neuron assays were done in collagen-pretreated 96 well plates
by seeding 2 × 104 neurons per well in a 100 µL volume
and with 24 h of incubation before the compound addition.
Macrophage assays were done in 96 well plates by seeding 2.5
× 104 macrophages per well in a 100 µL volume with 4 h of
incubation before the compound addition. MRC5 and HT-29
assays were done in 96 well plates by seeding 5 × 104 cells per
well in a 100 µL volume and with 24 h of incubation before the
compound addition. Tested compounds dissolved inDMSOwere
then added at different final concentrations (100, 10, and 1µM)
to determine compound toxicity. Final DMSO percentage in each
cell was adjusted to 1%. Cell viability was evaluated 24 h (SH-
SY5Y and RAW264.7 cells) or 48 h (MRC5 andHT-29 cells) after
compounds addition by mitochondrial MTT assay, according
to manufacturer.

Measurement of Reactive Oxygen
Species (ROS)
Reactive oxygen species (ROS) levels were evaluated using the
ROS-sensitive H2DCFDA staining method (Sigma, St. Louis,
MO, USA). The intracellular ROS level was determined on
SH-SY5Y neuroblastoma cells that were cultured, plated and
compound-treated as described previously for the cell viability
assay. The protective effect of the EGCG derivatives on H2O2-
induced oxidative stress was assayed after a short pre-incubation
time of the compounds (2 h) followed by a short incubation
with H2O2 (100µM, 2 h). The intracellular ROS generation
of each compound alone, without H2O2 treatment, after 6 h
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of incubation, was also evaluated. Following treatments, the
medium was removed and incubated with 25µM H2DCFDA
for 2 h at 37◦C in the dark. H2DCFDA, a cell permeable non-
fluorescent, is de-esterified intracellularly and turns to the highly
fluorescent permeant molecule 2,7-dichlorofluorescein (DCF) in
the presence of intracellular ROS upon oxidation. Fluorescence
intensity was measured at an excitation wavelength of 485 nm
and an emission wavelength of 530 nm using a multimode
microplate reader (TECAN, Männedorf, Switzerland).

Mitochondrial Oxidation–Reduction
(REDOX) Activity
The analysis of REDOX activity was performed using the
fluorogenic oxidation-reduction indicator Resazurin (Life
Techonologies Inc., Rockville, MD, USA). The REDOX activity
level was determined on SH-SY5Y cells that were cultured,
plated and compound-treated as described previously. After
treatments, resazurin dissolved in water at a final concentration
of 5µM was added to the wells, and the fluorescence intensity
was examined at an excitation of 530 nm and an emission of
590 nm. The plate was incubated for 2 h, and then fluorescence
was measured using a multimode microplate reader (TECAN,
Männedorf, Switzerland).

Neuroprotective Properties
EGCG and the corresponding glucosides were assayed in vitro
in cell cultures to determine their neuroprotective activity. SH-
S5Y5 neurons were determined on SH-SY5Y cells that were
cultured, plated and compound-treated as described previously.
EGCG and its glucosides dissolved in DMSO were added at three
concentrations (1, 10, and 100µM) and incubated for 10min
before the addition of hydrogen peroxide (100µM). Cell viability
was evaluated 24 h after compound addition by mitochondrial
MTT assay. Neuron recovery was calculated by normalizing the
results from H2O2-neuron viability to the H2O2 positive control.

Statistical Analysis
For the determination of antioxidant capacity (TEAC assay),
experiments were performed in triplicate. The standard

deviations of TEAC values were calculated from the slope
of linear regressions of the curves representing decrease of
absorbance vs. concentration. The significant differences
between the values were calculated with a t-test of slopes and
their standard deviations, considering n the number of linear
regression points.

For the cell viability assays, analysis of ROS, mitochondrial
oxidation-reduction activity and neuroprotective activity,
averages and standard deviations of at least eight different
readings from various experiments were calculated. Welch’s
t-test for samples with unequal variance (previously tested by
one way ANOVA in SigmaPlot 13.0) was made to perform
the statistical analysis, considering significant differences
when p < 0.05.

FIGURE 2 | Effect of EGCG and its α-glucosides 1 and 2 on ABTS·+

reduction. In the assay, Trolox was used as antioxidant reference compound.

FIGURE 1 | Scheme of the glucosylation of EGCG and the structure of the two main products: epigallocatechin gallate 3′-O-α-D-glucopyranoside (1) and

epigallocatechin gallate 7-O-α-D-glucopyranoside (2).
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TABLE 1 | TEAC values of EGCG and its α-glucosides.

Compound Slope of linear

regression

R2 TEAC

Trolox 3.22 ± 0.02 0.996 1.00 ± 0.02

EGCG 12.1 ± 0.1 0.999 0.27 ± 0.02

EGCG 3′-O-α-D-glucopyranoside 9.97 ± 0.20 0.996 0.32 ± 0.02*

EGCG 7-O-α-D-glucopyranoside 4.04 ± 0.20 0.999 0.80 ± 0.04*

The data is expressed as mean ± SD (n = 6, *p < 0.01 vs. EGCG).

RESULTS AND DISCUSSION

EGCG Glucosylation and Effect on
Antioxidant Properties
The synthesis of various α-glucosyl derivatives of (–)-
epigallocatechin gallate (EGCG) was performed following a
previous work developed in our laboratory (40). The reaction
takes place at 50◦C catalyzed by cyclodextrin glucanotransferase
(CGTase) from Thermoanaerobacter sp., using hydrolyzed
potato starch as glucosyl donor (Figure 1). The reaction was
performed in water (no buffer), as the maximum stability of
EGCG was found in this solvent (40). Two main monoglucosides
were the main products and were chemically characterized by
combining MS 2D-NMR methods. The major derivative was
epigallocatechin gallate 3′-O-α-D-glucopyranoside (1) and the
minor epigallocatechin gallate 7-O-α-D-glucopyranoside (2).

We studied the antioxidant activity of the two glucosylated
derivatives by the TEAC assay to assess the role of the different
phenolic groups on the EGCG properties. The results of the
assay are represented in Figure 2. The incorporation of a α-
glucosyl moiety to the position 7 of A-ring caused a higher
loss of antioxidant activity than in position 3′ of B-ring. The
TEAC values, calculated from the slopes of linear regressions of
Figure 2, are summarized inTable 1. In all cases the TEAC values
were lower than that obtained for Trolox.

As shown in Figure 2, the glucosylation at the 3′-position has
a slight influence on the scavenging activity of EGCG toward
ABTS.+ radicals. In this context, it has been reported that the
ortho-trihydroxyl group (at positions C-3′,−4′, and−5′) at B-ring
and the gallate moiety at C-3 of A-ring are the most important
structural features for scavenging free radicals by EGCG (38,
41). Our results compare well with those described by Nanjo
et al. using the DPPH radicals assay (41, 42) However, it must
be considered that the free radical scavenging capacity of tea
catechins and their derivatives is radical-dependent (32). In the
case of DPPH radical scavenging, it has been demonstrated that
both the 4′-OH at B-ring and the 4′′-OH at the galloyl moiety are
essential to maintain antioxidant activity (39, 43).

Stability of EGCG Glucosides
It is well-reported that the stability of EGCG in aqueous solutions
is rather limited (37, 44, 45). The two main processes involved
in the degradation of EGCG are epimerization and oxidative
coupling (34). The stability of EGCG is concentration-dependent

FIGURE 3 | Relative degradation of EGCG and its α-glucosides 1 and 2 under

standard conditions: [Compound] = 4 mg/ml, 20mM sodium phosphate

buffer (pH 6.7), 60◦C.

and can be also influenced by temperature, pH and the amount
of oxygen in the solution, among other parameters (32).

The stability of EGCG and its two monoglucosides in a
buffered solution was comparatively studied. The compounds
(4 mg/mL) were dissolved in 20mM phosphate buffer (pH
6.7) and incubated at 60◦C. As shown in Figure 3, the EGCG
was degraded about 4-fold faster than the monoglucoside 1.
The degradation process was concomitant with the appearance
of (–)-gallocatechin gallate (GCG) as a result of EGCG
epimerization (data not shown). The color of the solutions
became brown upon incubation, as a consequence of the
formation by oxidative coupling of dimers and compounds of
higher molecular-weight (46).

After 1 h incubation, 59% of initial EGCG and 76% of
monoglucoside 2 had disappeared, in contrast with only 11%
of the monoglucoside at 3′-OH. In this context, Noguchi et al.
reported that the 5-O-α-D-glucopyranoside of EGCG was about
1.5-fold more stable than the parent compound at pH 7.0 and
80◦C (36). Kitao et al. reported that the α-monoglucoside at
C-4′ of B-ring was also substantially more stable than EGCG
(37). Therefore, the glycosylation of EGCG in position 3′ of B-
ring increases significantly the resistance of EGCG to pH and
thermal degradation.

Toxicity of EGCG Glucosides
The toxicity of EGCG and the isolated monoglucosides 1 and
2 was tested in four cell lines (human SH-S5Y5 neurons, RAW
264.7 macrophages, MRC5 fibroblasts and HT-29 colon cancer
cells). The viability of cells in the presence of the compounds
was determined at three concentrations (1, 10, and 100µM). The
final DMSO percentage in each cell was adjusted to 1% (v/v).
The values were referred to the control (cells containing 1%
DMSO). As shown in Figure 4, EGCG and its glucosides were not
significantly toxic for any of the examined cell lines, except for
the parent compound EGCG at 100µM concentration in HT-29
colon cancer cells (Figure 4D).
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FIGURE 4 | Cell viability assays in presence of EGCG and its α-glucosides 1 and 2 on: (A) SH-SY5Y neuronal cells; (B) RAW 264.7 macrophages; (C) MRC5

fibroblasts; (D) HT-29 colon cancer cells. The values are referred to the control (cells containing 1% DMSO). The data is expressed as mean ± SD (n = 8, *p < 0.05

vs. control group; #p < 0.05 vs. EGCG (100µM) group).

The cytotoxic effect on HT-29 cancer cells correlates well with
previous reports on the specific pro-oxidant action of catechins
toward cancer cells (47), which seems to be modulated by sirtuin
3 (SIRT3) (48). Thus, green tea catechins (including EGCG) may
exert pro-oxidant activity in cancer cells leading to cell death but
antioxidant effects in normal cells (49).

We have observed that the presence of a glucose unit in a
natural phenolic compound such as resveratrol, like in piceid (3-
β-glucoside of resveratrol), also decreases the intrinsic toxicity of
the parentmolecule in human embryonic kidney cells (HEK-293)
(21). However, this is not a general trend since piceid is more
toxic than resveratrol for HT-29 and breast adenocarcinoma
MCF-7 cancer cells. The differences in cellular uptake of the
compounds could be related to the observed toxicity, especially
if the glucose transporters are playing a role in the entrance of
the glucoside derivatives.

ROS and REDOX Activity of
EGCG Glucosides
Once established the safety of EGCG and EGCG glucosides
toward SH-SY5Y neuroblastoma cultures, their potential to
alleviate intracellular ROS levels or to boost intracellular REDOX
activity was determined (50). The former assays were carried
out in the presence of hydrogen peroxide as intracellular ROS
trigger. Basal ROS levels (Figure 5A1) were measured from
the fluorescence intensity of DCF as it is explained in the
Experimental section. As a rule, all compounds produced a dose-
response decrease in ROS levels, but this effect was significantly

greater for EGCG and EGCG 3′-O-α-D-glucoside, compared
to EGCG 7-O-α-D-glucoside (Figure 5A2). Remarkably, the
treatment with 100µM EGCG and its 3′-α-D-glucoside lowered
ROS levels to nearly 50% of the non-stimulated cells value.

Regarding REDOX activity, H2O2 treatment led to a small
decrease of REDOX compared to control cells, which was
attenuated by a 100µM pretreatment with all the compounds
screened (Figure 5B2). Bigger differences were observed in
REDOX activity between control cells and pretreatment with
each compound alone for 6 h, where all the derivatives at 100µM
were able to increase the basal REDOX activity regardless the
treatment concentration (Figure 5B1).

Neuroprotective Activity of
EGCG Glucosides
EGCG has arisen a lot of interest as a potential therapeutic
agent in the prevention of neurodegenerative diseases (51–53).
This ability is related with its antioxidant, radical scavenging,
anti-apoptotic and anti-inflammatory properties (54). Several
studies confirmed the potential of EGCG to promote healthy
aging, suppress cognitive dysfunction, increase learning ability
and minimize oxidative damage in the brain (55, 56).

In the present work, the neuroprotective activity of EGCG and
the synthesized monoglucosides 1 and 2 toward human SH-S5Y5
neurons was tested in vitro. Previously we demonstrated that
EGCG and its glucosides were not toxic for the cells (Figure 4A).
Then, the neuroprotective activity in the presence of H2O2 was
tested at the same compound concentrations (1, 10, and 100µM)
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FIGURE 5 | Capacity of EGCG and its α-glucosides 1 and 2 on SH-SY5Y neuronal cells to: (A) Alleviate intracellular ROS levels; (B) Enhance intracellular REDOX

activity. (A1, B1) Incubation (6 h) with the compounds without H2O2 treatment; (A2, B2) Pre-incubation (2 h) with the compounds followed by incubation (2 h) with

100µM H2O2. The values are normalized to the experiments in absence of H2O2 (–H2O2). The data is expressed as mean ± SD (n = 8, *p < 0.05 vs. –H2O2 group;
•p < 0.05 vs. +H2O2 group; #p < 0.05 vs. EGCG (100µM) group).

(Figure 6). Values above 100% indicated neuroprotection. EGCG
and its glucoside 1 showed a dose-dependent behavior increasing
cells viability after exposure to hydrogen peroxide. In particular,
the viability increased 2.75-fold, referred to the cells treated with
H2O2, in the presence of 100µM of the 3′-glucoside, whilst
EGCG increased 1.7-fold the viability of cells. This increased
neuroprotection of monoglucoside 1 compared to EGCG might
be related with their similar antioxidant activity (Figure 2)
but the slower degradation of the 3′-glucoside (Figure 3). The
enhancement of neuroprotective activity upon glycosylation was
more significant than the reported with other related polyphenols
such as hydroxytyrosol (13).

Both EGCG and its 3′-α-D-glucoside exhibited better
properties at 100µM than the α-glucoside at C-7 of the A-
ring (compound 2). This result could be related with the lower
antioxidant activity of the C-7 monoglucoside compared with
EGCG and its derivative at C-3′ (Figure 2). In this context,
Xiao recently reported that several polyphenols with catechol or
pyrogallol structure were unstable in cell culture medium such as
DMEM in the absence of cells (57). For that reason, the different

stability of EGCG and its glucosides (Figure 3), and in particular
the stabilization effect upon glycosylation at C-3′, could play a
critical role in the bioactivity results presented in this work.

CONCLUSION

Two α-glucosides of EGCG were enzymatically synthesized
and their properties assayed. The major product 1 contained
a glucosyl moiety at C-3′ in the B-ring and the minor
compound 2 was glucosylated at C-7 of A-ring. The compound
1 exhibited more interesting properties than 2. Thus, it displayed
higher pH and thermal stability than EGCG, and a similar
radical scavenging activity. It is remarkable that the viability
of H2O2-treated human neurons increased 2.75-fold in the
presence of monoglucoside 1, whilst EGCG only produced
a 1.7-fold enhancement. In conclusion, the α-glucoside of
EGCG at C-3′ could be useful for nutraceutical, cosmetic and
biomedical applications. However, to determine its full potential,
further studies regarding the bioavailability and in vivo activity
are necessary.
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FIGURE 6 | In vitro analysis of neuroprotective activity of EGCG and its α-glucosides 1 and 2 on SH-SY5Y neuronal cells. The values are referred to the viability of

cells in presence of H2O2 (+H2O2). The data is expressed as mean ± SD (n = 8, *p < 0.05 vs. +H2O2 group; •p < 0.05 vs. -H2O2 group; #p < 0.05 vs. EGCG

(100µM) group).
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