
cancers

Review

The Emerging Functions of Circular RNAs in Bladder Cancer

Kai Sun 1,† , Di Wang 1,†, Burton B. Yang 2,* and Jian Ma 1,*

����������
�������

Citation: Sun, K.; Wang, D.; Yang,

B.B.; Ma, J. The Emerging Functions

of Circular RNAs in Bladder Cancer.

Cancers 2021, 13, 4618. https://

doi.org/10.3390/cancers13184618

Academic Editor: Christos K. Kontos

Received: 16 August 2021

Accepted: 10 September 2021

Published: 15 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Urology Department, The Affiliated Yantai Yuhuangding Hospital of Qingdao University,
Yantai 264000, Shandong, China; 2019026330@qdu.edu.cn (K.S.); 2020026276@qdu.edu.cn (D.W.)

2 Department of Laboratory Medicine and Pathobiology, Sunnybrook Research Institute, University of Toronto,
Research Building, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada

* Correspondence: byang@sri.utoronto.ca (B.B.Y.); jma1980@126.com (J.M.); Tel./Fax: +86-0535-6695579 (J.M.)
† Kai Sun and Di Wang contributed equally to this work.

Simple Summary: The role of circular RNAs has made breakthroughs in understanding the mech-
anisms of tumor development. Bladder cancer has an increasing incidence, high recurrence rate,
high metastatic potential, poor prognosis, and susceptibility to chemotherapy resistance. Thus, it
is essential to identify molecules related to the tumorigenesis of bladder cancer. In this review, we
summarize current knowledge about the expression of circular RNAs in bladder cancer and their
implications in vesical carcinogenesis. We further discuss the limitations of existing studies and
provide an outlook for future studies in the hopes of better revealing the association between circular
RNAs and bladder cancer.

Abstract: Bladder cancer (BC) is among the top ten most common cancer types worldwide and is
a serious threat to human health. Circular RNAs (circRNAs) are a new class of non-coding RNAs
generated by covalently closed loops through back-splicing. As an emerging research hotspot, circR-
NAs have attracted considerable attention due to their high conservation, stability, abundance, and
specificity of tissue development. Accumulating evidence has revealed different form of circRNAs are
closely related to the malignant phenotype, prognosis and chemotherapy resistance of BC, suggesting
that different circRNAs may be promising biomarkers and have therapeutic significance in BC. The
intention of this review is to summarize the mechanisms of circRNA-mediated BC progression and
their diagnostic and prognostic value as biomarkers, as well as to further explore their roles in
chemotherapy resistance.
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1. Introduction

Bladder cancer (BC) is reported to be the 10th most prevalent human malignancy
worldwide, with an estimated 400,000 new cases diagnosed and more than 165,000 deaths
annually [1–3].Currently, new technologies are being developed to improve the detection
of BC, and new treatment options are being offered in the guidelines [4,5].The first-line
treatment for BC is surgical section. In addition to traditional surgery, as well as chemother-
apy and radiation, immunotherapy has been applied to treat BC patients [6,7]. However,
including after radical cystectomy, distant metastases still exist in certain patients [4]. For
advanced or metastatic BC patients, chemotherapy with cisplatin is the first-line treatment,
and the efficacy is limited by chemotherapy resistance [8,9]. Tumor recurrence, metastasis
and resistance to chemotherapy drugs make the overall therapeutic effects unsatisfactory,
with a low five-year survival rate [10,11]. Appropriate molecular biomarkers can pro-
vide accurate information for BC staging to improve its early diagnosis and treatment
efficacy. The molecular biological mechanisms underlying the tumorigenesis, progres-
sion, and chemoresistance of BC have attracted extensive attention from researchers, and
new BC-related biomarkers are critical to improve the diagnosis and prognosis of BC
patients [12–14].

Cancers 2021, 13, 4618. https://doi.org/10.3390/cancers13184618 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-8866-8838
https://doi.org/10.3390/cancers13184618
https://doi.org/10.3390/cancers13184618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13184618
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13184618?type=check_update&version=1


Cancers 2021, 13, 4618 2 of 21

BC tumorigenesis is a complicated process involving genetic mutations and dysreg-
ulation of epigenetic pathways. Epigenetic changes in BC, such as non-coding RNAs
(NcRNAs) [15], DNA methylation [16], and histone modifications [17], have been ex-
tensively studied. Numerous ncRNAs have been demonstrated to participate in tumor
initiation and progression. Therefore, an emerging field of clinical research is to explore the
feasibility of targeting ncRNAs.

Circular RNAs (circRNAs) are single-stranded, closed-loop structures lacking 5′ caps
and 3′ tails of linear RNA, which enable them to resist the degradation of Ribonuclease R
(RNase R) and thus are more stable than linear RNA [18–20]. CircRNAs are an important
part of non-coding RNA that are emerging as key new members of the gene regulatory mi-
lieu. The regulatory functions of circRNAs in physiological and pathological environments
have been the focus of previous studies [21,22]. Recently, the role of circRNAs has been
revealed in a variety of cancers, such as prostate cancer, glioma, breast cancer, colorectal
cancer, and more [23–29]. A large number of studies have shown that circRNAs play a
significant role in the progression of BC, including cell proliferation, migration and inva-
sion, metastasis, cell cycle, apoptosis and drug resistance [30–32]. Furthermore, it has also
been demonstrated that the abnormal expression of circRNA is related to its pathological
characteristics in bladder cancer tissue, which can be used as a potential biomarker for early
screening, diagnosis and prognosis of bladder cancer. CircRNAs possess potential modes
of specific action, serving as sponges for miRNAs and RNA-binding proteins, or acting as
transcriptional regulators. The aim of this paper is to discuss the latest knowledge on the
role of circRNAs in bladder carcinogenesis, including proliferation, invasion, metastasis,
and therapeutic resistance, and to propose circRNAs that canserve as ideal biomarkers
and/or therapeutic targets.

2. Overview of circRNAs
2.1. Biogenesis and Classification of circRNAs

Circular transcripts, first discovered in 1976 in a plant viroid, attracted little attention
at the time and were treated as abnormal by-products or “splice noise” with low abundance
and low functional potential [33–36]. Due to the development of high-throughput screening
technology, more types of circRNAs have been identified in a variety of species and cell
lines [22,37–40]. The expression level of circRNAs is relatively rich and highly conserved.
The expression level of circRNAs is relatively common in eukaryotic cells and varies greatly
due to the specificity of tissue and development stage [41–43].

In the light of composition and biogenesis mechanisms of RNA, circRNAs can be
divided into four specific groups: exonic circRNAs (EcircRNAs), exon–intron circRNAs
(EIciRNAs), circular intronic RNAs (CiRNAs), and intergenic circRNAs [41,44]. EcircRNAs
containing exons are only produced in a course known as exon skip events or back-splicing
circularization [45]. Lariat-driven circularization is a type of exon skipping process. Pre-
mRNA splicing is commonly known to be a two-step ester exchange reaction [46]. The
adenosine hydroxyl group located at the 2′ branch point within the intron that is to be
spliced attacks the intron upstream of the 5′ end in a nucleophilic manner. This produces
a lariat intermediate closed covalently through the 2′ to 5′ phosphodiester bond. Then,
the 3′ hydroxyl group of the upstream exon is free to attack the 5′ phosphate of the down-
stream exon, splicing out the intron completely and allowing the exons to be attached as
a linear coding sequence [46]. After being processed through lariat model, pre-mRNAs
form a lariat intermediate containing exons with the help of circular introns during internal
splicing [47,48]. In the lariat intermediate, the 5′ terminal donor of an exon combines
with the 3′ terminal acceptor of another exon and then forms an EcircRNA by eliminating
introns between exons. Back-splicing circularization is another significant process to gen-
erate EcircRNAs. During the course of back-splicing circularization, the downstream 5′

terminal of an exon unites the upstream 3′ terminal of another exon [49,50]. In addition, a
circular RNA can also be generated from a single exon, where the 5′ terminal of one exon
is connected to the 3′ terminal of the same exon. Intron pairing-driven circularization is
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a widespread back-splicing mechanism, which is a process of circularization induced by
reverse complementary sequences, thus generating EIciRNA or EcircRNA by removing
introns [51,52]. Another back-splicing mechanism is RBP-driven circularization, beginning
with back-splicing, and then relying on RBPs, flanking introns bind tightly to each other
to form a circular RNA [53,54]. However, the formation of CiRNA depends on conserved
sequences near the spliceosome [55]. Specifically, lariat introns can be produced by the com-
bination of 3′ splice receptors and 5′ splice donors, and lariat introns can avoid degradation
by debranching enzymes with the aid of conserved sequence constituted by 7 nt GU-rich
elements at 5′ splice site and 11 nt C-rich elements at branch point site [56] (Figure 1).
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2.2. CircRNA Identification and Database for circRNA Research

High-throughput RNA-seq, RT-PCR/qPCR, Northern blot, circRNA microarray and
other tools have been widely applied to identify and quantify circRNAs [57]. The presence
and amount of circRNAs were revealed using high-throughput RNA-seq, which is equipped
with next-generation sequencing in combination with ribosomal RNA depletion [58]. For
known circRNAs, qRT-PCR using divergent primers and Northern blot using reverse
splicing sequence- specific probes can be used to verify their presence and detect their
quantities. CircRNAs can be specifically identified and quantified by circRNA microarray
by binding sequence specific probes of circular junctions and external nuclease linear RNA
consumption [59].

To analyze the information, regulatory networks and roles of circRNAs in diseases and
other physiological processes, databases including Circbase, CIRC pedia V2 and Deepbase
2.0 containing vast quantities of circRNAs and relevant details about diverse species have



Cancers 2021, 13, 4618 4 of 21

been established [60–62]. The transcriptional regulation information of circRNAs can be
supplied by the TRCirc database, and the sequencing results can be easily analyzed in
the CirclncRNAnet database [63,64].The network relationships between partial miRNAs
and circRNAs as well as between proteins and circRNAs have already been elucidated
by Starbase v2.0, CircInteractome and other databases, which provide a great assistance
to study the functions of circRNAs [65–67]. CircRNADb and CSCD databases for ana-
lyzing protein-coding capabilities have also been founded [68,69]. Furthermore, certain
clinically relevant patient information is available from Circ2Traits and CircRNA Disease
databases, providing clues to delve into the potential of circRNAs as biomarkers in certain
diseases [70,71]. With the application of more techniques to identify circRNAs and the
continuous improvement of databases, the roles of circRNAs will be more fully elucidated.

2.3. Functions of circRNAs

CircRNAs exert their activities at various levels. (a) CircRNAs have been identified
as critical regulators of the major signaling pathways involved in cancer progression [72].
Dysregulation of miRNA-mediated mRNA and correlative signaling pathways are closely
interrelated to cancer progression and therapeutic resistance. Numerous studies have
reported that circRNAs can function as miRNA sponges or competing endogenous RNA
(ceRNAs) to repress miRNA activities [73–77]. As a result, the expression of target genes
is upregulated. CircRNA ciRS-7 was the most typical one which possesses more than
70 conserved miRNA targets [78]. CiRS-7 can increase the expression of targets of miR-
7 via sponging miR-7. (b) The adjustment of circRNAs at transcriptional level may be
controlled by intron sequence circRNA. Located in the nucleus, CiRNA and EIciRNAs may
regulate the expression of their associated protein at the level of transcription and post-
transcription [59]. Dominantly enriched in its parent genes transcriptional site, ci-ankrd52
was reported to have a positive effect on RNA pol II transcription and serve as a positive
regulator for its parent gene transcription [55]. (c) CircRNAs were identified to combine
with certain proteins to form particular circRNA-protein complexes (circRNPs), which can
modulate the subcellular localization of proteins, the action of associated proteins and the
transcription of parental genes. Ashwal-Fluss et al. reported that conservative binding
sites bonded with MBL were positioned in circMBL and its flanking introns [79]. The level
of circMBL biosynthesis depends on the degree of binding between MBL and its binding
site. (d) Most circRNAs are derived from exons of pre-mRNA and were once thought to
have no translational capability, but increasing evidence shows that circRNAs have great
coding potential in a cap-independent way [80]. CircSHPRH was identified to encode a
146 amino acids protein which inhibits tumor growth by stopping ubiquitin proteasome-
mediated degradation of SHPRH protein in glioma [81]. In addition to regulating basic
biological processes, circRNAs also play critical roles in the progression of different types of
cancers [82–88], cardiovascular disorders [89–91], neuronal degenerative diseases [92–95],
and other physiological conditions [96–101]. Due to the high stability of circRNAs, we
believe that they can make monumental contributions to the diagnosis and treatment
of diseases.

3. Expression and Biological Functions of circRNAs in BC
3.1. Abnormal Expression of circRNAs in BC

There is growing evidence that abnormal expression of circRNAs is associated with
the development of BC. Several high-throughput experiments have shown that circRNA
expression profiles are dysregulated in BC. Li et al. have characterized 316 differentially
expressed circRNAs in high grade BC tissues, compared to adjacent non-cancerous ones;
205 circRNAs were found to be upregulated, while 111 were downregulated [102]. Shen
et al. also analyzed the differential gene expression of normal bladder tissues and paired
tumor tissues and identified 5578 upregulated and 5833 downregulated circRNAs. By RNA
sequencing from four pairs of bladder cancer tissues, Li et al. found transcripts of 59 dif-
ferentially expressed circRNAs. Compared with adjacent tissues, 7 were upregulated and
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52 were downregulated [102]. Li et al. analyzed abnormal circRNAs expression between
BC and adjacent non neoplastic bladder tissues by circRNA microarray and identified
512 differentially expressed circRNAs (340 upregulated, 172 downregulated) [103]. On
the basis of validation experiments, we have identified and analyzed a variety of specific
circRNAs, suggesting that aberrant expression of circRNAs has potential therapeutic value.

3.2. circRNAs Regulate Proliferation of BC
3.2.1. Oncogenic circRNAs in BC

A study from Yang et al. indicated that circUVRAG was significantly upregulated in
tissues and cell lines of BC, and its knockdown dramatically inhibited cell proliferation
via promoting miR-223, resulting in repression of FGFR2 [67] (Figure 2). CircRGNEF
consists of 2 exons from the RGNEF gene and affected progression of BC cells via spong-
ing miR-548, subsequently upregulating KIF2C levels [104]. Furthermore, dysregulation
of the circRNA-mediated Tgf-β2/smad3 signaling pathway also participated in progres-
sion of BC. For instance, Su et al. found that circRIP2 enhanced BC progression via
the Tgf-β2/smad3 signaling pathway by sponging miR-1305 [105]. Similarly, Mao et al.
demonstrated that hsa_circ_0068871 was upregulated in BC and promoted BC proliferation
and apoptosis through FGFR3-induced activation of STAT3 pathway by sponging miR-
181a-5p [106]. Sponging miR-145-5p, the overexpressed circCEP128 was demonstrated to
promote BC proliferation and inhibit apoptosis via modulating SOX11 [107]. CircDOCK1
was reported to be significantly increased in BC tissues, and its knockdown dramatically
inhibited the progression of EJ-m3 and 5673 BC lines through upregulating the expression
of miR-132-3p [108]. Has_circ_0068307 markedly upregulated and promoted BC cells pro-
gression through miR-147/c-Myc pathway [109]. Additionally, circ_0008532 promoted BC
growth through sponging miR-155-5p and miR-330-5p, subsequently increasing MTGR1
expression [110] (Table 1).
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Table 1. CircRNAs and their mechanisms in bladder cancer progression.

CircRNA Circbase ID Gene Symbol Expression Function Molecular
Mechanism

Target
Gene/Pathway Reference

CircUVRAG Hsa_circ_0023642 UVRAG Upregulated Promoting cell proliferation
and migration

Sponging for
miR-223 FGFR2 [67]

CircRGNEF Hsa_circ_0072995 RGNEF Upregulated Promoting cell proliferation
and invasion

Sponging for
miR-548 KIF2C [104]

CircRIP2 Has_circ_0005777 RIP2 Upregulated Promoting cell proliferation
and metastasis

Sponging for
miR-1305 Tgf-β2/smad3 [105]

Circ_0068871 Hsa_circ_0068871 - Upregulated Promoting cell proliferation
and migration

Sponging for
miR-181a-5p FGFR/STAT3 [106]

CircCEP128 Hsa_circ_0102722 - Upregulated Promoting cell proliferation
and inhibiting cell apoptosis

Sponging for
miR-145-5p SOX11 [107]

CircDOCK1 Hsa_circ_0020394 - Upregulated Promoting cell proliferation
and migration

Sponging for
miR-132-3p SOX5 [108]

Circ_0068307 Hsa_circ_0068307 - Upregulated Promoting cell proliferation
and migration

Sponging for
miR-147 c-Myc [109]

Circ_0008532 Hsa_circ_0008532 - Upregulated Promoting cell migration,
invasion, and angiogenesis

Sponging for miR-
155-5p/miR-330-5p MTGR1 [110]

CircFOXO3 Hsa_circ_0006404 FOXO3 Downregulated Inhibiting cell proliferation,
migration and invasion

Sponging for
miR-9-5p TGFBR2 [111]

CircFOXO3 Hsa_circ_0006404 FOXO3 Downregulated Promoting promoted cell
apoptosis

Sponging for
miR-191-5p - [112]

CircBCRC-3 Hsa_circ_0001110 BCRC-3 Downregulated
Inhibiting cell proliferation,

and promoting cell cycle
arrest

Sponging for
miR-182-5p P27 [113]

CircCdr1as Hsa_circ_0001946 CDR Downregulated Inhibiting cell proliferation,
migration and invasion

Sponging for
miR-135a P21 [114]

CircNR3C1 Hsa_circ_0001543 NR3C1 Downregulated Inhibiting cell proliferation
and cell cycle progression

Sponging for
miR-27a-3p Cyclin D1 [115]

CircPTPRA Hsa_circ_0006117 PTPRA Downregulated Inhibiting cell proliferation Sponging for
miR-636 KLF9 [116]

CircSLC8A1 Hsa_circ_0000994 SLC8A1 Downregulated Inhibiting cell proliferation,
migration and invasion

Sponging for
miR-130b/miR-494 PTEN [117]

CircITCH Hsa_circ_0001141 ITCH Downregulated
Inhibiting cells proliferation,

migration, invasion and
metastasis

Sponging for
miR-17/miR-224 P21/PTEN [118]

CircBCRC4 Hsa_circ_0001577 RANBP9 Downregulated Inhibiting cell viability and
promoting cell apoptosis

Sponging for
miR-101 EZH2 [119]

CircVANGL1 Hsa_circ_0002623 VANGL1 Upregulated Promoting cell proliferation,
migration and invasion

Sponging for
miR-1184 IGFBP2 [120]

CircVANGL1 Hsa_circ_0002623 VANGL1 Upregulated Promoting cell proliferation,
migration, and invasion

Sponging for
miR-605-3p VANGL1 [121]

CircCEP128 Hsa_circ_0102722 - Upregulated

Promoting cell proliferation
and migration, inhibiting

cell apoptosis and cell cycle
arrest

Sponging for
miR-145-5p MAPK/MYD88 [122]

Circ_0058063 Hsa_circ_0058063 - Upregulated
Promoting cell proliferation

and migration, inhibiting
cell apoptosis

Sponging for
miR-145-5p CDK6 [123]

Circ_0058063 Hsa_circ_0058063 - Upregulated
Promoting cell proliferation

and invasion, inhibiting
apoptosis

Sponging for
miR-486-3p FOXP4 [124]

CircTCF25 Hsa_circ_0041103 - Upregulated Promoting cell proliferation
and migration

Sponging for miR-
107/miR-103-3p CDK6 [125]

CircTFRC Has_circ_0001445 TFRC Upregulated Promoting cell proliferation
and invasion

Sponging for
miR-107 TFRC [126]

CircINTS4 Hsa_circ_0002476 INTS4 Upregulated
Promoting cell proliferation,

migration, cell cycle and
apoptosis

Sponging for
miR-146b

CARMA3/NFκB/
P38 MAPK [127]

CircKIF4A Hsa_circ_0007255 - Upregulated Promoting cell proliferation
and colony-formation ability

Sponging for
miR-375 and

miR-1231
NOTCH/PI3K/AKT [128]

Circ_0071662 Hsa_circ_0071662 TPPP1 Downregulated Inhibiting cell proliferation
and invasion

Sponging for
miR-146b-3p HPGD/NF2 [129]

CircFAM114A2 Hsa_circ_0001546 FAM114A2 Downregulated Inhibiting cell proliferation,
migration and invasion

Sponging for
miR-762 ∆NP63 [130]
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Table 1. Cont.

CircRNA Circbase ID Gene Symbol Expression Function Molecular
Mechanism

Target
Gene/Pathway Reference

Circ_0091017 Hsa_circ_0091017 - Downregulated Inhibiting cell proliferation,
migration and invasion

Sponging for
miR-589-5p - [131]

Circ_0002024 Hsa_circ_0002024 - Downregulated Inhibiting cell proliferation,
migration and invasion

Sponging for
miR-197-3p - [132]

CircUBXN7 Hsa_circ_0001380 UBXN7 Downregulated Inhibiting cell proliferation,
migration and invasion

Sponging for
miR-1247-3p B4GALT3 [133]

CircFNDC3B Hsa_circ_0006156 FNDC3B Downregulated Inhibiting cell proliferation,
migration and invasion

Sponging for
miR-1178-3p G3BP2/SRC/FAK [134]

Circ_0023642 Hsa_circ_0023642 UVRAG Downregulated Inhibiting cell invasion Sponging for
miR-490-5p EGFR [135]

CircPTPRA Hsa_circ_0006117 PTPRA Downregulated Inhibiting cell invasion,
metastasis and cell cycle

Interacting with
IGF2BP1

M6A-modified
RNAs [136]

Circ_0006332 Hsa_circ_0006332 MYBL2 Upregulated
Promoting cell proliferation,

colony formation and
invasion

Sponging for
miR-143 MYBL2/EMT [137]

CircRIMS1 Hsa_circ_0132246 - Upregulated Promoting cell proliferation,
migration and invasion

Sponging for
miR-433-3p CCAR1/EMT [32]

CircPRMT5 Hsa_circ_0031250 PRMT5 Upregulated Promoting cell migration
and invasion

Sponging for
miR-30c EMT [138]

CircMYLK Hsa_circ_0002768 MYLK Upregulated Promoting cell proliferation,
migration and angiogenesis

Sponging for
miR-29a

VEGFA/VEGFR2
and Ras/ERK,

and EMT
[139]

Circ_100984 Hsa_circ_100984 - Upregulated Promoting cell proliferation,
migration and invasion

Sponging for
miR-432-3p

c-Jun/YBX-1/β-
catenin and

EMT
[140]

CircRBPMS Hsa_circ_0006539 RBPMS Downregulated Inhibiting cell proliferation
and metastasis

Sponging for
miR-330-3p RAI2/ERK/EMT [141]

CircST6GALNAC6Hsa_circ_0088708 ST6GALNAC6 Downregulated Inhibiting cell proliferation,
migration, invasion

Sponging for
miR-200a-3p STMN1/EMT [142]

Circ_0000629 Hsa_circ_0000629 - Downregulated Inhibiting cell migration,
invasion and growth

Sponging for
miR-1290 CDC73/EMT [143]

CircPICALM Hsa_circ_0023919 PICALM Downregulated Sponging for
miR-1265

STEAP4/pFAK-
Y397/EMT [144]

3.2.2. Anti-Oncogenic circRNAs in BC

Li et al. found an antitumor circRNA, circ-FOXO3, which is produced from the
members of the fork-head family and found that circ-FOXO3 plays antitumor roles in BC
by regulating the miR-9-5p/TGFBR2 axis [111]. Wang et al. revealed that circ-FOXO3
accelerated the apoptosis of BC cells through direct interaction with miR-191-5p [112].
Sponging miR-182-5p, the circBCRC-3 was proved to suppress proliferation by promoting
the miR-182-5p-oriented 3′UTR activity of p27 [113]. Li et al. indicated that circCdr1as
was significantly downregulated in BC specimens, and its overexpression dramatically
inhibited cell proliferation via promoting miR-135a [114]. CircNR3C1was composed of end-
to-end splicing of the exon-2 from the NR3C1 gene and inhibited proliferation of BC cells
via sponging miR-27a-3p effectively, subsequently downregulating cyclin D1 levels [115].
CircPTPRA, which originated from the exon 8 and 9 of the PTPRA gene, was identified
to sponge miR-636 to increase the expression of KLF9, suppressing proliferation of BC
cells [116]. CircSLC8A1 regulated the PI3K-AKT pathway to repress BC progression via
the miR-130b and miR-494/PTEN axis [117]. Yang et al. revealed that circ-ITCH inhibited
the proliferative biological behaviors of BC via circ-ITCH/miR-17, miR-224/p21, PTEN
axis [118]. Zeng et al. found that circRNA BCRC4 down-expressed in BC tissues and cell
lines, and its forced expression inhibited viability and promoted apoptosis of UMUC3 and
T24T cells through circBCRC4/microRNA-101/EZH2 signaling [119] (Table 1).
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3.3. circRNAs Regulate Metastasis of BC
3.3.1. Oncogenic circRNAs in BC Migration or Invasion

CircRNA VANGL1 may sponge various miRNAs, including miR-1184 and miR-605-3p.
Yang et al. identified miR-1184 as a target of circVANGL1, while miR-1184 targeted IGFBP2,
suggesting that circVANGL1 promoted bladder cancer invasion and migration through the
circVANGL1/miR-1184/IGFBP2 network [120]. Another paper proved that overexpression
of circVANGL1 promoted migration and invasion of BC cells by sponging miR-605-3p
upregulating VANGL1 level [121]. Sun et al. stated that overexpression of circCEP128 may
sponge miR-145-5p and upregulate MYD88 through MAPK signaling pathway to promote
BC progression [122]. Additionally, Sun et al. identified circ_0058063, which also sponged
miR-145-5p, was upregulated in BC and promoted migration but impaired cell apoptosis
by regulating CDK6 expression [123]. Liang et al. suggested that circ_0058063 served
as a sponge of miR-486-3p to block cell death and promote cell invasion by regulating
FOXP4 expression [124]. CDK6 is also a target protein of miR-107, and circTCF25 can
be used as a sponge for miR-107 and miR-103-3p to promote migration [125]. CircTFRC
was also a sponge for miR-107, and the knockdown of circTFRC may decelerate invasion
of BC cells by inhibiting TFRC [126]. Zhang et al. verified that circINTS4 promoted BC
cell migration and cell cycle progression via promoting the NFκB signaling pathway and
restraining P38 MAPK signaling pathway in a CARMA3-mediated manner [127]. Lu et al.
demonstrated that circKIF4A was upregulated in BC cell lines, and its overexpression
facilitated BC migration and metastatic ability through NOTCH2-induced activation of
PI3K-AKT pathway by sponging miR-375 and miR-1231 [128] (Table 1).

3.3.2. Anti-Oncogenic circRNAs in BC Migration or Invasion

Circ_0071662, a circinate product of TPPP transcript, was confirmed to repress inva-
sive biological behaviors by sponging miR-146b-3p, and then boosting HPGD and NF2
expression [129]. Hsa_circ_0001546 (circFAM114A2), which derived from the FAM114A2
gene and was spliced by exons 2–4, was shown to possess potential biological roles in
inhibiting migration and invasion of BC via a circFAM114A2/miR-762/∆NP63 axis [130].
Zhang et al. reported that hsa_circ_0091017 was remarkably downregulated in BC cell
lines and tissues, and the inhibitory effect on the malignant phenotype may be reversed
by overexpression of microRNA-589-5p [131]. By sponging miR-197-3p, circular RNA
hsa_circ_0002024 was found to suppress migratory and invasive biological behaviors of
BC cells [132]. Liu et al. elucidated that circUBXN7 act as a ceRNA of miR-1247-3p to
enhance B4GALT3 expression, thus repressing cell invasion and viability [133]. Another
study showed that circFNDC3B inhibited cancer cell migration and invasion by binding
miR-1178-3p, which targeted the oncogene G3BP2, thereby suppressing the downstream
SRC/FAK pathway [145]. EGFR pathway was connected to malignant biological behaviors.
A study from Wu et al. revealed that circ_0023642 promoted invasion through acting
as a miR-490-5p sponge via the EGFR pathway [135]. In addition, they also found that
estrogen receptor alpha (ERα) altered circ_0023642 levels by regulating the expression of
its host gene, UVRAG, uncovering upstream regulatory mechanism. Xie et al. described
circPTPRA as a novel tumor suppressor which repressed cancer invasion and migration
via endogenous inhibition of the recognition of IGF2BP1 from m6A-modified RNAs [136]
(Table 1) (Figure 2).

3.3.3. CircRNAs in Regulation of EMT

Multiple researchers reported that circRNAs affected BC metastasis by modulating
epithelial-mesenchymal transition (EMT) (Figure 2), which was involved in malignant
biological functions of tumors [146]. One study showed that circ_0006332 sponged miR-143
to increase the expression of its target MYBL and consequently promoted EMT in bladder
tumors [137]. CircRIMS1 was highly expressed in BC, and its knockdown significantly sup-
pressed expression of N-cadherin and vimentin, and enhanced expression of E-cadherin,
suggesting suppression of EMT process [32]. Meanwhile, circPRMT5 was dramatically
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upregulated in BC and was positively correlated with pathological stage, and it signifi-
cantly increased the aggressiveness ability of BC cells by specifically sponging miR-30c and
promoting EMT [138]. Zhong et al. indicated that circ-MYLK promoted BC malignancy
via facilitating VEGFA/VEGFR2 signaling and its downstream Ras/ERK pathway by
sponging miR-29a, which dramatically boosted EMT in BC [139]. Tong et al. suggested that
circ_100984/miR-432-3p axis modulated c-Jun/YBX-1/β-catenin feedback loop to influence
EMT and thus promote tumor progression [140]. CircRBPMS reduced the inhibition of RAI2
by sponging miR-330-3p, thereby suppressing the ERK signaling pathway and inhibiting
the EMT process to repress BC progression [141]. Tan et al. proved that circST6GALNAC6
inhibited EMT and BC metastasis partly via the miR-200a-3p/STMN1axis [142]. Overex-
pression of circ_0000629 resulted in a significant increase in E-cadherin expression and a
remarkable decrease in Vimentin, Snail, and N-cadherin expression, which inhibited the
aggressiveness of BC [143]. CircPICALM served as a sponge for miR-1265 to modulate
STEAP4 and further affected the condition of pFAK-Y397 and EMT, thus inhibiting BC
progression [144]. EMT was one of the most significant molecular pathways that promoted
metastatic ability of cancer cells and EMT was thought as a probable target of miRNAs
in cancer cells [147,148]. Considering the functional relationship between circRNAs and
miRNAs, the potential roles of circRNAs in regulating EMT is worthy of further exploration
(Table 1).

3.4. CircRNAs in BC Drug-Resistance and Chemo-Sensitization

Surgical treatment of BC remains the preferred treatment option, but chemother-
apy with gemcitabine and cisplatin is the standard first-line treatment for patients with
advanced or metastatic BC [149]. However, chemotherapy resistance often leads to tu-
mor recurrence and progression. Several studies have reported the relationship between
circRNAs and chemotherapeutic resistance, suggesting that circRNAs may be potential
therapeutic targets [150–154]. A study by Yuan et al. showed that upregulation of circular
RNA Cdr1as is related to cisplatin sensitivity in BC patients by upregulating expression
of APAF1 via miR-1270 repression [155]. CircHIPK3, which can bind to miR-558 directly,
is significantly downregulated in gemcitabine resistant cells [156]. Su et al. identified
that circELP3 promotes proliferation and reduces apoptosis by adapting to hypoxic tu-
mor microenvironment and facilitates resistance of cisplatin by targeting cancer stem-like
cells [157]. Meanwhile, the upregulation of circELP3 is related to higher lymphatic metas-
tasis and pathological stage, which implies that circELP3 can be a potential therapeutic
and prognostic target for BC patients. In another study, circFNTA was found to be ex-
tremely upregulated in cisplatin resistant BC cells [158]. CircFNTA can regulate cisplatin
resistance by binding to miR-370-3p and altering KRAS activity. In addition, Chen et al.
also found that androgen receptors (AR) affect circFNTA levels by inhibiting RNA editing
gene ADAR2, thus increasing BC invasive ability and cisplatin resistance. Furthermore,
the downregulation of circ102336 may increase cisplatin sensitivity in cisplatin-resistant
BC cells by altering miR-515-5p [159]. circ_000285 levels in cisplatin sensitive patients
was nearly 3 times higher than that in cisplatin resistant patients, and circRNA_000285
levels in parental cells was higher than that in cisplatin resistant RT4 cells, indicating
that circRNA_000285 may serve as a biomarker for BC diagnosis and chemotherapy [160].
Additionally, Huang et al. figured out that circRNA_103809 can enhance chemo-resistance
of BC cells by modulating miR-516a-5p/FBXL18 axis [161] (Table 2).

A growing number of circRNAs have been shown to be implicated in chemotherapy
resistance in BC. A meaningful method to achieve the reversal of drug resistance is to target
these aberrantly expressed circRNAs. Drug resistance in BC can be reversed by exogenous
expression of anti-oncogenic circRNAs or knockdown of oncogenic circRNAs by short
hairpin RNAs (shRNAs) or small interfering RNAs (siRNAs). Drug-resistant advanced BC
patients may benefit from circRNAs-based therapeutic interventions in combination with
conventional chemotherapy or targeted therapy.
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Table 2. circRNAs and their values in bladder cancer chemo-sensitization and drug-resistance.

CircRNA CircBase ID Gene Symbol Expression Clinical Value Molecular Mechanism Target Gene/Pathway Reference

CircCdr1as Hsa_circ_0001946 CDR1 Downregulated Promoting cisplatin
sensitivity Sponging for miR-1270 APAF1 [155]

CircHIPK3 Hsa_circ_0000284 HIPK3 Downregulated
Promoting

gemcitabine
sensitivity

Sponging for miR-558 HPSE, VEGF, MMP9 [156]

CircELP3 Hsa_circ_0001785 ELP3 Upregulated Promoting cisplatin
resistance Hypoxia-elevated cancer stem-like cells [157]

CircFNTA Hsa_circ_0084171 FNTA Upregulated Promoting cisplatin
resistance

Sponging for
miR-370-3p KRAS [158]

Circ_102336 Hsa_circ_102336 TAF4B Upregulated Promoting cisplatin
resistance

Sponging for
miR-515-5p

ATP-binding cassette
(ABC) transporters

and apoptosis
pathways

[159]

Circ_0000285 Hsa_circ_0000285 HIPK3 Downregulated Promoting cisplatin
sensitivity Unknown Unknown [160]

Circ_103809 Hsa_circ_0072088 ZFR Upregulated Promoting
chemo-resistance

Sponging for
miR-516a-5p FBXL18 [161]

4. CircRNAs Are Potential Diagnostic and Prognostic Biomarkers of Bladder Cancer

Furthermore, circRNAs show interest as potential diagnostic and prognostic biomark-
ers for BC. Functional studies of circRNAs have shown that circRNAs have important
clinical application value in regulating downstream target genes by acting as oncogenes or
tumor suppressors. As mentioned above, circRNAs are characterized by their developmen-
tal stability, evolutionary conservation, specificity of tissue development, and abundance of
tissue content, and they are widely found in blood, saliva, and urine. Therefore, circRNAs
have become valuable biomarkers for the diagnosis, prognosis, and efficacy evaluation of
bladder cancer.

Up until now, the relation between expression of circRNAs in tissues and clinical
parameters have been widely reported. CircVANGL1, circ_0067934, circ-ASXL1, circG-
prc5a and circ_0001361 related to poor prognosis and clinical severity in patients with
BC [121,162–165]. Meanwhile, circ_0000285, circMTO1, circLPAR1 were connected with
good overall survival and good prognosis [160,166,167]. Dong et al. described the reduc-
tion of circACVR2A was related to advanced WHO grade and larger tumor size, implying
circACVR2A may be a prognostic marker [168]. Moreover, upregulated circACVR2A
inhibited invasion and migration through miR-626/EYA4 axis. Zhang and colleagues intro-
duced circZFR as a cancer-independent prognostic biomarker for patients with BC [169].
Based on progression-free survival (PFS) and overall survival (OS) curves, downregula-
tion of cirZFR significantly linked with better OS and PFS, which is opposed to circZFR
upregulation in BC. Furthermore, circZFR downregulation is related to lower incidence
of lymphatic metastasis. Thus, in combination with clinicopathological features, circZFR
expression provides a better prognostic and diagnosis value in BC screening. A recent
research using the FISH technique demonstrated the dramatic downregulation of circFUT8
in BC patients [170]. Moreover, clinicopathological results revealed that the upregulation
of circFUT8 is negatively linked to the lymphatic metastasis in BC patients. Besides, the
Kaplan–Meier analysis indicated circFUT8 may serve as a prognostic marker for good OS
for BC patients. CircZKSCAN1 is another circRNA whose expression is evidently lower in
patients at early-stage BC compared with advanced stage patients [171]. Additionally, sur-
vival analysis revealed BC patients with lower circZKSCAN1 expression suggested longer
OS rates than patients with higher circZKSCAN1 expression. Besides, the upregulation of
circZKSCAN1 along with the lymphatic metastasis are considered as independent prog-
nostic factors of BC patients. As a result, circZKSCAN1 may be regarded as a biomarker
for survival prediction. Yan et al. characterized circPICALM as a potential prognostic
predictor for BC patients [144]. Their results showed that circPICALM is downregulated
in patients at late-stage, and its reduction is linked to lower OS rates and higher TNM
grades. These findings illustrate that circPICALM may be a potent prognostic indicator.
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Circ_0018069 is another new circRNA downregulated in BC tissues in comparison with the
paired adjacent normal tissues [172]. Its deficiency in BC is notably associated with prog-
nostic clinicopathological indices, for example, distant or lymphatic metastasis and poor
OS. Based on these associations, circ_0018069 may be a valuable biomarker for prognosis
and diagnosis prediction (Table 3).

The above examples idealize a blueprint for the application of circRNAs as biomark-
ers in the diagnosis and prognosis of BC. However, there are still issues that need to be
addressed for the clinical application of circRNAs. Due to different expression in tissues,
circRNAs are hard to detect in serum and plasma. In addition, the normal values and
fluctuating ranges of circRNAs have not been determined, as well as whether their expres-
sions are time-dependent. Despite these difficulties, circRNAs remain potential biomarker
candidates that may offer additional diagnostic and prognostic possibilities for BC.

Table 3. CircRNAs and their values in bladder cancer diagnosis and prognosis.

CircRNA CircBase ID Gene Symbol Expression Clinical Value Molecular Mechanism Target Gene/Pathway Reference

CircVANGL1 Hsa_circ_0002623 VANGL1 Upregulated Prognostic utility Sponging for
miR-605-3p VANGL1 [121]

Circ_0067934 Hsa_circ_0067934 - Upregulated Prognostic utility Sponging for miR-1304 Myc [162]

CircASXL1 Hsa_circ_0001136 ASXL1 Upregulated Prognostic and
diagnostic utility Unknown unknown [163]

CircGprc5a Hsa_circ_02838 - Upregulated Prognostic utility Unknown Gprc5a protein [164]

Circ_0001361 Hsa_circ_0001361 FNDC3B Upregulated Prognostic utility Sponging for
miR-491-5p MMP9 [165]

Circ_0000285 Hsa_circ_0000285 HIPK3 Downregulated Prognostic utility Unknown unknown [160]

CircMTO1 Hsa_circ_0007874 MTO1 Downregulated Prognostic utility Sponging for miR-221 unknown [166]

CircLPAR1 Hsa_circ_0087960 LPAR1 Downregulated Prognostic utility Sponging for miR-762 unknown [167]

CircACVR2A Hsa_circ_0001073 ACVR2A Downregulated Prognostic utility Sponging for miR-626 EYA4 [168]

CircZFR Hsa_circ_0072088 ZFR Upregulated Prognostic and
diagnostic utility Sponging for miR-377 ZEB2 [169]

CircFUT8 Hsa_circ_0003028 FUT8 Downregulated Prognostic utility Sponging for
miR-570-3p KLF10 [170]

CircZKSCAN1 Hsa_circ_0001727 ZKSCAN1 Downregulated Prognostic utility Sponging for
miR-1178-3p P21 [171]

CircPICALM Hsa_circ_0023919 PICALM Downregulated Prognostic utility Sponging for miR-1265 STEAP4 [144]

Circ_0018069 Hsa_circ_0018069 - Downregulated Prognostic and
diagnostic utility

Sponging for miR23c,
miR-34a-5p,

miR-181b-5p,
miR-454-3p and

miR-3666

ErbB, Ras, Foxo, and
the focal adhesion [172]

5. Relationships between circRNAs Quantities and Clinicopathologic Features in BC

CircRNAs are closely associated with many clinicopathological features in BC, includ-
ing tumor size, grade, tumor number, lymph node metastasis, distant metastasis, stage, and
recurrence. CircRIP2 is evidently upregulated in BC tissues, and its expression quantities
are closely connected with tumor number, tumor stage, and distant metastasis [105]. Wang
et al. observed that hsa_circ_100146 is significantly upregulated in BC tissues and that
hsa_circ_100146 levels are associated with tumor size, tumor grade, lymph node metastasis,
and tumor number [173]. Similarly, circ_0006332 is dramatically upregulated in BC tissues,
and its expression quantities are positively associated with tumor grade, tumor stage, and
tumor size [137]. Li et al. demonstrated that circHIPK3 levels are evidently reduced in
BC tissues and that this downregulation is correlated with tumor size, tumor stage, and
lymph node metastasis [174]. CircFNDC3B has been reported to have low-expression
in BC tissues, and its levels are associated with invasion, tumor grade and stage, and
recurrence [145]. Similarly, circPICALM has a low expression in BC tissues, and its levels
in BC tissues are related with tumor size, stage, grade and lymph node metastasis [144].
In contrast, hsa_circ_102336 is upregulated in BC cell lines and tissues, and its expression
quantities are related with TNM stage, tumor size, grade, and distant metastasis [159].
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Circ_0137439 has been identified to be upregulated in urine samples of patients with
BC and the hsa_circ_0137439 levels are associated with tumor stage, grade, and lymph
node metastasis [175]. Lu et al. revealed that low circSLC8A1 expression in BC tissues is
correlated with tumor size, grade, and lymph node metastasis [117]. According to Liang
and colleagues, hsa_circ_0058063 is significantly upregulated in BC tissues compared with
normal tissues, and its expression quantities are associated with tumor number, grade,
and lymph node metastasis [124]. The expression quantities of circ-ZKSCAN1 have been
revealed to be decreased in BC tissues, and low levels of circ-ZKSCAN1 are positively
related with tumor size, grade, recurrence, and lymph node metastasis [171]. Bi et al.
implied that circ-BPTF is expressed at high levels in BC tissues, and its expression quanti-
ties are positively related with tumor size, recurrence, and lymph node metastasis [176].
In contrast, circ-ITCH is dramatically downregulated in BC tissues, and its quantities
correlate negatively with tumor size, and stage [118]. Circ_0071196 has been revealed to
be upregulated in BC tissues and cell lines, and high circ_0071196 expression quantities
are positively related with tumor size, grade, and distant metastasis [177]. Similarly, cir-
cRGNEF is upregulated in BC tissues, and its quantities are correlated with tumor size,
grade, and lymph node metastasis [104]. In addition, circZFR, circTFRC, hsa_circ_0068871,
circ_0067934, circPTK2, circINTS4, circCEP128, circSEMA5A, circVANGL1, andcircE-
HBP1 [31,106,107,121,126,127,162,169,178,179], which are overexpressed in BC tissues, and
ciRs-6, hsa_circ_0077837, circCDYL, circFUT8, circPTPRA, circ_0071662, circFOXO3, circ-
FAM114A2, circUBXN7, and circRBPMS [111,116,130,133,141,144,170,180–182], which are
downregulated in BC tissues, are also reported to be associated with many clinicopatholog-
ical features in BC (Table 4).

Table 4. Relationships between circRNAs quantities and clinicopathologic features in BC.

CircRNA CircBase ID Gene Symbol Expression Tumor
Stage

Tumor
Grade

Tumor
Size

Tumor
Recurrence

Tumor
Number Reference

CircRIP2 Has_circ_0005777 RIP2 Upregulated Yes - Yes - Yes [105]
Circ_100146 Hsa_circ_100146 - Upregulated Yes Yes Yes - Yes [173]

Circ_0006332 Hsa_circ_0006332 MYBL2 Upregulated Yes Yes Yes - - [137]
CircHIPK3 Hsa_circ_0000284 HIPK3 Downregulated Yes - Yes - - [174]

CircFNDC3B Hsa_circ_0001361 FNDC3B Downregulated Yes Yes - Yes - [165]
CircPICALM Hsa_circ_0023919 PICALM Downregulated Yes Yes Yes - Yes [144]
Circ_0137439 Hsa_circ_0137439 MDTH Upregulated Yes Yes - - - [175]
CircSLC8A1 Hsa_circ_0000994 SLC8A1 Downregulated Yes Yes Yes - - [117]
Circ_0058063 Hsa_circ_0058063 - Upregulated Yes Yes - - Yes [124]

CircZKSCAN1 Hsa_circ_0001727 ZKSCAN1 Downregulated Yes Yes - - Yes [171]
CircBPTF Hsa_circ_0000799 BPTF Downregulated Yes - Yes Yes - [176]
CircITCH Hsa_circ_0001141 ITCH Downregulated Yes - Yes - Yes [118]

Circ0071196 Hsa_circ_0071196 - Upregulated Yes Yes Yes - - [177]
CircRGNEF Hsa_circ_0072995 RGNEF Upregulated Yes Yes Yes - - [104]

CircZFR Hsa_circ_0072088 ZFR Upregulated Yes Yes Yes Yes - [169]
CircTFRC Has_circ_0001445 TFRC Upregulated Yes Yes Yes - - [126]

Circ_0068871 Hsa_circ_0068871 - Upregulated Yes - Yes - - [106]
Circ_0067934 Hsa_circ_0067934 - Upregulated Yes - Yes - - [39]

CircPTK2 Hsa_circ_0003221 PTK2 Upregulated Yes Yes Yes - - [178]
CircINTS4 Hsa_circ_0002476 INTS4 Upregulated Yes Yes Yes - - [127]

CircCEP128 Hsa_circ_0102722 - Upregulated Yes - Yes - - [107]
CircSEMA5A Hsa_circ_0071820 SEMA5A Upregulated Yes Yes Yes - Yes [179]
CircVANGL1 Hsa_circ_0002623 VANGL1 Upregulated Yes Yes Yes - - [121]
CircEHBP1 Hsa_circ_0005552 - Upregulated Yes Yes Yes - - [31]

CiRs_6 Hsa_circ_0006260 SLC41A2 Downregulated Yes Yes Yes - Yes [180]
Circ_0077837 Hsa_circ_0077837 - Downregulated Yes Yes Yes - Yes [181]

CircCDYL Hsa_circ_0008285 - Downregulated Yes Yes Yes - - [182]
CircFUT8 Hsa_circ_0003028 FUT8 Downregulated Yes Yes Yes - Yes [170]

CircPTPRA Hsa_circ_0006117 PTPRA Downregulated Yes Yes Yes - Yes [116]
Circ_0071662 Hsa_circ_0071662 TPPP1 Circ_0071662 Yes Yes Yes - - [129]
CircFOXO3 Hsa_circ_0006404 FOXO3 Downregulated Yes Yes Yes - - [111]

CircFAM114A2 Hsa_circ_0001546 FAM114A2 Downregulated Yes Yes Yes - - [130]
CircUBXN7 Hsa_circ_0001380 UBXN7 Downregulated Yes Yes Yes - - [133]
CircRBPMS Hsa_circ_0006539 RBPMS Downregulated Yes Yes Yes - - [87]

6. Limitations and Prospects

Currently, there is growing interest in circRNAs and in gaining a better understanding
of their roles in BC. However, the clinical use of circRNAs in BC remains largely unexplored
and further studies are required before they can be integrated into clinical practice. Unlike
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prostate cancer, bladder cancer has no specific serum tumor markers like prostate specific
antigen (PSA). Its diagnosis relies largely on clinical manifestations and imaging examina-
tion. This requires us to pay attention to find highly effective and sensitive biomarkers. In
addition, the continuous development of modern medicine has enabled the transformation
of oncology therapy from traditional treatment to a targeted treatment. Targeted treatment
can specifically kill tumor cells without damaging normal peritumoral cells. However,
resistance to targeted drugs is emerging in tumor cells. The mechanism of drug resistance
relates to circRNAs, which provides a direction for further research.

In recent years, numerous studies have reported that after certain circRNAs were
overexpressed or downregulated, the function of tumor cell lines were affected to varying
degrees. Certain processes were reversed or enhanced partially, emphasizing the potential
ability of circRNAs in the adjustment of tumor diseases, which is of great importance for
clinical application.

There are still many obstacles to overcome in the clinical application of circular
RNAs. First of all, we can identify a large number of differentially expressed circRNAs in
cancer tissues and adjacent tissues using high-throughput sequencing, which is a credible
approach that depends on the quality of RNA samples [183], but their functions and
mechanisms have not been studied. Most usable RNA sequencing databases are pretreated
via a poly (A) depuration step which can eliminate circRNAs, resulting in incomplete
discovery of circRNAs. Furthermore, this technique is usually confined to a small sample
size and limited tissue types, which is difficult for experienced pathologists to conduct an
evaluation of [184]. Moreover, qRT-PCR has been used in most studies instead of Northern
blotting to identify and verify circRNAs differentially expressed in RNA-seq due to its
relative convenience and efficiency. However, certain circRNAs cannot be distinguished
due to the occupation of different qRT-PCR primers on the back-splicing junction [185]. In
qRT-PCR, circRNAs can only be differentiated from exon iteration by RNase or poly (A)
enrichment pretreatment [186]. It has confirmed that several parental genes can encode or
splice circRNAs, but the underlying associations and functional relationships between them
are usually not as relevant as expected. According to the standardization of biomarkers,
only a small part of the differentially expressed circRNAs meet the conditions, and only
a small number of them have completed experiments in vivo and in vitro to prove their
roles in tumor diagnosis, treatment and prognosis. In addition, there is no standard
naming rules for circRNAs, which may lead to repeated studies on the same circRNA.
Fortunately, many bioinformatics algorithms have been developed and progressively
applied to study circRNAs. Certain algorithms call for gene annotation tables, while
others need to be studied from scratch, which can lessen the existence of false positives
and prevent the omission of unannotated specific circRNAs due to a lack of uniform
naming [187]. Through the prediction from bioinformatics algorithms, the hypothetical
interaction between circRNAs and miRNAs can be checked by stoichiometric relationship,
but this method is difficult to conduct because a great number of cells that differentially
express circRNAs and miRNAs need to be analyzed simultaneously. Meanwhile, luciferase
reporter analysis, as a representative of classical methods to determine direct binding,
is seldom used in the studies of circRNAs. The location and metabolism of circRNAs
have also been rarely reported. A large number of hypotheses have been proposed,
including the secretion of circRNAs into exosomes, which need more studies to verify.
Many investigations have concentrated on the function of circRNAs as miRNA sponges
while ignoring other underlying features of circRNAs. Recent research has challenged the
conventional wisdom, for instance, the absence of MREs do not affect the inhibitory actions
of circRNAs on specific target miRNAs and there are raising questions about the structural
foundation of the miRNA “sponge” [188]. No translatable circRNAs were identified in
osteosarcoma by ribosome footprint detection, which questions the reliability of the protein
coding capacity [189]. Since circRNA research is still in its infancy, these multifarious
problems provided by these challenges deserve deeper explorations. With innovations of
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molecular biological techniques, people believe that those challenges will eventually be
overcome, possibly leading to breakthroughs in circRNA research.

The epigenetic changes in human malignancies are primarily histone modifications,
gene promoter hypermethylation, global genomic hypomethylation and modified miRNA
expression patterns [190]. Thus, the differential expressions of circRNAs in BC associated
with epigenetic changes in the genome will be an interesting direction to investigate.
Furthermore, it has been shown that in colorectal cancer, the expression of circRNAs is
modulated by mutant cis-acting elements. Whether the same modalities of regulation
exist in BC and their roles in circRNAs biogenesis deserve further exploration. The post-
transcriptional chemical modification of RNAs may be essential for their functionality and
stability. Therefore, the exploration of chemical modification of circRNAs to achieve the
adjustment of their functions is also a possible research direction. With the establishment
of databases such as CircBase, CircNet and DeepBasev2.0, we can improve the naming
system to unify the IDs of circRNAs [60,62,191]. Databases need to be updated in an
immediate manner to effectively evade errors caused by bioinformatics algorithm and
improve the validity of research hypotheses. In addition, there are more circRNAs detection
methods developed. On top of qRT-PCR and Northern blotting, in situ hybridization (ISH)
and fluorescence in situ hybridization (FISH) address the expression and distribution of
circRNAs by providing direct visualization of spatial information [37]. The separation and
sequencing of single cell are more suitable for detecting differentially expressed circRNAs
in a cohort of cells or tissues. In terms of probing the associations between circRNAs and
parental genes, clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR-
cas9) is more advantageous [192]. As research techniques and horizons continue to be
updated and expanded, our understanding of circRNAs in BC will be further enhanced.

7. Conclusions

With the significant progress of RNA research, circRNAs have attracted extensive
attention of researchers and have gradually become an emerging frontier in cancer research.
A soaring number of circRNA transcripts have been discovered, and certain circRNAs have
been proven to be functional ncRNAs associated with malignant phenotypes and clinical
manifestations. In this review, we not only introduced the biogenesis and function of circR-
NAs, but also the role of circRNAs as clinical biomarkers in the diagnosis, prognosis, and
drug resistance of BC, and further discuss the functions and significance of circRNAs in BC.
Notably, current research primarily reveals the role of circRNAs as miRNA sponges, while
other potential functions of circRNAs in BC need to be further studied. Although research
in circRNA regulation of bladder cancer is still in its infancy and many questions remain
unanswered, we believe that circRNAs can provide a new avenue for tumor treatment.
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